/* * toshiba_acpi.c - Toshiba Laptop ACPI Extras * * * Copyright (C) 2002-2004 John Belmonte * Copyright (C) 2008 Philip Langdale * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * * The devolpment page for this driver is located at * http://memebeam.org/toys/ToshibaAcpiDriver. * * Credits: * Jonathan A. Buzzard - Toshiba HCI info, and critical tips on reverse * engineering the Windows drivers * Yasushi Nagato - changes for linux kernel 2.4 -> 2.5 * Rob Miller - TV out and hotkeys help * * * TODO * */ #define TOSHIBA_ACPI_VERSION "0.19" #define PROC_INTERFACE_VERSION 1 #include #include #include #include #include #include #include #include #include #include #include MODULE_AUTHOR("John Belmonte"); MODULE_DESCRIPTION("Toshiba Laptop ACPI Extras Driver"); MODULE_LICENSE("GPL"); #define MY_LOGPREFIX "toshiba_acpi: " #define MY_ERR KERN_ERR MY_LOGPREFIX #define MY_NOTICE KERN_NOTICE MY_LOGPREFIX #define MY_INFO KERN_INFO MY_LOGPREFIX /* Toshiba ACPI method paths */ #define METHOD_LCD_BRIGHTNESS "\\_SB_.PCI0.VGA_.LCD_._BCM" #define METHOD_HCI_1 "\\_SB_.VALD.GHCI" #define METHOD_HCI_2 "\\_SB_.VALZ.GHCI" #define METHOD_VIDEO_OUT "\\_SB_.VALX.DSSX" /* Toshiba HCI interface definitions * * HCI is Toshiba's "Hardware Control Interface" which is supposed to * be uniform across all their models. Ideally we would just call * dedicated ACPI methods instead of using this primitive interface. * However the ACPI methods seem to be incomplete in some areas (for * example they allow setting, but not reading, the LCD brightness value), * so this is still useful. */ #define HCI_WORDS 6 /* operations */ #define HCI_SET 0xff00 #define HCI_GET 0xfe00 /* return codes */ #define HCI_SUCCESS 0x0000 #define HCI_FAILURE 0x1000 #define HCI_NOT_SUPPORTED 0x8000 #define HCI_EMPTY 0x8c00 /* registers */ #define HCI_FAN 0x0004 #define HCI_SYSTEM_EVENT 0x0016 #define HCI_VIDEO_OUT 0x001c #define HCI_HOTKEY_EVENT 0x001e #define HCI_LCD_BRIGHTNESS 0x002a #define HCI_WIRELESS 0x0056 /* field definitions */ #define HCI_LCD_BRIGHTNESS_BITS 3 #define HCI_LCD_BRIGHTNESS_SHIFT (16-HCI_LCD_BRIGHTNESS_BITS) #define HCI_LCD_BRIGHTNESS_LEVELS (1 << HCI_LCD_BRIGHTNESS_BITS) #define HCI_VIDEO_OUT_LCD 0x1 #define HCI_VIDEO_OUT_CRT 0x2 #define HCI_VIDEO_OUT_TV 0x4 #define HCI_WIRELESS_KILL_SWITCH 0x01 #define HCI_WIRELESS_BT_PRESENT 0x0f #define HCI_WIRELESS_BT_ATTACH 0x40 #define HCI_WIRELESS_BT_POWER 0x80 static const struct acpi_device_id toshiba_device_ids[] = { {"TOS6200", 0}, {"TOS6208", 0}, {"TOS1900", 0}, {"", 0}, }; MODULE_DEVICE_TABLE(acpi, toshiba_device_ids); /* utility */ static __inline__ void _set_bit(u32 * word, u32 mask, int value) { *word = (*word & ~mask) | (mask * value); } /* acpi interface wrappers */ static int is_valid_acpi_path(const char *methodName) { acpi_handle handle; acpi_status status; status = acpi_get_handle(NULL, (char *)methodName, &handle); return !ACPI_FAILURE(status); } static int write_acpi_int(const char *methodName, int val) { struct acpi_object_list params; union acpi_object in_objs[1]; acpi_status status; params.count = ARRAY_SIZE(in_objs); params.pointer = in_objs; in_objs[0].type = ACPI_TYPE_INTEGER; in_objs[0].integer.value = val; status = acpi_evaluate_object(NULL, (char *)methodName, ¶ms, NULL); return (status == AE_OK); } #if 0 static int read_acpi_int(const char *methodName, int *pVal) { struct acpi_buffer results; union acpi_object out_objs[1]; acpi_status status; results.length = sizeof(out_objs); results.pointer = out_objs; status = acpi_evaluate_object(0, (char *)methodName, 0, &results); *pVal = out_objs[0].integer.value; return (status == AE_OK) && (out_objs[0].type == ACPI_TYPE_INTEGER); } #endif static const char *method_hci /*= 0*/ ; /* Perform a raw HCI call. Here we don't care about input or output buffer * format. */ static acpi_status hci_raw(const u32 in[HCI_WORDS], u32 out[HCI_WORDS]) { struct acpi_object_list params; union acpi_object in_objs[HCI_WORDS]; struct acpi_buffer results; union acpi_object out_objs[HCI_WORDS + 1]; acpi_status status; int i; params.count = HCI_WORDS; params.pointer = in_objs; for (i = 0; i < HCI_WORDS; ++i) { in_objs[i].type = ACPI_TYPE_INTEGER; in_objs[i].integer.value = in[i]; } results.length = sizeof(out_objs); results.pointer = out_objs; status = acpi_evaluate_object(NULL, (char *)method_hci, ¶ms, &results); if ((status == AE_OK) && (out_objs->package.count <= HCI_WORDS)) { for (i = 0; i < out_objs->package.count; ++i) { out[i] = out_objs->package.elements[i].integer.value; } } return status; } /* common hci tasks (get or set one or two value) * * In addition to the ACPI status, the HCI system returns a result which * may be useful (such as "not supported"). */ static acpi_status hci_write1(u32 reg, u32 in1, u32 * result) { u32 in[HCI_WORDS] = { HCI_SET, reg, in1, 0, 0, 0 }; u32 out[HCI_WORDS]; acpi_status status = hci_raw(in, out); *result = (status == AE_OK) ? out[0] : HCI_FAILURE; return status; } static acpi_status hci_read1(u32 reg, u32 * out1, u32 * result) { u32 in[HCI_WORDS] = { HCI_GET, reg, 0, 0, 0, 0 }; u32 out[HCI_WORDS]; acpi_status status = hci_raw(in, out); *out1 = out[2]; *result = (status == AE_OK) ? out[0] : HCI_FAILURE; return status; } static acpi_status hci_write2(u32 reg, u32 in1, u32 in2, u32 *result) { u32 in[HCI_WORDS] = { HCI_SET, reg, in1, in2, 0, 0 }; u32 out[HCI_WORDS]; acpi_status status = hci_raw(in, out); *result = (status == AE_OK) ? out[0] : HCI_FAILURE; return status; } static acpi_status hci_read2(u32 reg, u32 *out1, u32 *out2, u32 *result) { u32 in[HCI_WORDS] = { HCI_GET, reg, *out1, *out2, 0, 0 }; u32 out[HCI_WORDS]; acpi_status status = hci_raw(in, out); *out1 = out[2]; *out2 = out[3]; *result = (status == AE_OK) ? out[0] : HCI_FAILURE; return status; } struct toshiba_acpi_dev { struct platform_device *p_dev; struct rfkill *rfk_dev; struct input_polled_dev *poll_dev; const char *bt_name; const char *rfk_name; bool last_rfk_state; struct mutex mutex; }; static struct toshiba_acpi_dev toshiba_acpi = { .bt_name = "Toshiba Bluetooth", .rfk_name = "Toshiba RFKill Switch", .last_rfk_state = false, }; /* Bluetooth rfkill handlers */ static u32 hci_get_bt_present(bool *present) { u32 hci_result; u32 value, value2; value = 0; value2 = 0; hci_read2(HCI_WIRELESS, &value, &value2, &hci_result); if (hci_result == HCI_SUCCESS) *present = (value & HCI_WIRELESS_BT_PRESENT) ? true : false; return hci_result; } static u32 hci_get_bt_on(bool *on) { u32 hci_result; u32 value, value2; value = 0; value2 = 0x0001; hci_read2(HCI_WIRELESS, &value, &value2, &hci_result); if (hci_result == HCI_SUCCESS) *on = (value & HCI_WIRELESS_BT_POWER) && (value & HCI_WIRELESS_BT_ATTACH); return hci_result; } static u32 hci_get_radio_state(bool *radio_state) { u32 hci_result; u32 value, value2; value = 0; value2 = 0x0001; hci_read2(HCI_WIRELESS, &value, &value2, &hci_result); *radio_state = value & HCI_WIRELESS_KILL_SWITCH; return hci_result; } static int bt_rfkill_toggle_radio(void *data, enum rfkill_state state) { u32 result1, result2; u32 value; bool radio_state; struct toshiba_acpi_dev *dev = data; value = (state == RFKILL_STATE_UNBLOCKED); if (hci_get_radio_state(&radio_state) != HCI_SUCCESS) return -EFAULT; switch (state) { case RFKILL_STATE_UNBLOCKED: if (!radio_state) return -EPERM; break; case RFKILL_STATE_SOFT_BLOCKED: break; default: return -EINVAL; } mutex_lock(&dev->mutex); hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_POWER, &result1); hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_ATTACH, &result2); mutex_unlock(&dev->mutex); if (result1 != HCI_SUCCESS || result2 != HCI_SUCCESS) return -EFAULT; return 0; } static void bt_poll_rfkill(struct input_polled_dev *poll_dev) { bool state_changed; bool new_rfk_state; bool value; u32 hci_result; struct toshiba_acpi_dev *dev = poll_dev->private; hci_result = hci_get_radio_state(&value); if (hci_result != HCI_SUCCESS) return; /* Can't do anything useful */ new_rfk_state = value; mutex_lock(&dev->mutex); state_changed = new_rfk_state != dev->last_rfk_state; dev->last_rfk_state = new_rfk_state; mutex_unlock(&dev->mutex); if (unlikely(state_changed)) { rfkill_force_state(dev->rfk_dev, new_rfk_state ? RFKILL_STATE_SOFT_BLOCKED : RFKILL_STATE_HARD_BLOCKED); input_report_switch(poll_dev->input, SW_RFKILL_ALL, new_rfk_state); input_sync(poll_dev->input); } } static struct proc_dir_entry *toshiba_proc_dir /*= 0*/ ; static struct backlight_device *toshiba_backlight_device; static int force_fan; static int last_key_event; static int key_event_valid; typedef struct _ProcItem { const char *name; char *(*read_func) (char *); unsigned long (*write_func) (const char *, unsigned long); } ProcItem; /* proc file handlers */ static int dispatch_read(char *page, char **start, off_t off, int count, int *eof, ProcItem * item) { char *p = page; int len; if (off == 0) p = item->read_func(p); /* ISSUE: I don't understand this code */ len = (p - page); if (len <= off + count) *eof = 1; *start = page + off; len -= off; if (len > count) len = count; if (len < 0) len = 0; return len; } static int dispatch_write(struct file *file, const char __user * buffer, unsigned long count, ProcItem * item) { int result; char *tmp_buffer; /* Arg buffer points to userspace memory, which can't be accessed * directly. Since we're making a copy, zero-terminate the * destination so that sscanf can be used on it safely. */ tmp_buffer = kmalloc(count + 1, GFP_KERNEL); if (!tmp_buffer) return -ENOMEM; if (copy_from_user(tmp_buffer, buffer, count)) { result = -EFAULT; } else { tmp_buffer[count] = 