/* * arch/arm/kernel/kprobes-decode.c * * Copyright (C) 2006, 2007 Motorola Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ /* * We do not have hardware single-stepping on ARM, This * effort is further complicated by the ARM not having a * "next PC" register. Instructions that change the PC * can't be safely single-stepped in a MP environment, so * we have a lot of work to do: * * In the prepare phase: * *) If it is an instruction that does anything * with the CPU mode, we reject it for a kprobe. * (This is out of laziness rather than need. The * instructions could be simulated.) * * *) Otherwise, decode the instruction rewriting its * registers to take fixed, ordered registers and * setting a handler for it to run the instruction. * * In the execution phase by an instruction's handler: * * *) If the PC is written to by the instruction, the * instruction must be fully simulated in software. * If it is a conditional instruction, the handler * will use insn[0] to copy its condition code to * set r0 to 1 and insn[1] to "mov pc, lr" to return. * * *) Otherwise, a modified form of the instruction is * directly executed. Its handler calls the * instruction in insn[0]. In insn[1] is a * "mov pc, lr" to return. * * Before calling, load up the reordered registers * from the original instruction's registers. If one * of the original input registers is the PC, compute * and adjust the appropriate input register. * * After call completes, copy the output registers to * the original instruction's original registers. * * We don't use a real breakpoint instruction since that * would have us in the kernel go from SVC mode to SVC * mode losing the link register. Instead we use an * undefined instruction. To simplify processing, the * undefined instruction used for kprobes must be reserved * exclusively for kprobes use. * * TODO: ifdef out some instruction decoding based on architecture. */ #include #include #define sign_extend(x, signbit) ((x) | (0 - ((x) & (1 << (signbit))))) #define branch_displacement(insn) sign_extend(((insn) & 0xffffff) << 2, 25) #define PSR_fs (PSR_f|PSR_s) #define KPROBE_RETURN_INSTRUCTION 0xe1a0f00e /* mov pc, lr */ #define SET_R0_TRUE_INSTRUCTION 0xe3a00001 /* mov r0, #1 */ #define truecc_insn(insn) (((insn) & 0xf0000000) | \ (SET_R0_TRUE_INSTRUCTION & 0x0fffffff)) typedef long (insn_0arg_fn_t)(void); typedef long (insn_1arg_fn_t)(long); typedef long (insn_2arg_fn_t)(long, long); typedef long (insn_3arg_fn_t)(long, long, long); typedef long (insn_4arg_fn_t)(long, long, long, long); typedef long long (insn_llret_0arg_fn_t)(void); typedef long long (insn_llret_3arg_fn_t)(long, long, long); typedef long long (insn_llret_4arg_fn_t)(long, long, long, long); union reg_pair { long long dr; #ifdef __LITTLE_ENDIAN struct { long r0, r1; }; #else struct { long r1, r0; }; #endif }; /* * For STR and STM instructions, an ARM core may choose to use either * a +8 or a +12 displacement from the current instruction's address. * Whichever value is chosen for a given core, it must be the same for * both instructions and may not change. This function measures it. */ static int str_pc_offset; static void __init find_str_pc_offset(void) { int addr, scratch, ret; __asm__ ( "sub %[ret], pc, #4 \n\t" "str pc, %[addr] \n\t" "ldr %[scr], %[addr] \n\t" "sub %[ret], %[scr], %[ret] \n\t" : [ret] "=r" (ret), [scr] "=r" (scratch), [addr] "+m" (addr)); str_pc_offset = ret; } /* * The insnslot_?arg_r[w]flags() functions below are to keep the * msr -> *fn -> mrs instruction sequences indivisible so that * the state of the CPSR flags aren't inadvertently modified * just before or just after the call. */ static inline long __kprobes insnslot_0arg_rflags(long cpsr, insn_0arg_fn_t *fn) { register long ret asm("r0"); __asm__ __volatile__ ( "msr cpsr_fs, %[cpsr] \n\t" "mov lr, pc \n\t" "mov pc, %[fn] \n\t" : "=r" (ret) : [cpsr] "r" (cpsr), [fn] "r" (fn) : "lr", "cc" ); return ret; } static inline long long __kprobes insnslot_llret_0arg_rflags(long cpsr, insn_llret_0arg_fn_t *fn) { register long ret0 asm("r0"); register long ret1 asm("r1"); union reg_pair fnr; __asm__ __volatile__ ( "msr cpsr_fs, %[cpsr] \n\t" "mov lr, pc \n\t" "mov pc, %[fn] \n\t" : "=r" (ret0), "=r" (ret1) : [cpsr] "r" (cpsr), [fn] "r" (fn) : "lr", "cc" ); fnr.r0 = ret0; fnr.r1 = ret1; return fnr.dr; } static inline long __kprobes insnslot_1arg_rflags(long r0, long cpsr, insn_1arg_fn_t *fn) { register long rr0 asm("r0") = r0; register long ret asm("r0"); __asm__ __volatile__ ( "msr cpsr_fs, %[cpsr] \n\t" "mov lr, pc \n\t" "mov pc, %[fn] \n\t" : "=r" (ret) : "0" (rr0), [cpsr] "r" (cpsr), [fn] "r" (fn) : "lr", "cc" ); return ret; } static inline long __kprobes insnslot_2arg_rflags(long r0, long r1, long cpsr, insn_2arg_fn_t *fn) { register long rr0 asm("r0") = r0; register long rr1 asm("r1") = r1; register long ret asm("r0"); __asm__ __volatile__ ( "msr cpsr_fs, %[cpsr] \n\t" "mov lr, pc \n\t" "mov pc, %[fn] \n\t" : "=r" (ret) : "0" (rr0), "r" (rr1), [cpsr] "r" (cpsr), [fn] "r" (fn) : "lr", "cc" ); return ret; } static inline long __kprobes insnslot_3arg_rflags(long r0, long r1, long r2, long cpsr, insn_3arg_fn_t *fn) { register long rr0 asm("r0") = r0; register long rr1 asm("r1") = r1; register long rr2 asm("r2") = r2; register long ret asm("r0"); __asm__ __volatile__ ( "msr cpsr_fs, %[cpsr] \n\t" "mov lr, pc \n\t" "mov pc, %[fn] \n\t" : "=r" (ret) : "0" (rr0), "r" (rr1), "r" (rr2), [cpsr] "r" (cpsr), [fn] "r" (fn) : "lr", "cc" ); return ret; } static inline long long __kprobes insnslot_llret_3arg_rflags(long r0, long r1, long r2, long cpsr, insn_llret_3arg_fn_t *fn) { register long rr0 asm("r0") = r0; register long rr1 asm("r1") = r1; register long rr2 asm("r2") = r2; register long