aboutsummaryrefslogtreecommitdiff
path: root/include/asm-ppc64/smu.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/asm-ppc64/smu.h')
-rw-r--r--include/asm-ppc64/smu.h365
1 files changed, 361 insertions, 4 deletions
diff --git a/include/asm-ppc64/smu.h b/include/asm-ppc64/smu.h
index 10b4397af9a..dee8eefe47b 100644
--- a/include/asm-ppc64/smu.h
+++ b/include/asm-ppc64/smu.h
@@ -1,22 +1,379 @@
+#ifndef _SMU_H
+#define _SMU_H
+
/*
* Definitions for talking to the SMU chip in newer G5 PowerMacs
*/
#include <linux/config.h>
+#include <linux/list.h>
+
+/*
+ * Known SMU commands
+ *
+ * Most of what is below comes from looking at the Open Firmware driver,
+ * though this is still incomplete and could use better documentation here
+ * or there...
+ */
+
+
+/*
+ * Partition info commands
+ *
+ * I do not know what those are for at this point
+ */
+#define SMU_CMD_PARTITION_COMMAND 0x3e
+
+
+/*
+ * Fan control
+ *
+ * This is a "mux" for fan control commands, first byte is the
+ * "sub" command.
+ */
+#define SMU_CMD_FAN_COMMAND 0x4a
+
+
+/*
+ * Battery access
+ *
+ * Same command number as the PMU, could it be same syntax ?
+ */
+#define SMU_CMD_BATTERY_COMMAND 0x6f
+#define SMU_CMD_GET_BATTERY_INFO 0x00
+
+/*
+ * Real time clock control
+ *
+ * This is a "mux", first data byte contains the "sub" command.
+ * The "RTC" part of the SMU controls the date, time, powerup
+ * timer, but also a PRAM
+ *
+ * Dates are in BCD format on 7 bytes:
+ * [sec] [min] [hour] [weekday] [month day] [month] [year]
+ * with month being 1 based and year minus 100
+ */
+#define SMU_CMD_RTC_COMMAND 0x8e
+#define SMU_CMD_RTC_SET_PWRUP_TIMER 0x00 /* i: 7 bytes date */
+#define SMU_CMD_RTC_GET_PWRUP_TIMER 0x01 /* o: 7 bytes date */
+#define SMU_CMD_RTC_STOP_PWRUP_TIMER 0x02
+#define SMU_CMD_RTC_SET_PRAM_BYTE_ACC 0x20 /* i: 1 byte (address?) */
+#define SMU_CMD_RTC_SET_PRAM_AUTOINC 0x21 /* i: 1 byte (data?) */
+#define SMU_CMD_RTC_SET_PRAM_LO_BYTES 0x22 /* i: 10 bytes */
+#define SMU_CMD_RTC_SET_PRAM_HI_BYTES 0x23 /* i: 10 bytes */
+#define SMU_CMD_RTC_GET_PRAM_BYTE 0x28 /* i: 1 bytes (address?) */
+#define SMU_CMD_RTC_GET_PRAM_LO_BYTES 0x29 /* o: 10 bytes */
+#define SMU_CMD_RTC_GET_PRAM_HI_BYTES 0x2a /* o: 10 bytes */
+#define SMU_CMD_RTC_SET_DATETIME 0x80 /* i: 7 bytes date */
+#define SMU_CMD_RTC_GET_DATETIME 0x81 /* o: 7 bytes date */
+
+ /*
+ * i2c commands
+ *
+ * To issue an i2c command, first is to send a parameter block to the
+ * the SMU. This is a command of type 0x9a with 9 bytes of header
+ * eventually followed by data for a write:
+ *
+ * 0: bus number (from device-tree usually, SMU has lots of busses !)
+ * 1: transfer type/format (see below)
+ * 2: device address. For combined and combined4 type transfers, this
+ * is the "write" version of the address (bit 0x01 cleared)
+ * 3: subaddress length (0..3)
+ * 4: subaddress byte 0 (or only byte for subaddress length 1)
+ * 5: subaddress byte 1
+ * 6: subaddress byte 2
+ * 7: combined address (device address for combined mode data phase)
+ * 8: data length
+ *
+ * The transfer types are the same good old Apple ones it seems,
+ * that is:
+ * - 0x00: Simple transfer
+ * - 0x01: Subaddress transfer (addr write + data tx, no restart)
+ * - 0x02: Combined transfer (addr write + restart + data tx)
+ *
+ * This is then followed by actual data for a write.
