/* * Copyright 2008 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * Copyright 2009 Jerome Glisse. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher * Jerome Glisse */ #include "drmP.h" #include "radeon_drm.h" #include "radeon.h" #include "radeon_reg.h" /* * Common GART table functions. */ int radeon_gart_table_ram_alloc(struct radeon_device *rdev) { void *ptr; ptr = pci_alloc_consistent(rdev->pdev, rdev->gart.table_size, &rdev->gart.table_addr); if (ptr == NULL) { return -ENOMEM; } #ifdef CONFIG_X86 if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 || rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) { set_memory_uc((unsigned long)ptr, rdev->gart.table_size >> PAGE_SHIFT); } #endif rdev->gart.table.ram.ptr = ptr; memset((void *)rdev->gart.table.ram.ptr, 0, rdev->gart.table_size); return 0; } void radeon_gart_table_ram_free(struct radeon_device *rdev) { if (rdev->gart.table.ram.ptr == NULL) { return; } #ifdef CONFIG_X86 if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 || rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) { set_memory_wb((unsigned long)rdev->gart.table.ram.ptr, rdev->gart.table_size >> PAGE_SHIFT); } #endif pci_free_consistent(rdev->pdev, rdev->gart.table_size, (void *)rdev->gart.table.ram.ptr, rdev->gart.table_addr); rdev->gart.table.ram.ptr = NULL; rdev->gart.table_addr = 0; } int radeon_gart_table_vram_alloc(struct radeon_device *rdev) { int r; if (rdev->gart.table.vram.robj == NULL) { r = radeon_bo_create(rdev, NULL, rdev->gart.table_size, PAGE_SIZE, true, RADEON_GEM_DOMAIN_VRAM, &rdev->gart.table.vram.robj); if (r) { return r; } } return 0; } int radeon_gart_table_vram_pin(struct radeon_device *rdev) { uint64_t gpu_addr; int r; r = radeon_bo_reserve(rdev->gart.table.vram.robj, false); if (unlikely(r != 0)) return r; r = radeon_bo_pin(rdev->gart.table.vram.robj, RADEON_GEM_DOMAIN_VRAM, &gpu_addr); if (r) { radeon_bo_unreserve(rdev->gart.table.vram.robj); return r; } r = radeon_bo_kmap(rdev->gart.table.vram.robj, (void **)&rdev->gart.table.vram.ptr); if (r) radeon_bo_unpin(rdev->gart.table.vram.robj); radeon_bo_unreserve(rdev->gart.table.vram.robj); rdev->gart.table_addr = gpu_addr; return r; } void radeon_gart_table_vram_free(struct radeon_device *rdev) { int r; if (rdev->gart.table.vram.robj == NULL) { return; } r = radeon_bo_reserve(rdev->gart.table.vram.robj, false); if (likely(r == 0)) { radeon_bo_kunmap(rdev->gart.table.vram.robj); radeon_bo_unpin(rdev->gart.table.vram.robj); radeon_bo_unreserve(rdev->gart.table.vram.robj); } radeon_bo_unref(&rdev->gart.table.vram.robj); } /* * Common gart functions. */ void radeon_gart_unbind(struct radeon_device *rdev, unsigned offset, int pages) { unsigned t; unsigned p; int i, j; u64 page_base; if (!rdev->gart.ready) { WARN(1, "trying to unbind memory to unitialized GART !\n"); return; } t = offset / RADEON_GPU_PAGE_SIZE; p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); for (i = 0; i < pages; i++, p++) { if (rdev->gart.pages[p]) { pci_unmap_page(rdev->pdev, rdev->gart.pages_addr[p], PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); rdev->gart.pages[p] = NULL; rdev->gart.pages_addr[p] = rdev->dummy_page.addr; page_base = rdev->gart.pages_addr[p]; for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) { radeon_gart_set_page(rdev, t, page_base); page_base += RADEON_GPU_PAGE_SIZE; } } } mb(); radeon_gart_tlb_flush(rdev); } int radeon_gart_bind(struct radeon_device *rdev, unsigned offset, int pages, struct page **pagelist) { unsigned t; unsigned p; uint64_t page_base; int i, j; if (!rdev->gart.ready) { WARN(1, "trying to bind memory to unitialized GART !\n"); return -EINVAL; } t = offset / RADEON_GPU_PAGE_SIZE; p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); for (i = 0; i < pages; i++, p++) { /* we need to support large memory configurations */ /* assume that unbind have already been call on the range */ rdev->gart.pages_addr[p] = pci_map_page(rdev->pdev, pagelist[i], 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); if (pci_dma_mapping_error(rdev->pdev, rdev->gart.pages_addr[p])) { /* FIXME: failed to map page (return -ENOMEM?) */ radeon_gart_unbind(rdev, offset, pages); return -ENOMEM; } rdev->gart.pages[p] = pagelist[i]; page_base = rdev->gart.pages_addr[p]; for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) { radeon_gart_set_page(rdev, t, page_base); page_base += RADEON_GPU_PAGE_SIZE; } } mb(); radeon_gart_tlb_flush(rdev); return 0; } void radeon_gart_restore(struct radeon_device *rdev) { int i, j, t; u64 page_base; for (i = 0, t = 0; i < rdev->gart.num_cpu_pages; i++) { page_base = rdev->gart.pages_addr[i]; for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) { radeon_gart_set_page(rdev, t, page_base); page_base += RADEON_GPU_PAGE_SIZE; } } mb(); radeon_gart_tlb_flush(rdev); } int radeon_gart_init(struct radeon_device *rdev) { int r, i; if (rdev->gart.pages) { return 0; } /* We need PAGE_SIZE >= RADEON_GPU_PAGE_SIZE */ if (PAGE_SIZE < RADEON_GPU_PAGE_SIZE) { DRM_ERROR("Page size is smaller than GPU page size!\n"); return -EINVAL; } r = radeon_dummy_page_init(rdev); if (r) return r; /* Compute table size */ rdev->gart.num_cpu_pages = rdev->mc.gtt_size / PAGE_SIZE; rdev->gart.num_gpu_pages = rdev->mc.gtt_size / RADEON_GPU_PAGE_SIZE; DRM_INFO("GART: num cpu pages %u, num gpu pages %u\n", rdev->gart.num_cpu_pages, rdev->gart.num_gpu_pages); /* Allocate pages table */ rdev->gart.pages = kzalloc(sizeof(void *) * rdev->gart.num_cpu_pages, GFP_KERNEL); if (rdev->gart.pages == NULL) { radeon_gart_fini(rdev); return -ENOMEM; } rdev->gart.pages_addr = kzalloc(sizeof(dma_addr_t) * rdev->gart.num_cpu_pages, GFP_KERNEL); if (rdev->gart.pages_addr == NULL) { radeon_gart_fini(rdev); return -ENOMEM; } /* set GART entry to point to the dummy page by default */ for (i = 0; i < rdev->gart.num_cpu_pages; i++) { rdev->gart.pages_addr[i] = rdev->dummy_page.addr; } return 0; } void radeon_gart_fini(struct radeon_device *rdev) { if (rdev->gart.pages && rdev->gart.pages_addr && rdev->gart.ready) { /* unbind pages */ radeon_gart_unbind(rdev, 0, rdev->gart.num_cpu_pages); } rdev->gart.ready = false; kfree(rdev->gart.pages); kfree(rdev->gart.pages_addr); rdev->gart.pages = NULL; rdev->gart.pages_addr = NULL; }