ret0 asm("r0"); register long ret1 asm("r1"); union reg_pair fnr; __asm__ __volatile__ ( "msr cpsr_fs, %[cpsr] \n\t" "mov lr, pc \n\t" "mov pc, %[fn] \n\t" : "=r" (ret0), "=r" (ret1) : "0" (rr0), "r" (rr1), "r" (rr2), [cpsr] "r" (cpsr), [fn] "r" (fn) : "lr", "cc" ); fnr.r0 = ret0; fnr.r1 = ret1; return fnr.dr; } static inline long __kprobes insnslot_4arg_rflags(long r0, long r1, long r2, long r3, long cpsr, insn_4arg_fn_t *fn) { register long rr0 asm("r0") = r0; register long rr1 asm("r1") = r1; register long rr2 asm("r2") = r2; register long rr3 asm("r3") = r3; register long ret asm("r0"); __asm__ __volatile__ ( "msr cpsr_fs, %[cpsr] \n\t" "mov lr, pc \n\t" "mov pc, %[fn] \n\t" : "=r" (ret) : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3), [cpsr] "r" (cpsr), [fn] "r" (fn) : "lr", "cc" ); return ret; } static inline long __kprobes insnslot_1arg_rwflags(long r0, long *cpsr, insn_1arg_fn_t *fn) { register long rr0 asm("r0") = r0; register long ret asm("r0"); long oldcpsr = *cpsr; long newcpsr; __asm__ __volatile__ ( "msr cpsr_fs, %[oldcpsr] \n\t" "mov lr, pc \n\t" "mov pc, %[fn] \n\t" "mrs %[newcpsr], cpsr \n\t" : "=r" (ret), [newcpsr] "=r" (newcpsr) : "0" (rr0), [oldcpsr] "r" (oldcpsr), [fn] "r" (fn) : "lr", "cc" ); *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs); return ret; } static inline long __kprobes insnslot_2arg_rwflags(long r0, long r1, long *cpsr, insn_2arg_fn_t *fn) { register long rr0 asm("r0") = r0; register long rr1 asm("r1") = r1; register long ret asm("r0"); long oldcpsr = *cpsr; long newcpsr; __asm__ __volatile__ ( "msr cpsr_fs, %[oldcpsr] \n\t" "mov lr, pc \n\t" "mov pc, %[fn] \n\t" "mrs %[newcpsr], cpsr \n\t" : "=r" (ret), [newcpsr] "=r" (newcpsr) : "0" (rr0), "r" (rr1), [oldcpsr] "r" (oldcpsr), [fn] "r" (fn) : "lr", "cc" ); *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs); return ret; } static inline long __kprobes insnslot_3arg_rwflags(long r0, long r1, long r2, long *cpsr, insn_3arg_fn_t *fn) { register long rr0 asm("r0") = r0; register long rr1 asm("r1") = r1; register long rr2 asm("r2") = r2; register long ret asm("r0"); long oldcpsr = *cpsr; long newcpsr; __asm__ __volatile__ ( "msr cpsr_fs, %[oldcpsr] \n\t" "mov lr, pc \n\t" "mov pc, %[fn] \n\t" "mrs %[newcpsr], cpsr \n\t" : "=r" (ret), [newcpsr] "=r" (newcpsr) : "0" (rr0), "r" (rr1), "r" (rr2), [oldcpsr] "r" (oldcpsr), [fn] "r" (fn) : "lr", "cc" ); *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs); return ret; } static inline long __kprobes insnslot_4arg_rwflags(long r0, long r1, long r2, long r3, long *cpsr, insn_4arg_fn_t *fn) { register long rr0 asm("r0") = r0; register long rr1 asm("r1") = r1; register long rr2 asm("r2") = r2; register long rr3 asm("r3") = r3; register long ret asm("r0"); long oldcpsr = *cpsr; long newcpsr; __asm__ __volatile__ ( "msr cpsr_fs, %[oldcpsr] \n\t" "mov lr, pc \n\t" "mov pc, %[fn] \n\t" "mrs %[newcpsr], cpsr \n\t" : "=r" (ret), [newcpsr] "=r" (newcpsr) : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3), [oldcpsr] "r" (oldcpsr), [fn] "r" (fn) : "lr", "cc" ); *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs); return ret; } static inline long long __kprobes insnslot_llret_4arg_rwflags(long r0, long r1, long r2, long r3, long *cpsr, insn_llret_4arg_fn_t *fn) { register long rr0 asm("r0") = r0; register long rr1 asm("r1") = r1; register long rr2 asm("r2") = r2; register long rr3 asm("r3") = r3; register long ret0 asm("r0"); register long ret1 asm("r1"); long oldcpsr = *cpsr; long newcpsr; union reg_pair fnr; __asm__ __volatile__ ( "msr cpsr_fs, %[oldcpsr] \n\t" "mov lr, pc \n\t" "mov pc, %[fn] \n\t" "mrs %[newcpsr], cpsr \n\t" : "=r" (ret0), "=r" (ret1), [newcpsr] "=r" (newcpsr) : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3), [oldcpsr] "r" (oldcpsr), [fn] "r" (fn) : "lr", "cc" ); *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs); fnr.r0 = ret0; fnr.r1 = ret1; return fnr.dr; } /* * To avoid the complications of mimicing single-stepping on a * processor without a Next-PC or a single-step mode, and to * avoid having to deal with the side-effects of boosting, we * simulate or emulate (almost) all ARM instructions. * * "Simulation" is where the instruction's behavior is duplicated in * C code. "Emulation" is where the original instruction is rewritten * and executed, often by altering its registers. * * By having all behavior of the kprobe'd instruction completed before * returning from the kprobe_handler(), all locks (scheduler and * interrupt) can safely be released. There is no need for secondary * breakpoints, no race with MP or preemptable kernels, nor having to * clean up resources counts at a later time impacting overall system * performance. By rewriting the instruction, only the minimum registers * need to be loaded and saved back optimizing performance. * * Calling the insnslot_*_rwflags version of a function doesn't hurt * anything even when the CPSR flags aren't updated by the * instruction. It's just a little slower in return for saving * a little space by not having a duplicate function that doesn't * update the flags. (The same optimization can be said for * instructions that do or don't perform register writeback) * Also, instructions can either read the flags, only write the * flags, or read and write the flags. To save combinations * rather than for sheer performance, flag functions just assume * read and write of flags. */ static void __kprobes simulate_bbl(struct kprobe *p, struct pt_regs *regs) { insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0]; kprobe_opcode_t insn = p->opcode; long iaddr = (long)p->addr; int disp = branch_displacement(insn); if (!insnslot_1arg_rflags(0, regs->ARM_cpsr, i_fn)) return; if (insn & (1 << 24)) regs->ARM_lr = iaddr + 4; regs->ARM_pc = iaddr + 8 + disp; } static void __kprobes simulate_blx1(struct kprobe *p, struct pt_regs *regs) { kprobe_opcode_t insn = p->opcode; long iaddr = (long)p->addr; int disp = branch_displacement(insn); regs->ARM_lr = iaddr + 4; regs->ARM_pc = iaddr + 8 + disp + ((insn >> 23) & 0x2); regs->ARM_cpsr |= PSR_T_BIT; } static void __kprobes simulate_blx2bx(struct kprobe *p, struct pt_regs *regs) { insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0]; kprobe_opcode_t insn = p->opcode; int rm = insn & 0xf; long rmv = regs->uregs[rm]; if (!insnslot_1arg_rflags(0, regs->ARM_cpsr, i_fn)) return; if (insn & (1 << 5)) regs->ARM_lr = (long)p->addr + 4; regs->ARM_pc = rmv & ~0x1; regs->ARM_cpsr &= ~PSR_T_BIT; if (rmv & 0x1) regs->ARM_cpsr |= PSR_T_BIT; } static void __kprobes simulate_ldm1stm1(struct kprobe *p, struct pt_regs *regs) { insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0]; kprobe_opcode_t insn = p->opcode; int rn = (insn >> 16) & 0xf; int lbit = insn & (1 << 20); int wbit = insn & (1 << 21); int ubit = insn & (1 << 23); int pbit = insn & (1 << 24); long *addr = (long *)regs->uregs[rn]; int reg_bit_vector; int reg_count; if (!insnslot_1arg_rflags(0, regs->ARM_cpsr, i_fn)) return; reg_count = 0; reg_bit_vector = insn & 0xffff; while (reg_bit_vector) { reg_bit_vector &= (reg_bit_vector - 1); ++reg_count; } if (!ubit) addr -= reg_count; addr += (!pbit == !ubit); reg_bit_vector = insn & 0xffff; while (reg_bit_vector) { int reg = __ffs(reg_bit_vector); reg_bit_vector &= (reg_bit_vector - 1); if (lbit) regs->uregs[reg] = *addr++; else *addr++ = regs->uregs[reg]; } if (wbit) { if (!ubit) addr -= reg_count; addr -= (!pbit == !ubit); regs->uregs[rn] = (long)addr; } } static void __kprobes simulate_stm1_pc(struct kprobe *p, struct pt_regs *regs) { insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0]; if (!insnslot_1arg_rflags(0, regs->ARM_cpsr, i_fn)) return; regs->ARM_pc = (long)p->addr + str_pc_offset; simulate_ldm1stm1(p, regs); regs->ARM_pc = (long)p->addr + 4; } static void __kprobes simulate_mov_ipsp(struct kprobe *p, struct pt_regs *regs) { regs->uregs[12] = regs->uregs[13]; } static void __kprobes emulate_ldcstc(struct kprobe *p, struct pt_regs *regs) { insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0]; kprobe_opcode_t insn = p->opcode; int rn = (insn >> 16) & 0xf; long rnv = regs->uregs[rn]; /* Save Rn in case of writeback. */ regs->uregs[rn] = insnslot_1arg_rflags(rnv, regs->ARM_cpsr, i_fn); } static void __kprobes emulate_ldrd(struct kprobe *p, struct pt_regs *regs) { insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0]; kprobe_opcode_t insn = p->opcode; int rd = (insn >> 12) & 0xf; int rn = (insn >> 16) & 0xf; int rm = insn & 0xf; /* rm may be invalid, don't care. */ /* Not following the C calling convention here, so need asm(). */ __asm__ __volatile__ ( "ldr r0, %[rn] \n\t" "ldr r1, %[rm] \n\t" "msr cpsr_fs, %[cpsr]\n\t" "mov lr, pc \n\t" "mov pc, %[i_fn] \n\t" "str r0, %[rn] \n\t" /* in case of writeback */ "str r2, %[rd0] \n\t" "str r3, %[rd1] \n\t" : [rn] "+m" (regs->uregs[rn]), [rd0] "=m" (regs->uregs[rd]), [rd1] "=m" (regs->uregs[rd+1]) : [rm] "m" (regs->uregs[rm]), [cpsr] "r" (regs->ARM_cpsr), [i_fn] "r" (i_fn) : "r0", "r1", "r2", "r3", "lr", "cc" ); } static void __kprobes emulate_strd(struct kprobe *p, struct pt_regs *regs) { insn_4arg_fn_t *i_fn = (insn_4arg_fn_t *)&p->ainsn.insn[0]; kprobe_opcode_t insn = p->opcode; int rd = (insn >> 12) & 0xf; int rn = (insn >> 16) & 0xf; int rm = insn & 0xf; long rnv = regs->uregs[rn]; long rmv = regs->uregs[rm]; /* rm/rmv may be invalid, don't care. */ regs->uregs[rn] = insnslot_4arg_rflags(rnv, rmv, regs->uregs[rd], regs->uregs[rd+1], regs->ARM_cpsr, i_fn); } static void __kprobes emulate_ldr(struct kprobe *p, struct pt_regs *regs) { insn_llret_3arg_fn_t *i_fn = (insn_llret_3arg_fn_t *)&p->ainsn.insn[0]; kprobe_opcode_t insn = p->opcode; long ppc = (long)p->addr + 8; union reg_pair fnr; int rd = (insn >> 12) & 0xf; int rn = (insn >> 16) & 0xf; int rm = insn & 0xf; long rdv; long rnv = (rn == 15) ? ppc : regs->uregs[rn]; long rmv = (rm == 15) ? ppc : regs->uregs[rm]; long cpsr = regs->ARM_cpsr; fnr.dr = insnslot_llret_3arg_rflags(rnv, 0, rmv, cpsr, i_fn); regs->uregs[rn] = fnr.r0; /* Save Rn in case of writeback. */ rdv = fnr.r1; if (rd == 15) { #if __LINUX_ARM_ARCH__ >= 5 cpsr &= ~PSR_T_BIT; if (rdv & 0x1) cpsr |= PSR_T_BIT; regs->ARM_cpsr = cpsr; rdv &= ~0x1; #else rdv &= ~0x2; #endif } regs->uregs[rd] = rdv; } static void __kprobes emulate_str(struct kprobe *p, struct pt_regs *regs) { insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0]; kprobe_opcode_t insn = p->opcode; long iaddr = (long)p->addr; int rd = (insn >> 12) & 0xf; int rn = (insn >> 16) & 0xf; int rm = insn & 0xf; long rdv = (rd == 15) ? iaddr + str_pc_offset : regs->uregs[rd]; long rnv = (rn == 15) ? iaddr + 8 : regs->uregs[rn]; long rmv = regs->uregs[rm]; /* rm/rmv may be invalid, don't care. */ /* Save Rn in case of writeback. */ regs->uregs[rn] = insnslot_3arg_rflags(rnv, rdv, rmv, regs->ARM_cpsr, i_fn); } static void __kprobes emulate_mrrc(struct kprobe *p, struct pt_regs *regs) { insn_llret_0arg_fn_t *i_fn = (insn_llret_0arg_fn_t *)&p->ainsn.insn[0]; kprobe_opcode_t insn = p->opcode; union reg_pair fnr; int rd = (insn >> 12) & 0xf; int rn = (insn >> 16) & 0xf; fnr.dr = insnslot_llret_0arg_rflags(regs->ARM_cpsr, i_fn); regs->uregs[rn] = fnr.r0; regs->uregs[rd] = fnr.r1; } static void __kprobes emulate_mcrr(struct kprobe *p, struct pt_regs *regs) { insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0]; kprobe_opcode_t insn = p->opcode; int rd = (insn >> 12) & 0xf; int rn = (insn >> 16) & 0xf; long rnv = regs->uregs[rn]; long rdv = regs->uregs[rd]; insnslot_2arg_rflags(rnv, rdv, regs->ARM_cpsr, i_fn); } static void __kprobes emulate_sat(struct kprobe *p, struct pt_regs *regs) { insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0]; kprobe_opcode_t insn = p->opcode; int rd = (insn >> 12) & 0xf; int rm = insn & 0xf; long rmv = regs->uregs[rm]; /* Writes Q flag */ regs->uregs[rd] = insnslot_1arg_rwflags(rmv, ®s->ARM_cpsr, i_fn); } static void __kprobes emulate_sel(struct kprobe *p, struct pt_regs *regs) { insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0]; kprobe_opcode_t insn = p->opcode; int rd = (insn >> 12) & 0xf; int rn = (insn >> 16) & 0xf; int rm = insn & 0xf; long rnv = regs->uregs[rn]; long rmv = regs->uregs[rm]; /* Reads GE bits */ regs->uregs[rd] = insnslot_2arg_rflags(rnv, rmv, regs->ARM_cpsr, i_fn); } static void __kprobes emulate_none(struct kprobe *p, struct pt_regs *regs) { insn_0arg_fn_t *i_fn = (insn_0arg_fn_t *)&p->ainsn.insn[0]; insnslot_0arg_rflags(regs->ARM_cpsr, i_fn); } static void __kprobes emulate_rd12(struct kprobe *p, struct pt_regs *regs) { insn_0arg_fn_t *i_fn = (insn_0arg_fn_t *)&p->ainsn.insn[0]; kprobe_opcode_t insn = p->opcode; int rd = (insn >> 12) & 0xf; regs->uregs[rd] = insnslot_0arg_rflags(regs->ARM_cpsr, i_fn); } static void __kprobes emulate_ird12(struct kprobe *p, struct pt_regs *regs) { insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0]; kprobe_opcode_t insn = p->opcode; int ird = (insn >> 12) & 0xf; insnslot_1arg_rflags(regs->uregs[ird], regs->ARM_cpsr, i_fn); } static void __kprobes emulate_rn16(struct kprobe *p, struct pt_regs *regs) { insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0]; kprobe_opcode_t insn = p->opcode; int rn = (insn >> 16) & 0xf; long rnv = regs->uregs[rn]; insnslot_1arg_rflags(rnv, regs->ARM_cpsr, i_fn); } static void __kprobes emulate_rd12rm0(struct kprobe *p, struct pt_regs *regs) { insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0]; kprobe_opcode_t insn = p->opcode; int rd = (insn >> 12) & 0xf; int rm = insn & 0xf; long rmv = regs->uregs[rm]; regs->uregs[rd] = insnslot_1arg_rflags(rmv, regs->ARM_cpsr, i_fn); } static void __kprobes emulate_rd12rn16rm0_rwflags(struct kprobe *p, struct pt_regs *regs) { insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0]; kprobe_opcode_t insn = p->opcode; int rd = (insn >> 12) & 0xf; int rn = (insn >> 16) & 0xf; int rm = insn & 0xf; long rnv = regs->uregs[rn]; long rmv = regs->uregs[rm]; regs->uregs[rd] = insnslot_2arg_rwflags(rnv, rmv, ®s->ARM_cpsr, i_fn); } static void __kprobes emulate_rd16rn12rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs) { insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0]; kprobe_opcode_t insn = p->opcode; int rd = (insn >> 16) & 0xf; int rn = (insn >> 12) & 0xf; int rs = (insn >> 8) & 0xf; int rm = insn & 0xf; long rnv = regs->uregs[rn]; long rsv = regs->uregs[rs]; long rmv = regs->uregs[rm]; regs->uregs[rd] = insnslot_3arg_rwflags(rnv, rsv, rmv, ®s->ARM_cpsr, i_fn); } static void __kprobes emulate_rd16rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs) { insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0]; kprobe_opcode_t insn = p->opcode; int rd = (insn >> 16) & 0xf; int rs = (insn >> 8) & 0xf; int rm = insn & 0xf; long rsv = regs->uregs[rs]; long rmv = regs->uregs[rm]; regs->uregs[rd] = insnslot_2arg_rwflags(rsv, rmv, ®s->ARM_cpsr, i_fn); } static void __kprobes emulate_rdhi16rdlo12rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs) { insn_llret_4arg_fn_t *i_fn = (insn_llret_4arg_fn_t *)&p->ainsn.insn[0]; kprobe_opcode_t insn = p->opcode; union reg_pair fnr; int rdhi = (insn >> 16) & 0xf; int rdlo = (insn >> 12) & 0xf; int rs = (insn >> 8) & 0xf; int rm = insn & 0xf; long rsv = regs->uregs[rs]; long rmv = regs->uregs[rm]; fnr.dr = insnslot_llret_4arg_rwflags(regs->uregs[rdhi], regs->uregs[rdlo], rsv, rmv, ®s->ARM_cpsr, i_fn); regs->uregs[rdhi] = fnr.r0; regs->uregs[rdlo] = fnr.r1; } static void __kprobes emulate_alu_imm_rflags(struct kprobe *p, struct pt_regs *regs) { insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0]; kprobe_opcode_t insn = p->opcode; int rd = (insn >> 12) & 0xf; int rn = (insn >> 16) & 0xf; long rnv = (rn == 15) ? (long)p->addr + 8 : regs->uregs[rn]; regs->uregs[rd] = insnslot_1arg_rflags(rnv, regs->ARM_cpsr, i_fn); } static void __kprobes emulate_alu_imm_rwflags(struct kprobe *p, struct pt_regs *regs) { insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0]; kprobe_opcode_t insn = p->opcode; int rd = (insn >> 12) & 0xf; int rn = (insn >> 16) & 0xf; long rnv = (rn == 15) ? (long)p->addr + 8 : regs->uregs[rn]; regs->uregs[rd] = insnslot_1arg_rwflags(rnv, ®s->ARM_cpsr, i_fn); } static void __kprobes emulate_alu_rflags(struct kprobe *p, struct pt_regs *regs) { insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0]; kprobe_opcode_t insn = p->opcode; long ppc = (long)p->addr + 8; int rd = (insn >> 12) & 0xf; int rn = (insn >> 16) & 0xf; /* rn/rnv/rs/rsv may be */ int rs = (insn >> 8) & 0xf; /* invalid, don't care. */ int rm = insn & 0xf; long rnv = (rn == 15) ? ppc : regs->uregs[rn]; long rmv = (rm == 15) ? ppc : regs->uregs[rm]; long rsv = regs->uregs[rs]; regs->uregs[rd] = insnslot_3arg_rflags(rnv, rmv, rsv, regs->ARM_cpsr, i_fn); } static void __kprobes emulate_alu_rwflags(struct kprobe *p, struct pt_regs *regs) { insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0]; kprobe_opcode_t insn = p->opcode; long ppc = (long)p->addr + 8; int rd = (insn >> 12) & 0xf; int rn = (insn >> 16) & 0xf; /* rn/rnv/rs/rsv may be */ int rs = (insn >> 8) & 0xf; /* invalid, don't care. */ int rm = insn & 0xf; long rnv = (rn == 15) ? ppc : regs->uregs[rn]; long rmv = (rm == 15) ? ppc : regs->uregs[rm]; long rsv = regs->uregs[rs]; regs->uregs[rd] = insnslot_3arg_rwflags(rnv, rmv, rsv, ®s->ARM_cpsr, i_fn); } static enum kprobe_insn __kprobes prep_emulate_ldr_str(kprobe_opcode_t insn, struct arch_specific_insn *asi) { int ibit = (insn & (1 << 26)) ? 