+ *
+ * At this point, the OF driver seems to have a limitation on transfer
+ * sizes of 0xd bytes on reads and 0x5 bytes on writes. I do not know
+ * wether this is just an OF limit due to some temporary buffer size
+ * or if this is an SMU imposed limit. This driver has the same limitation
+ * for now as I use a 0x10 bytes temporary buffer as well
+ *
+ * Once that is completed, a response is expected from the SMU. This is
+ * obtained via a command of type 0x9a with a length of 1 byte containing
+ * 0 as the data byte. OF also fills the rest of the data buffer with 0xff's
+ * though I can't tell yet if this is actually necessary. Once this command
+ * is complete, at this point, all I can tell is what OF does. OF tests
+ * byte 0 of the reply:
+ * - on read, 0xfe or 0xfc : bus is busy, wait (see below) or nak ?
+ * - on read, 0x00 or 0x01 : reply is in buffer (after the byte 0)
+ * - on write, < 0 -> failure (immediate exit)
+ * - else, OF just exists (without error, weird)
+ *
+ * So on read, there is this wait-for-busy thing when getting a 0xfc or
+ * 0xfe result. OF does a loop of up to 64 retries, waiting 20ms and
+ * doing the above again until either the retries expire or the result
+ * is no longer 0xfe or 0xfc
+ *
+ * The Darwin I2C driver is less subtle though. On any non-success status
+ * from the response command, it waits 5ms and tries again up to 20 times,
+ * it doesn't differenciate between fatal errors or "busy" status.
+ *
+ * This driver provides an asynchronous paramblock based i2c command
+ * interface to be used either directly by low level code or by a higher
+ * level driver interfacing to the linux i2c layer. The current
+ * implementation of this relies on working timers & timer interrupts
+ * though, so be careful of calling context for now. This may be "fixed"
+ * in the future by adding a polling facility.
+ */
+#define SMU_CMD_I2C_COMMAND 0x9a
+ /* transfer types */
+#define SMU_I2C_TRANSFER_SIMPLE 0x00
+#define SMU_I2C_TRANSFER_STDSUB 0x01
+#define SMU_I2C_TRANSFER_COMBINED 0x02
+
+/*
+ * Power supply control
+ *
+ * The "sub" command is an ASCII string in the data, the
+ * data lenght is that of the string.
+ *
+ * The VSLEW command can be used to get or set the voltage slewing.
+ * - lenght 5 (only "VSLEW") : it returns "DONE" and 3 bytes of
+ * reply at data offset 6, 7 and 8.
+ * - lenght 8 ("VSLEWxyz") has 3 additional bytes appended, and is
+ * used to set the voltage slewing point. The SMU replies with "DONE"
+ * I yet have to figure out their exact meaning of those 3 bytes in
+ * both cases.
+ *
+ */
+#define SMU_CMD_POWER_COMMAND 0xaa
+#define SMU_CMD_POWER_RESTART "RESTART"
+#define SMU_CMD_POWER_SHUTDOWN "SHUTDOWN"
+#define SMU_CMD_POWER_VOLTAGE_SLEW "VSLEW"
+
+/* Misc commands
+ *
+ * This command seem to be a grab bag of various things
+ */
+#define SMU_CMD_MISC_df_COMMAND 0xdf
+#define SMU_CMD_MISC_df_SET_DISPLAY_LIT 0x02 /* i: 1 byte */
+#define SMU_CMD_MISC_df_NMI_OPTION 0x04
+
+/*
+ * Version info commands
+ *
+ * I haven't quite tried to figure out how these work
+ */
+#define SMU_CMD_VERSION_COMMAND 0xea
+
+
+/*
+ * Misc commands
+ *
+ * This command seem to be a grab bag of various things
+ */
+#define SMU_CMD_MISC_ee_COMMAND 0xee
+#define SMU_CMD_MISC_ee_GET_DATABLOCK_REC 0x02
+#define SMU_CMD_MISC_ee_LEDS_CTRL 0x04 /* i: 00 (00,01) [00] */
+#define SMU_CMD_MISC_ee_GET_DATA 0x05 /* i: 00 , o: ?? */
+
+
+
+/*
+ * - Kernel side interface -
+ */
+
+#ifdef __KERNEL__
+
+/*
+ * Asynchronous SMU commands
+ *
+ * Fill up this structure and submit it via smu_queue_command(),
+ * and get notified by the optional done() callback, or because
+ * status becomes != 1
+ */
+
+struct smu_cmd;
+
+struct smu_cmd
+{
+ /* public */
+ u8 cmd; /* command */
+ int data_len; /* data len */
+ int reply_len; /* reply len */
+ void *data_buf; /* data buffer */
+ void *reply_buf; /* reply buffer */
+ int status; /* command status */
+ void (*done)(struct smu_cmd *cmd, void *misc);
+ void *misc;
+
+ /* private */
+ struct list_head link;
+};
+
+/*
+ * Queues an SMU command, all fields have to be initialized
+ */
+extern int smu_queue_cmd(struct smu_cmd *cmd);
+
+/*
+ * Simple command wrapper. This structure embeds a small buffer
+ * to ease sending simple SMU commands from the stack
+ */
+struct smu_simple_cmd
+{
+ struct smu_cmd cmd;
+ u8 buffer[16];
+};
+
+/*
+ * Queues a simple command. All fields will be initialized by that
+ * function
+ */
+extern int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
+ unsigned int data_len,
+ void (*done)(struct smu_cmd *cmd, void *misc),
+ void *misc,
+ ...);
+
+/*
+ * Completion helper. Pass it to smu_queue_simple or as 'done'
+ * member to smu_queue_cmd, it will call complete() on the struct
+ * completion passed in the "misc" argument
+ */
+extern void smu_done_complete(struct smu_cmd *cmd, void *misc);
/*
- * Basic routines for use by architecture. To be extended as
- * we understand more of the chip
+ * Synchronous helpers. Will spin-wait for completion of a command
+ */
+extern void smu_spinwait_cmd(struct smu_cmd *cmd);
+
+static inline void smu_spinwait_simple(struct smu_simple_cmd *scmd)
+{
+ smu_spinwait_cmd(&scmd->cmd);
+}
+
+/*
+ * Poll routine to call if blocked with irqs off
+ */
+extern void smu_poll(void);
+
+
+/*
+ * Init routine, presence check....
