#include #include #include #include #include #define SNI_CLOCK_TICK_RATE 3686400 #define SNI_COUNTER2_DIV 64 #define SNI_COUNTER0_DIV ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ) static void sni_a20r_timer_ack(void) { *(volatile u8 *)A20R_PT_TIM0_ACK = 0x0; wmb(); } /* * a20r platform uses 2 counters to divide the input frequency. * Counter 2 output is connected to Counter 0 & 1 input. */ static void __init sni_a20r_timer_setup(struct irqaction *irq) { *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34; wmb(); *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = (SNI_COUNTER0_DIV) & 0xff; wmb(); *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = (SNI_COUNTER0_DIV >> 8) & 0xff; wmb(); *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4; wmb(); *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = (SNI_COUNTER2_DIV) & 0xff; wmb(); *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = (SNI_COUNTER2_DIV >> 8) & 0xff; wmb(); setup_irq(SNI_A20R_IRQ_TIMER, irq); mips_timer_ack = sni_a20r_timer_ack; } #define SNI_8254_TICK_RATE 1193182UL #define SNI_8254_TCSAMP_COUNTER ((SNI_8254_TICK_RATE / HZ) + 255) static __init unsigned long dosample(void) { u32 ct0, ct1; volatile u8 msb, lsb; /* Start the counter. */ outb_p (0x34, 0x43); outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40); outb (SNI_8254_TCSAMP_COUNTER >> 8, 0x40); /* Get initial counter invariant */ ct0 = read_c0_count(); /* Latch and spin until top byte of counter0 is zero */ do { outb (0x00, 0x43); lsb = inb (0x40); msb = inb (0x40); ct1 = read_c0_count(); } while (msb); /* Stop the counter. */ outb (0x38, 0x43); /* * Return the difference, this is how far the r4k counter increments * for every 1/HZ seconds. We round off the nearest 1 MHz of master * clock (= 1000000 / HZ / 2). */ /*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/ return (ct1 - ct0) / (500000/HZ) * (500000/HZ); } /* * Here we need to calibrate the cycle counter to at least be close. */ __init void sni_cpu_time_init(void) { unsigned long r4k_ticks[3]; unsigned long r4k_tick; /* * Figure out the r4k offset, the algorithm is very simple and works in * _all_ cases as long as the 8254 counter register itself works ok (as * an interrupt driving timer it does not because of bug, this is why * we are using the onchip r4k counter/compare register to serve this * purpose, but for r4k_offset calculation it will work ok for us). * There are other very complicated ways of performing this calculation * but this one works just fine so I am not going to futz around. ;-) */ printk(KERN_INFO "Calibrating system timer... "); dosample(); /* Prime cache. */ dosample(); /* Prime cache. */ /* Zero is NOT an option. */ do { r4k_ticks[0] = dosample(); } while (!r4k_ticks[0]); do { r4k_ticks[1] = dosample(); } while (!r4k_ticks[1]); if (r4k_ticks[0] != r4k_ticks[1]) { printk("warning: timer counts differ, retrying... "); r4k_ticks[2] = dosample(); if (r4k_ticks[2] == r4k_ticks[0] || r4k_ticks[2] == r4k_ticks[1]) r4k_tick = r4k_ticks[2]; else { printk("disagreement, using average... "); r4k_tick = (r4k_ticks[0] + r4k_ticks[1] + r4k_ticks[2]) / 3; } } else r4k_tick = r4k_ticks[0]; printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick, (int) (r4k_tick / (500000 / HZ)), (int) (r4k_tick % (500000 / HZ))); mips_hpt_frequency = r4k_tick * HZ; } /* * R4k counter based timer interrupt. Works on RM200-225 and possibly * others but not on RM400 */ static void __init sni_cpu_timer_setup(struct irqaction *irq) { setup_irq(SNI_MIPS_IRQ_CPU_TIMER, irq); } void __init plat_timer_setup(struct irqaction *irq) { switch (sni_brd_type) { case SNI_BRD_10: case SNI_BRD_10NEW: case SNI_BRD_TOWER_OASIC: case SNI_BRD_MINITOWER: sni_a20r_timer_setup (irq); break; case SNI_BRD_PCI_TOWER: case SNI_BRD_RM200: case SNI_BRD_PCI_MTOWER: case SNI_BRD_PCI_DESKTOP: case SNI_BRD_PCI_TOWER_CPLUS: case SNI_BRD_PCI_MTOWER_CPLUS: sni_cpu_timer_setup (irq); break; } }