25 : 22; insn &= 0xfff00fff; insn |= 0x00001000; /* Rn = r0, Rd = r1 */ if (insn & (1 << ibit)) { insn &= ~0xf; insn |= 2; /* Rm = r2 */ } asi->insn[0] = insn; asi->insn_handler = (insn & (1 << 20)) ? emulate_ldr : emulate_str; return INSN_GOOD; } static enum kprobe_insn __kprobes prep_emulate_rd12rm0(kprobe_opcode_t insn, struct arch_specific_insn *asi) { insn &= 0xffff0ff0; /* Rd = r0, Rm = r0 */ asi->insn[0] = insn; asi->insn_handler = emulate_rd12rm0; return INSN_GOOD; } static enum kprobe_insn __kprobes prep_emulate_rd12(kprobe_opcode_t insn, struct arch_specific_insn *asi) { insn &= 0xffff0fff; /* Rd = r0 */ asi->insn[0] = insn; asi->insn_handler = emulate_rd12; return INSN_GOOD; } static enum kprobe_insn __kprobes prep_emulate_rd12rn16rm0_wflags(kprobe_opcode_t insn, struct arch_specific_insn *asi) { insn &= 0xfff00ff0; /* Rd = r0, Rn = r0 */ insn |= 0x00000001; /* Rm = r1 */ asi->insn[0] = insn; asi->insn_handler = emulate_rd12rn16rm0_rwflags; return INSN_GOOD; } static enum kprobe_insn __kprobes prep_emulate_rd16rs8rm0_wflags(kprobe_opcode_t insn, struct arch_specific_insn *asi) { insn &= 0xfff0f0f0; /* Rd = r0, Rs = r0 */ insn |= 0x00000001; /* Rm = r1 */ asi->insn[0] = insn; asi->insn_handler = emulate_rd16rs8rm0_rwflags; return INSN_GOOD; } static enum kprobe_insn __kprobes prep_emulate_rd16rn12rs8rm0_wflags(kprobe_opcode_t insn, struct arch_specific_insn *asi) { insn &= 0xfff000f0; /* Rd = r0, Rn = r0 */ insn |= 0x00000102; /* Rs = r1, Rm = r2 */ asi->insn[0] = insn; asi->insn_handler = emulate_rd16rn12rs8rm0_rwflags; return INSN_GOOD; } static enum kprobe_insn __kprobes prep_emulate_rdhi16rdlo12rs8rm0_wflags(kprobe_opcode_t insn, struct arch_specific_insn *asi) { insn &= 0xfff000f0; /* RdHi = r0, RdLo = r1 */ insn |= 0x00001203; /* Rs = r2, Rm = r3 */ asi->insn[0] = insn; asi->insn_handler = emulate_rdhi16rdlo12rs8rm0_rwflags; return INSN_GOOD; } /* * For the instruction masking and comparisons in all the "space_*" * functions below, Do _not_ rearrange the order of tests unless * you're very, very sure of what you are doing. For the sake of * efficiency, the masks for some tests sometimes assume other test * have been done prior to them so the number of patterns to test * for an instruction set can be as broad as possible to reduce the * number of tests needed. */ static enum kprobe_insn __kprobes space_1111(kprobe_opcode_t insn, struct arch_specific_insn *asi) { /* CPS mmod == 1 : 1111 0001 0000 xx10 xxxx xxxx xx0x xxxx */ /* RFE : 1111 100x x0x1 xxxx xxxx 1010 xxxx xxxx */ /* SRS : 1111 100x x1x0 1101 xxxx 0101 xxxx xxxx */ if ((insn & 0xfff30020) == 0xf1020000 || (insn & 0xfe500f00) == 0xf8100a00 || (insn & 0xfe5f0f00) == 0xf84d0500) return INSN_REJECTED; /* PLD : 1111 01x1 x101 xxxx xxxx xxxx xxxx xxxx : */ if ((insn & 0xfd700000) == 0xf4500000) { insn &= 0xfff0ffff; /* Rn = r0 */ asi->insn[0] = insn; asi->insn_handler = emulate_rn16; return INSN_GOOD; } /* BLX(1) : 1111 101x xxxx xxxx xxxx xxxx xxxx xxxx : */ if ((insn & 0xfe000000) == 0xfa000000) { asi->insn_handler = simulate_blx1; return INSN_GOOD_NO_SLOT; } /* SETEND : 1111 0001 0000 0001 xxxx xxxx 0000 xxxx */ /* CDP2 : 1111 1110 xxxx xxxx xxxx xxxx xxx0 xxxx */ if ((insn & 0xffff00f0) == 0xf1010000 || (insn & 0xff000010) == 0xfe000000) { asi->insn[0] = insn; asi->insn_handler = emulate_none; return INSN_GOOD; } /* MCRR2 : 1111 1100 0100 xxxx xxxx xxxx xxxx xxxx : (Rd != Rn) */ /* MRRC2 : 1111 1100 0101 xxxx xxxx xxxx xxxx xxxx : (Rd != Rn) */ if ((insn & 0xffe00000) == 0xfc400000) { insn &= 0xfff00fff; /* Rn = r0 */ insn |= 0x00001000; /* Rd = r1 */ asi->insn[0] = insn; asi->insn_handler = (insn & (1 << 20)) ? emulate_mrrc : emulate_mcrr; return INSN_GOOD; } /* LDC2 : 1111 110x xxx1 xxxx xxxx xxxx xxxx xxxx */ /* STC2 : 1111 110x xxx0 xxxx xxxx xxxx xxxx xxxx */ if ((insn & 0xfe000000) == 0xfc000000) { insn &= 0xfff0ffff; /* Rn = r0 */ asi->insn[0] = insn; asi->insn_handler = emulate_ldcstc; return INSN_GOOD; } /* MCR2 : 1111 1110 xxx0 xxxx xxxx xxxx xxx1 xxxx */ /* MRC2 : 1111 1110 xxx1 xxxx xxxx xxxx xxx1 xxxx */ insn &= 0xffff0fff; /* Rd = r0 */ asi->insn[0] = insn; asi->insn_handler = (insn & (1 << 20)) ? emulate_rd12 : emulate_ird12; return INSN_GOOD; } static enum kprobe_insn __kprobes space_cccc_000x(kprobe_opcode_t insn, struct arch_specific_insn *asi) { /* cccc 0001 0xx0 xxxx xxxx xxxx xxxx xxx0 xxxx */ if ((insn & 0x0f900010) == 0x01000000) { /* BXJ : cccc 0001 0010 xxxx xxxx xxxx 0010 xxxx */ /* MSR : cccc 0001 0x10 xxxx xxxx xxxx 0000 xxxx */ if ((insn & 0x0ff000f0) == 0x01200020 || (insn & 0x0fb000f0) == 0x01200000) return INSN_REJECTED; /* MRS : cccc 0001 0x00 xxxx xxxx xxxx 0000 xxxx */ if ((insn & 0x0fb00010) == 0x01000000) return prep_emulate_rd12(insn, asi); /* SMLALxy : cccc 0001 0100 xxxx xxxx xxxx 1xx0 xxxx */ if ((insn & 0x0ff00090) == 0x01400080) return prep_emulate_rdhi16rdlo12rs8rm0_wflags(insn, asi); /* SMULWy : cccc 0001 0010 xxxx xxxx xxxx 1x10 xxxx */ /* SMULxy : cccc 0001 0110 xxxx xxxx xxxx 1xx0 xxxx */ if ((insn & 0x0ff000b0) == 0x012000a0 || (insn & 0x0ff00090) == 0x01600080) return prep_emulate_rd16rs8rm0_wflags(insn, asi); /* SMLAxy : cccc 0001 0000 xxxx xxxx xxxx 1xx0 xxxx : Q */ /* SMLAWy : cccc 0001 0010 xxxx xxxx xxxx 0x00 xxxx : Q */ return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi); } /* cccc 0001 0xx0 xxxx xxxx xxxx xxxx 0xx1 xxxx */ else if ((insn & 0x0f900090) == 0x01000010) { /* BKPT : 1110 0001 0010 xxxx xxxx xxxx 0111 xxxx */ if ((insn & 0xfff000f0) == 0xe1200070) return