0; result = item->write_func(tmp_buffer, count); } kfree(tmp_buffer); return result; } static int get_lcd(struct backlight_device *bd) { u32 hci_result; u32 value; hci_read1(HCI_LCD_BRIGHTNESS, &value, &hci_result); if (hci_result == HCI_SUCCESS) { return (value >> HCI_LCD_BRIGHTNESS_SHIFT); } else return -EFAULT; } static char *read_lcd(char *p) { int value = get_lcd(NULL); if (value >= 0) { p += sprintf(p, "brightness: %d\n", value); p += sprintf(p, "brightness_levels: %d\n", HCI_LCD_BRIGHTNESS_LEVELS); } else { printk(MY_ERR "Error reading LCD brightness\n"); } return p; } static int set_lcd(int value) { u32 hci_result; value = value << HCI_LCD_BRIGHTNESS_SHIFT; hci_write1(HCI_LCD_BRIGHTNESS, value, &hci_result); if (hci_result != HCI_SUCCESS) return -EFAULT; return 0; } static int set_lcd_status(struct backlight_device *bd) { return set_lcd(bd->props.brightness); } static unsigned long write_lcd(const char *buffer, unsigned long count) { int value; int ret; if (sscanf(buffer, " brightness : %i", &value) == 1 && value >= 0 && value < HCI_LCD_BRIGHTNESS_LEVELS) { ret = set_lcd(value); if (ret == 0) ret = count; } else { ret = -EINVAL; } return ret; } static char *read_video(char *p) { u32 hci_result; u32 value; hci_read1(HCI_VIDEO_OUT, &value, &hci_result); if (hci_result == HCI_SUCCESS) { int is_lcd = (value & HCI_VIDEO_OUT_LCD) ? 1 : 0; int is_crt = (value & HCI_VIDEO_OUT_CRT) ? 1 : 0; int is_tv = (value & HCI_VIDEO_OUT_TV) ? 1 : 0; p += sprintf(p, "lcd_out: %d\n", is_lcd); p += sprintf(p, "crt_out: %d\n", is_crt); p += sprintf(p, "tv_out: %d\n", is_tv); } else { printk(MY_ERR "Error reading video out status\n"); } return p; } static unsigned long write_video(const char *buffer, unsigned long count) { int value; int remain = count; int lcd_out = -1; int crt_out = -1; int tv_out = -1; u32 hci_result; u32 video_out; /* scan expression. Multiple expressions may be delimited with ; * * NOTE: to keep scanning simple, invalid fields are ignored */ while (remain) { if (sscanf(buffer, " lcd_out : %i", &value) == 1) lcd_out = value & 1; else if (sscanf(buffer, " crt_out : %i", &value) == 1) crt_out = value & 1; else if (sscanf(buffer, " tv_out : %i", &value) == 1) tv_out = value & 1; /* advance to one character past the next ; */ do { ++buffer; --remain; } while (remain && *(buffer - 1) != ';'); } hci_read1(HCI_VIDEO_OUT, &video_out, &hci_result); if (hci_result == HCI_SUCCESS) { unsigned int new_video_out = video_out; if (lcd_out != -1) _set_bit(&new_video_out, HCI_VIDEO_OUT_LCD, lcd_out); if (crt_out != -1) _set_bit(&new_video_out, HCI_VIDEO_OUT_CRT, crt_out); if (tv_out != -1) _set_bit(&new_video_out, HCI_VIDEO_OUT_TV, tv_out); /* To avoid unnecessary video disruption, only write the new * video setting if something changed. */ if (new_video_out != video_out) write_acpi_int(METHOD_VIDEO_OUT, new_video_out); } else { return -EFAULT; } return count; } static char *read_fan(char *p) { u32 hci_result; u32 value; hci_read1(HCI_FAN, &value, &hci_result); if (hci_result == HCI_SUCCESS) { p += sprintf(p, "running: %d\n", (value > 0)); p += sprintf(p, "force_on: %d\n", force_fan); } else { printk(MY_ERR "Error reading fan