*/
extern int smu_init(void);
extern int smu_present(void);
+struct of_device;
+extern struct of_device *smu_get_ofdev(void);
+
+
+/*
+ * Common command wrappers
+ */
extern void smu_shutdown(void);
extern void smu_restart(void);
-extern int smu_get_rtc_time(struct rtc_time *time);
-extern int smu_set_rtc_time(struct rtc_time *time);
+struct rtc_time;
+extern int smu_get_rtc_time(struct rtc_time *time, int spinwait);
+extern int smu_set_rtc_time(struct rtc_time *time, int spinwait);
/*
* SMU command buffer absolute address, exported by pmac_setup,
* this is allocated very early during boot.
*/
extern unsigned long smu_cmdbuf_abs;
+
+
+/*
+ * Kenrel asynchronous i2c interface
+ */
+
+/* SMU i2c header, exactly matches i2c header on wire */
+struct smu_i2c_param
+{
+ u8 bus; /* SMU bus ID (from device tree) */
+ u8 type; /* i2c transfer type */
+ u8 devaddr; /* device address (includes direction) */
+ u8 sublen; /* subaddress length */
+ u8 subaddr[3]; /* subaddress */
+ u8 caddr; /* combined address, filled by SMU driver */
+ u8 datalen; /* length of transfer */
+ u8 data[7]; /* data */
+};
+
+#define SMU_I2C_READ_MAX 0x0d
+#define SMU_I2C_WRITE_MAX 0x05
+
+struct smu_i2c_cmd
+{
+ /* public */
+ struct smu_i2c_param info;
+ void (*done)(struct smu_i2c_cmd *cmd, void *misc);
+ void *misc;
+ int status; /* 1 = pending, 0 = ok, <0 = fail */
+
+ /* private */
+ struct smu_cmd scmd;
+ int read;
+ int stage;
+ int retries;
+ u8 pdata[0x10];
+ struct list_head link;
+};
+
+/*
+ * Call this to queue an i2c command to the SMU. You must fill info,
+ * including info.data for a write, done and misc.
+ * For now, no polling interface is provided so you have to use completion
+ * callback.
+ */
+extern int smu_queue_i2c(struct smu_i2c_cmd *cmd);
+
+
+#endif /* __KERNEL__ */
+
+/*
+ * - Userland interface -
+ */
+
+/*
+ * A given instance of the device can be configured for 2 different
+ * things at the moment:
+ *
+ * - sending SMU commands (default at open() time)
+ * - receiving SMU events (not yet implemented)
+ *
+ * Commands are written with write() of a command block. They can be
+ * "driver" commands (for example to switch to event reception mode)
+ * or real SMU commands. They are made of a header followed by command
+ * data if any.
+ *
+ * For SMU commands (not for driver commands), you can then read() back
+ * a reply. The reader will be blocked or not depending on how the device
+ * file is opened. poll() isn't implemented yet. The reply will consist
+ * of a header as well, followed by the reply data if any. You should
+ * always provide a buffer large enough for the maximum reply data, I
+ * recommand one page.
+ *
+ * It is illegal to send SMU commands through a file descriptor configured
+ * for events reception
+ *
+ */
+struct smu_user_cmd_hdr
+{
+ __u32 cmdtype;
+#define SMU_CMDTYPE_SMU 0 /* SMU command */
+#define SMU_CMDTYPE_WANTS_EVENTS 1 /* switch fd to events mode */
+
+ __u8 cmd; /* SMU command byte */
+ __u32 data_len; /* Lenght of data following */
+};
+
+struct smu_user_reply_hdr
+{
+ __u32 status; /* Command status */
+ __u32 reply_len; /* Lenght of data follwing */
+};
+
+#endif /* _SMU_H */