INSN_REJECTED; /* BLX(2) : cccc 0001 0010 xxxx xxxx xxxx 0011 xxxx */ /* BX : cccc 0001 0010 xxxx xxxx xxxx 0001 xxxx */ if ((insn & 0x0ff000d0) == 0x01200010) { asi->insn[0] = truecc_insn(insn); asi->insn_handler = simulate_blx2bx; return INSN_GOOD; } /* CLZ : cccc 0001 0110 xxxx xxxx xxxx 0001 xxxx */ if ((insn & 0x0ff000f0) == 0x01600010) return prep_emulate_rd12rm0(insn, asi); /* QADD : cccc 0001 0000 xxxx xxxx xxxx 0101 xxxx :Q */ /* QSUB : cccc 0001 0010 xxxx xxxx xxxx 0101 xxxx :Q */ /* QDADD : cccc 0001 0100 xxxx xxxx xxxx 0101 xxxx :Q */ /* QDSUB : cccc 0001 0110 xxxx xxxx xxxx 0101 xxxx :Q */ return prep_emulate_rd12rn16rm0_wflags(insn, asi); } /* cccc 0000 xxxx xxxx xxxx xxxx xxxx 1001 xxxx */ else if ((insn & 0x0f000090) == 0x00000090) { /* MUL : cccc 0000 0000 xxxx xxxx xxxx 1001 xxxx : */ /* MULS : cccc 0000 0001 xxxx xxxx xxxx 1001 xxxx :cc */ /* MLA : cccc 0000 0010 xxxx xxxx xxxx 1001 xxxx : */ /* MLAS : cccc 0000 0011 xxxx xxxx xxxx 1001 xxxx :cc */ /* UMAAL : cccc 0000 0100 xxxx xxxx xxxx 1001 xxxx : */ /* UMULL : cccc 0000 1000 xxxx xxxx xxxx 1001 xxxx : */ /* UMULLS : cccc 0000 1001 xxxx xxxx xxxx 1001 xxxx :cc */ /* UMLAL : cccc 0000 1010 xxxx xxxx xxxx 1001 xxxx : */ /* UMLALS : cccc 0000 1011 xxxx xxxx xxxx 1001 xxxx :cc */ /* SMULL : cccc 0000 1100 xxxx xxxx xxxx 1001 xxxx : */ /* SMULLS : cccc 0000 1101 xxxx xxxx xxxx 1001 xxxx :cc */ /* SMLAL : cccc 0000 1110 xxxx xxxx xxxx 1001 xxxx : */ /* SMLALS : cccc 0000 1111 xxxx xxxx xxxx 1001 xxxx :cc */ if ((insn & 0x0fe000f0) == 0x00000090) { return prep_emulate_rd16rs8rm0_wflags(insn, asi); } else if ((insn & 0x0fe000f0) == 0x00200090) { return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi); } else { return prep_emulate_rdhi16rdlo12rs8rm0_wflags(insn, asi); } } /* cccc 000x xxxx xxxx xxxx xxxx xxxx 1xx1 xxxx */ else if ((insn & 0x0e000090) == 0x00000090) { /* SWP : cccc 0001 0000 xxxx xxxx xxxx 1001 xxxx */ /* SWPB : cccc 0001 0100 xxxx xxxx xxxx 1001 xxxx */ /* LDRD : cccc 000x xxx0 xxxx xxxx xxxx 1101 xxxx */ /* STRD : cccc 000x xxx0 xxxx xxxx xxxx 1111 xxxx */ /* STREX : cccc 0001 1000 xxxx xxxx xxxx 1001 xxxx */ /* LDREX : cccc 0001 1001 xxxx xxxx xxxx 1001 xxxx */ /* LDRH : cccc 000x xxx1 xxxx xxxx xxxx 1011 xxxx */ /* STRH : cccc 000x xxx0 xxxx xxxx xxxx 1011 xxxx */ /* LDRSB : cccc 000x xxx1 xxxx xxxx xxxx 1101 xxxx */ /* LDRSH : cccc 000x xxx1 xxxx xxxx xxxx 1111 xxxx */ if ((insn & 0x0fb000f0) == 0x01000090) { /* SWP/SWPB */ return prep_emulate_rd12rn16rm0_wflags(insn, asi); } else if ((insn & 0x0e1000d0) == 0x00000d0) { /* STRD/LDRD */ insn &= 0xfff00fff; insn |= 0x00002000; /* Rn = r0, Rd = r2 */ if (insn & (1 << 22)) { /* I bit */ insn &= ~0xf; insn |= 1; /* Rm = r1 */ } asi->insn[0] = insn; asi->insn_handler = (insn & (1 << 5)) ? emulate_strd : emulate_ldrd; return INSN_GOOD; } return prep_emulate_ldr_str(insn, asi); } /* cccc 000x xxxx xxxx xxxx xxxx xxxx xxxx xxxx */ /* * ALU op with S bit and Rd == 15 : * cccc 000x xxx1 xxxx 1111 xxxx xxxx xxxx */ if ((insn & 0x0e10f000) == 0x0010f000) return INSN_REJECTED; /* * "mov ip, sp" is the most common kprobe'd instruction by far. * Check and optimize for it explicitly. */ if (insn == 0xe1a0c00d) { asi->insn_handler = simulate_mov_ipsp; return INSN_GOOD_NO_SLOT; } /* * Data processing: Immediate-shift / Register-shift * ALU op : cccc 000x xxxx xxxx xxxx xxxx xxxx xxxx * CPY : cccc 0001 1010 xxxx xxxx 0000 0000 xxxx * MOV : cccc 0001 101x xxxx xxxx xxxx xxxx xxxx * *S (bit 20) updates condition codes * ADC/SBC/RSC reads the C flag */ insn &= 0xfff00ff0; /* Rn = r0, Rd = r0 */ insn |= 0x00000001; /* Rm = r1 */ if (insn & 0x010) { insn &= 0xfffff0ff; /* register shift */ insn |= 0x00000200; /* Rs = r2 */ } asi->insn[0] = insn; asi->insn_handler = (insn & (1 << 20)) ? /* S-bit */ emulate_alu_rwflags : emulate_alu_rflags; return INSN_GOOD; } static enum kprobe_insn __kprobes space_cccc_001x(kprobe_opcode_t insn, struct arch_specific_insn *asi) { /* * MSR : cccc 0011 0x10 xxxx xxxx xxxx xxxx xxxx * Undef : cccc 0011 0100 xxxx xxxx xxxx xxxx xxxx * ALU op with S bit and Rd == 15 : * cccc 001x xxx1 xxxx 1111 xxxx xxxx xxxx */ if ((insn & 0x0fb00000) == 0x03200000 || /* MSR */ (insn & 0x0ff00000) == 0x03400000 || /* Undef */ (insn & 0x0e10f000) == 0x0210f000) /* ALU s-bit, R15 */ return INSN_REJECTED; /* * Data processing: 32-bit Immediate * ALU op : cccc 001x xxxx xxxx xxxx xxxx xxxx xxxx * MOV : cccc 0011 101x xxxx xxxx xxxx xxxx xxxx * *S (bit 20) updates condition codes * ADC/SBC/RSC reads the C flag */ insn &= 0xffff0fff; /* Rd = r0 */ asi->insn[0] = insn; asi->insn_handler = (insn & (1 << 20)) ? /* S-bit */ emulate_alu_imm_rwflags : emulate_alu_imm_rflags; return INSN_GOOD; } static enum kprobe_insn __kprobes space_cccc_0110__1(kprobe_opcode_t insn, struct arch_specific_insn *asi) { /* SEL : cccc 0110 1000 xxxx xxxx xxxx 1011 xxxx GE: !!! */ if ((insn & 0x0ff000f0) == 0x068000b0) { insn &= 0xfff00ff0; /* Rd = r0, Rn = r0 */ insn |= 0x00000001; /* Rm = r1 */ asi->insn[0] = insn; asi->insn_handler = emulate_sel; return INSN_GOOD; } /* SSAT : cccc 0110 101x xxxx xxxx xxxx xx01 xxxx :Q */ /* USAT : cccc 0110 111x xxxx xxxx xxxx xx01 xxxx :Q */ /* SSAT16 : cccc 0110 1010 xxxx xxxx xxxx 0011 xxxx :Q */ /* USAT16 : cccc 0110 1110 xxxx xxxx xxxx 0011 xxxx :Q */ if ((insn & 0x0fa00030) == 0x06a00010 || (insn & 0x0fb000f0) == 0x06a00030) { insn &= 0xffff0ff0; /* Rd = r0, Rm = r0 */ asi->insn[0] = insn; asi->insn_handler = emulate_sat; return INSN_GOOD; } /* REV : cccc 0110 1011 xxxx xxxx xxxx 0011 xxxx */ /* REV16 : cccc 0110 1011 xxxx xxxx xxxx 1011 xxxx */ /* REVSH : cccc 0110 1111 xxxx xxxx xxxx 1011 xxxx */ if ((insn & 0x0ff00070) == 0x06b00030 || (insn & 0x0ff000f0) == 0x06f000b0) return prep_emulate_rd12rm0(insn, asi); /* SADD16 : cccc 0110 0001 xxxx xxxx xxxx 0001 xxxx :GE */ /* SADDSUBX : cccc 0110 0001 xxxx xxxx xxxx 0011 xxxx :GE */ /* SSUBADDX : cccc 0110 0001 xxxx xxxx xxxx 0101 xxxx :GE */ /* SSUB16 : cccc 0110 0001 xxxx xxxx xxxx 0111 xxxx :GE */ /* SADD8 : cccc 0110 0001 xxxx xxxx xxxx 1001 xxxx :GE */ /* SSUB8 : cccc 0110 0001 xxxx xxxx xxxx 1111 xxxx :GE */ /* QADD16 : cccc 0110 0010 xxxx xxxx xxxx 0001 xxxx : */ /* QADDSUBX : cccc 0110 0010 xxxx xxxx xxxx 0011 xxxx : */ /* QSUBADDX : cccc 0110 0010 xxxx xxxx xxxx 0101 xxxx : */ /* QSUB16 : cccc 0110 0010 xxxx xxxx xxxx 0111 xxxx : */ /* QADD8 : cccc 0110 0010 xxxx xxxx xxxx 1001 xxxx : */ /* QSUB8 : cccc 0110 0010 xxxx xxxx xxxx 1111 xxxx : */ /* SHADD16 : cccc 0110 0011 xxxx xxxx xxxx 0001 xxxx : */ /* SHADDSUBX : cccc 0110 0011 xxxx xxxx xxxx 0011 xxxx : */ /* SHSUBADDX : cccc 0110 0011 xxxx xxxx xxxx 0101 xxxx : */ /* SHSUB16 : cccc 0110 0011 xxxx xxxx xxxx 0111 xxxx : */ /* SHADD8 : cccc 0110 0011 xxxx xxxx xxxx 1001 xxxx : */ /* SHSUB8 : cccc 0110 0011 xxxx xxxx xxxx 1111 xxxx : */ /* UADD16 : cccc 0110 0101 xxxx xxxx xxxx 0001 xxxx :GE */ /* UADDSUBX : cccc 0110 0101 xxxx xxxx xxxx 0011 xxxx :GE */ /* USUBADDX : cccc 0110 0101 xxxx xxxx xxxx 0101 xxxx :GE */ /* USUB16 : cccc 0110 0101 xxxx xxxx xxxx 0111 xxxx :GE */ /* UADD8 : cccc 0110 0101 xxxx xxxx xxxx 1001 xxxx :GE */ /* USUB8 : cccc 0110 0101 xxxx xxxx xxxx 1111 xxxx :GE */ /* UQADD16 : cccc 0110 0110 xxxx xxxx xxxx 0001 xxxx : */ /* UQADDSUBX : cccc 0110 0110 xxxx xxxx xxxx 0011 xxxx : */ /* UQSUBADDX : cccc 0110 0110 xxxx xxxx xxxx 0101 xxxx : */ /* UQSUB16 : cccc 0110 0110 xxxx xxxx xxxx 0111 xxxx : */ /* UQADD8 : cccc 0110 0110 xxxx xxxx xxxx 1001 xxxx : */ /* UQSUB8 : cccc 0110 0110 xxxx xxxx xxxx 1111 xxxx : */ /* UHADD16 : cccc 0110 0111 xxxx xxxx xxxx 0001 xxxx : */ /* UHADDSUBX : cccc 0110 0111 xxxx xxxx xxxx 0011 xxxx : */ /* UHSUBADDX : cccc 0110 0111 xxxx xxxx xxxx 0101 xxxx : */ /* UHSUB16 : cccc 0110 0111 xxxx xxxx xxxx 0111 xxxx : */ /* UHADD8 : cccc 0110 0111 xxxx xxxx xxxx 1001 xxxx : */ /* UHSUB8 : cccc 0110 0111 xxxx xxxx xxxx 1111 xxxx : */ /* PKHBT : cccc 0110 1000 xxxx xxxx xxxx x001 xxxx : */ /* PKHTB : cccc 0110 1000 xxxx xxxx xxxx x101 xxxx : */ /* SXTAB16 : cccc 0110 1000 xxxx xxxx xxxx 0111 xxxx : */ /* SXTB : cccc 0110 1010 xxxx xxxx xxxx 0111 xxxx : */ /* SXTAB : cccc 0110 1010 xxxx xxxx xxxx 0111 xxxx : */ /* SXTAH : cccc 0110 1011 xxxx xxxx xxxx 0111 xxxx : */ /* UXTAB16 : cccc 0110 1100 xxxx xxxx xxxx 0111 xxxx : */ /* UXTAB : cccc 0110 1110 xxxx xxxx xxxx 0111 xxxx : */ /* UXTAH : cccc 0110 1111 xxxx xxxx xxxx 0111 xxxx : */ return prep_emulate_rd12rn16rm0_wflags(insn, asi); } static enum kprobe_insn __kprobes space_cccc_0111__1(kprobe_opcode_t insn, struct arch_specific_insn *asi) { /* Undef : cccc 0111 1111 xxxx xxxx xxxx 1111 xxxx */ if ((insn & 0x0ff000f0) == 0x03f000f0) return INSN_REJECTED; /* USADA8 : cccc 0111 1000 xxxx xxxx xxxx 0001 xxxx */ /* USAD8 : cccc 0111 1000 xxxx 1111 xxxx 0001 xxxx */ if ((insn & 0x0ff000f0) == 0x07800010) return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi); /* SMLALD : cccc 0111 0100 xxxx xxxx xxxx 00x1 xxxx */ /* SMLSLD : cccc 0111 0100 xxxx xxxx xxxx 01x1 xxxx */ if ((insn & 0x0ff00090) == 0x07400010) return prep_emulate_rdhi16rdlo12rs8rm0_wflags(insn, asi); /* SMLAD : cccc 0111 0000 xxxx xxxx xxxx 00x1 xxxx :Q */ /* SMLSD : cccc 0111 0000 xxxx xxxx xxxx 01x1 xxxx :Q */ /* SMMLA : cccc 0111 0101 xxxx xxxx xxxx 00x1 xxxx : */ /* SMMLS : cccc 0111 0101 xxxx xxxx xxxx 11x1 xxxx : */ if ((insn & 0x0ff00090) == 0x07000010 || (insn & 0x0ff000d0) == 0x07500010 || (insn & 0x0ff000d0) == 0x075000d0) return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi); /* SMUSD : cccc 0111 0000 xxxx xxxx xxxx 01x1 xxxx : */ /* SMUAD : cccc 0111 0000 xxxx 1111 xxxx 00x1 xxxx :Q */ /* SMMUL : cccc 0111 0101 xxxx 1111 xxxx 00x1 xxxx : */ return prep_emulate_rd16rs8rm0_wflags(insn, asi); } static enum kprobe_insn __kprobes space_cccc_01xx(kprobe_opcode_t insn, struct arch_specific_insn *asi) { /* LDR : cccc 01xx x0x1 xxxx xxxx xxxx xxxx xxxx */ /* LDRB : cccc 01xx x1x1 xxxx xxxx xxxx xxxx xxxx */ /* LDRBT : cccc 01x0 x111 xxxx xxxx xxxx xxxx xxxx */ /* LDRT : cccc 01x0 x011 xxxx xxxx xxxx xxxx xxxx */ /* STR : cccc 01xx x0x0 xxxx xxxx xxxx xxxx xxxx */ /* STRB : cccc 01xx x1x0 xxxx xxxx xxxx xxxx xxxx */ /* STRBT : cccc 01x0 x110 xxxx xxxx xxxx xxxx xxxx */ /* STRT : cccc 01x0 x010 xxxx xxxx xxxx xxxx xxxx */ return prep_emulate_ldr_str(insn, asi); } static enum kprobe_insn __kprobes space_cccc_100x(kprobe_opcode_t insn, struct arch_specific_insn *asi) { /* LDM(2) : cccc 100x x101 xxxx 0xxx xxxx xxxx xxxx */ /* LDM(3) : cccc 100x x1x1 xxxx 1xxx xxxx xxxx xxxx */ if ((insn & 0x0e708000) == 0x85000000 || (insn & 0x0e508000) == 0x85010000) return INSN_REJECTED; /* LDM(1) : cccc 100x x0x1 xxxx xxxx xxxx xxxx xxxx */ /* STM(1) : cccc 100x x0x0 xxxx xxxx xxxx xxxx xxxx */ asi->insn[0] = truecc_insn(insn); asi->insn_handler = ((insn & 0x108000) == 0x008000) ? /* STM & R15 */ simulate_stm1_pc : simulate_ldm1stm1; return INSN_GOOD; } static enum kprobe_insn __kprobes space_cccc_101x(kprobe_opcode_t insn, struct arch_specific_insn *asi) { /* B : cccc 1010 xxxx xxxx xxxx xxxx xxxx xxxx */ /* BL : cccc 1011 xxxx xxxx xxxx xxxx xxxx xxxx */ asi->insn[0] = truecc_insn(insn); asi->insn_handler = simulate_bbl; return INSN_GOOD; } static enum kprobe_insn __kprobes space_cccc_1100_010x(kprobe_opcode_t insn, struct arch_specific_insn *asi) { /* MCRR : cccc 1100 0100 xxxx xxxx xxxx xxxx xxxx : (Rd!=Rn) */ /* MRRC : cccc 1100 0101 xxxx xxxx xxxx xxxx xxxx : (Rd!=Rn) */ insn &= 0xfff00fff; insn |= 0x00001000; /* Rn = r0, Rd = r1 */ asi->insn[0] = insn; asi->insn_handler = (insn & (1 << 20)) ? emulate_mrrc : emulate_mcrr; return INSN_GOOD; } static enum kprobe_insn __kprobes space_cccc_110x(kprobe_opcode_t insn, struct arch_specific_insn *asi) { /* LDC : cccc 110x xxx1 xxxx xxxx xxxx xxxx xxxx */ /* STC : cccc 110x xxx0 xxxx xxxx xxxx xxxx xxxx */ insn &= 0xfff0ffff; /* Rn = r0 */ asi->insn[0] = insn; asi->insn_handler = emulate_ldcstc; return INSN_GOOD; } static enum kprobe_insn __kprobes space_cccc_111x(kprobe_opcode_t insn, struct arch_specific_insn *asi) { /* BKPT : 1110 0001 0010 xxxx xxxx xxxx 0111 xxxx */ /* SWI : cccc 1111 xxxx xxxx xxxx xxxx xxxx xxxx */ if ((insn & 0xfff000f0) == 0xe1200070 || (insn & 0x0f000000) == 0x0f000000) return INSN_REJECTED; /* CDP : cccc 1110 xxxx xxxx xxxx xxxx xxx0 xxxx */ if ((insn & 0x0f000010) == 0x0e000000) { asi->insn[0] = insn; asi->insn_handler = emulate_none; return INSN_GOOD; } /* MCR : cccc 1110 xxx0 xxxx xxxx xxxx xxx1 xxxx */ /* MRC : cccc 1110 xxx1 xxxx xxxx xxxx xxx1 xxxx */ insn &= 0xffff0fff; /* Rd = r0 */ asi->insn[0] = insn; asi->insn_handler = (insn & (1 << 20)) ? emulate_rd12 : emulate_ird12; return INSN_GOOD; } /* Return: * INSN_REJECTED If instruction is one not allowed to kprobe, * INSN_GOOD If instruction is supported and uses instruction slot, * INSN_GOOD_NO_SLOT If instruction is supported but doesn't use its slot. * * For instructions we don't want to kprobe (INSN_REJECTED return result): * These are generally ones that modify the processor state making * them "hard" to simulate such as switches processor modes or * make accesses in alternate modes. Any of these could be simulated * if the work was put into it, but low return considering they * should also be very rare. */ enum kprobe_insn __kprobes arm_kprobe_decode_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi) { asi->insn[1] = KPROBE_RETURN_INSTRUCTION; if ((insn & 0xf0000000) == 0xf0000000) { return space_1111(insn, asi); } else if ((insn & 0x0e000000) == 0x00000000) { return space_cccc_000x(insn, asi); } else if ((insn & 0x0e000000) == 0x02000000) { return space_cccc_001x(insn, asi); } else if ((insn & 0x0f000010) == 0x06000010) { return space_cccc_0110__1(insn, asi); } else if ((insn & 0x0f000010) == 0x07000010) { return space_cccc_0111__1(insn, asi); } else if ((insn & 0x0c000000) == 0x04000000) { return space_cccc_01xx(insn, asi); } else if ((insn & 0x0e000000) == 0x08000000) { return space_cccc_100x(insn, asi); } else if ((insn & 0x0e000000) == 0x0a000000) { return space_cccc_101x(insn, asi); } else if ((insn & 0x0fe00000) == 0x0c400000) { return space_cccc_1100_010x(insn, asi); } else if ((insn & 0x0e000000) == 0x0c400000) { return space_cccc_110x(insn, asi); } return space_cccc_111x(insn, asi); } void __init arm_kprobe_decode_init(void) { find_str_pc_offset(); } /* * All ARM instructions listed below. * * Instructions and their general purpose registers are given. * If a particular register may not use R15, it is prefixed with a "!". * If marked with a "*" means the value returned by reading R15 * is implementation defined. * * ADC/ADD/AND/BIC/CMN/CMP/EOR/MOV/MVN/ORR/RSB/RSC/SBC/SUB/TEQ * TST: Rd, Rn, Rm, !Rs * BX: Rm * BLX(2): !Rm * BX: Rm (R15 legal, but discouraged) * BXJ: !Rm, * CLZ: !Rd, !Rm * CPY: Rd, Rm * LDC/2,STC/2 immediate offset & unindex: Rn * LDC/2,STC/2 immediate pre/post-indexed: !Rn * LDM(1/3): !Rn, register_list * LDM(2): !Rn, !register_list * LDR,STR,PLD immediate offset: Rd, Rn * LDR,STR,PLD register offset: Rd, Rn, !Rm * LDR,STR,PLD scaled register offset: Rd, !Rn, !Rm * LDR,STR immediate pre/post-indexed: Rd, !Rn * LDR,STR register pre/post-indexed: Rd, !Rn, !Rm * LDR,STR scaled register pre/post-indexed: Rd, !Rn, !Rm * LDRB,STRB immediate offset: !Rd, Rn * LDRB,STRB register offset: !Rd, Rn, !Rm * LDRB,STRB scaled register offset: !Rd, !Rn, !Rm * LDRB,STRB immediate pre/post-indexed: !Rd, !Rn * LDRB,STRB register pre/post-indexed: !Rd, !Rn, !Rm * LDRB,STRB scaled register pre/post-indexed: !Rd, !Rn, !Rm * LDRT,LDRBT,STRBT immediate pre/post-indexed: !Rd, !Rn * LDRT,LDRBT,STRBT register pre/post-indexed: !Rd, !Rn, !Rm * LDRT,LDRBT,STRBT scaled register pre/post-indexed: !Rd, !Rn, !Rm * LDRH/SH/SB/D,STRH/SH/SB/D immediate offset: !Rd, Rn * LDRH/SH/SB/D,STRH/SH/SB/D register offset: !Rd, Rn, !Rm * LDRH/SH/SB/D,STRH/SH/SB/D immediate pre/post-indexed: !Rd, !Rn * LDRH/SH/SB/D,STRH/SH/SB/D register pre/post-indexed: !Rd, !Rn, !Rm * LDREX: !Rd, !Rn * MCR/2: !Rd * MCRR/2,MRRC/2: !Rd, !Rn * MLA: !Rd, !Rn, !Rm, !Rs * MOV: Rd * MRC/2: !Rd (if Rd==15, only changes cond codes, not the register) * MRS,MSR: !Rd * MUL: !Rd, !Rm, !Rs * PKH{BT,TB}: !Rd, !Rn, !Rm * QDADD,[U]QADD/16/8/SUBX: !Rd, !Rm, !Rn * QDSUB,[U]QSUB/16/8/ADDX: !Rd, !Rm, !Rn * REV/16/SH: !Rd, !Rm * RFE: !Rn * {S,U}[H]ADD{16,8,SUBX},{S,U}[H]SUB{16,8,ADDX}: !Rd, !Rn, !Rm * SEL: !Rd, !Rn, !Rm * SMLA,SMLA{D,W},SMLSD,SMML{A,S}: !Rd, !Rn, !Rm, !Rs * SMLAL,SMLA{D,LD},SMLSLD,SMMULL,SMULW: !RdHi, !RdLo, !Rm, !Rs * SMMUL,SMUAD,SMUL,SMUSD: !Rd, !Rm, !Rs * SSAT/16: !Rd, !Rm * STM(1/2): !Rn, register_list* (R15 in reg list not recommended) * STRT immediate pre/post-indexed: Rd*, !Rn * STRT register pre/post-indexed: Rd*, !Rn, !Rm * STRT scaled register pre/post-indexed: Rd*, !Rn, !Rm * STREX: !Rd, !Rn, !Rm * SWP/B: !Rd, !Rn, !Rm * {S,U}XTA{B,B16,H}: !Rd, !Rn, !Rm * {S,U}XT{B,B16,H}: !Rd, !Rm * UM{AA,LA,UL}L: !RdHi, !RdLo, !Rm, !Rs * USA{D8,A8,T,T16}: !Rd, !Rm, !Rs * * May transfer control by writing R15 (possible mode changes or alternate * mode accesses marked by "*"): * ALU op (* with s-bit), B, BL, BKPT, BLX(1/2), BX, BXJ, CPS*, CPY, * LDM(1), LDM(2/3)*, LDR, MOV, RFE*, SWI* * * Instructions that do not take general registers, nor transfer control: * CDP/2, SETEND, SRS* */