status\n"); } return p; } static unsigned long write_fan(const char *buffer, unsigned long count) { int value; u32 hci_result; if (sscanf(buffer, " force_on : %i", &value) == 1 && value >= 0 && value <= 1) { hci_write1(HCI_FAN, value, &hci_result); if (hci_result != HCI_SUCCESS) return -EFAULT; else force_fan = value; } else { return -EINVAL; } return count; } static char *read_keys(char *p) { u32 hci_result; u32 value; if (!key_event_valid) { hci_read1(HCI_SYSTEM_EVENT, &value, &hci_result); if (hci_result == HCI_SUCCESS) { key_event_valid = 1; last_key_event = value; } else if (hci_result == HCI_EMPTY) { /* better luck next time */ } else if (hci_result == HCI_NOT_SUPPORTED) { /* This is a workaround for an unresolved issue on * some machines where system events sporadically * become disabled. */ hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result); printk(MY_NOTICE "Re-enabled hotkeys\n"); } else { printk(MY_ERR "Error reading hotkey status\n"); goto end; } } p += sprintf(p, "hotkey_ready: %d\n", key_event_valid); p += sprintf(p, "hotkey: 0x%04x\n", last_key_event); end: return p; } static unsigned long write_keys(const char *buffer, unsigned long count) { int value; if (sscanf(buffer, " hotkey_ready : %i", &value) == 1 && value == 0) { key_event_valid = 0; } else { return -EINVAL; } return count; } static char *read_version(char *p) { p += sprintf(p, "driver: %s\n", TOSHIBA_ACPI_VERSION); p += sprintf(p, "proc_interface: %d\n", PROC_INTERFACE_VERSION); return p; } /* proc and module init */ #define PROC_TOSHIBA "toshiba" static ProcItem proc_items[] = { {"lcd", read_lcd, write_lcd}, {"video", read_video, write_video}, {"fan", read_fan, write_fan}, {"keys", read_keys, write_keys}, {"version", read_version, NULL}, {NULL} }; static acpi_status __init add_device(void) { struct proc_dir_entry *proc; ProcItem *item; for (item = proc_items; item->name; ++item) { proc = create_proc_read_entry(item->name, S_IFREG | S_IRUGO | S_IWUSR, toshiba_proc_dir, (read_proc_t *) dispatch_read, item); if (proc) proc->owner = THIS_MODULE; if (proc && item->write_func) proc->write_proc = (write_proc_t *) dispatch_write; } return AE_OK; } static acpi_status remove_device(void) { ProcItem *item; for (item = proc_items; item->name; ++item) remove_proc_entry(item->name, toshiba_proc_dir); return AE_OK; } static struct backlight_ops toshiba_backlight_data = { .get_brightness = get_lcd, .update_status = set_lcd_status, }; static void toshiba_acpi_exit(void) { if (toshiba_acpi.poll_dev) { input_unregister_polled_device(toshiba_acpi.poll_dev); input_free_polled_device(toshiba_acpi.poll_dev); } if (toshiba_acpi.rfk_dev) rfkill_unregister(toshiba_acpi.rfk_dev); if (toshiba_backlight_device) backlight_device_unregister(toshiba_backlight_device); remove_device(); if (toshiba_proc_dir) remove_proc_entry(PROC_TOSHIBA, acpi_root_dir); platform_device_unregister(toshiba_acpi.p_dev); return; } static int __init toshiba_acpi_init(void) { acpi_status status = AE_OK; u32 hci_result; bool bt_present; bool bt_on; bool radio_on; int ret = 0; if (acpi_disabled) return -ENODEV; /* simple device detection: look for HCI method */ if (is_valid_acpi_path(METHOD_HCI_1)) method_hci = METHOD_HCI_1; else if (is_valid_acpi_path(METHOD_HCI_2)) method_hci = METHOD_HCI_2; else return -ENODEV; printk(MY_INFO "Toshiba Laptop ACPI Extras version %s\n", TOSHIBA_ACPI_VERSION); printk(MY_INFO " HCI method: %s\n", method_hci); mutex_init(&toshiba_acpi.mutex); toshiba_acpi.p_dev = platform_device_register_simple("toshiba_acpi", -1, NULL, 0); if (IS_ERR(toshiba_acpi.p_dev)) { ret = PTR_ERR(toshiba_acpi.p_dev); printk(MY_ERR "unable to register platform device\n"); toshiba_acpi.p_dev = NULL; toshiba_acpi_exit(); return ret; } force_fan = 0; key_event_valid = 0; /* enable event fifo */ hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result); toshiba_proc_dir = proc_mkdir(PROC_TOSHIBA, acpi_root_dir); if (!toshiba_proc_dir) { toshiba_acpi_exit(); return -ENODEV; } else { toshiba_proc_dir->owner = THIS_MODULE; status = add_device(); if (ACPI_FAILURE(status)) { toshiba_acpi_exit(); return -ENODEV; } } toshiba_backlight_device = backlight_device_register("toshiba", &toshiba_acpi.p_dev->dev, NULL, &toshiba_backlight_data); if (IS_ERR(toshiba_backlight_device)) { ret = PTR_ERR(toshiba_backlight_device); printk(KERN_ERR "Could not register toshiba backlight device\n"); toshiba_backlight_device = NULL; toshiba_acpi_exit(); return ret; } toshiba_backlight_device->props.max_brightness = HCI_LCD_BRIGHTNESS_LEVELS - 1; /* Register rfkill switch for Bluetooth */ if (hci_get_bt_present(&bt_present) == HCI_SUCCESS && bt_present) { toshiba_acpi.rfk_dev = rfkill_allocate(&toshiba_acpi.p_dev->dev, RFKILL_TYPE_BLUETOOTH); if (!toshiba_acpi.rfk_dev) { printk(MY_ERR "unable to allocate rfkill device\n"); toshiba_acpi_exit(); return -ENOMEM; } toshiba_acpi.rfk_dev->name = toshiba_acpi.bt_name; toshiba_acpi.rfk_dev->toggle_radio = bt_rfkill_toggle_radio; toshiba_acpi.rfk_dev->user_claim_unsupported = 1; toshiba_acpi.rfk_dev->data = &toshiba_acpi; if (hci_get_bt_on(&bt_on) == HCI_SUCCESS && bt_on) { toshiba_acpi.rfk_dev->state = RFKILL_STATE_UNBLOCKED; } else if (hci_get_radio_state(&radio_on) == HCI_SUCCESS && radio_on) { toshiba_acpi.rfk_dev->state = RFKILL_STATE_SOFT_BLOCKED; } else { toshiba_acpi.rfk_dev->state = RFKILL_STATE_HARD_BLOCKED; } ret = rfkill_register(toshiba_acpi.rfk_dev); if (ret) { printk(MY_ERR "unable to register rfkill device\n"); toshiba_acpi_exit(); return -ENOMEM; } } /* Register input device for kill switch */ toshiba_acpi.poll_dev = input_allocate_polled_device(); if (!toshiba_acpi.poll_dev) { printk(MY_ERR "unable to allocate kill-switch input device\n"); toshiba_acpi_exit(); return -ENOMEM; } toshiba_acpi.poll_dev->private = &toshiba_acpi; toshiba_acpi.poll_dev->poll = bt_poll_rfkill; toshiba_acpi.poll_dev->poll_interval = 1000; /* msecs */ toshiba_acpi.poll_dev->input->name = toshiba_acpi.rfk_name; toshiba_acpi.poll_dev->input->id.bustype = BUS_HOST; toshiba_acpi.poll_dev->input->id.vendor = 0x0930; /* Toshiba USB ID */ set_bit(EV_SW, toshiba_acpi.poll_dev->input->evbit); set_bit(SW_RFKILL_ALL, toshiba_acpi.poll_dev->input->swbit); input_report_switch(toshiba_acpi.poll_dev->input, SW_RFKILL_ALL, TRUE); input_sync(toshiba_acpi.poll_dev->input); ret = input_register_polled_device(toshiba_acpi.poll_dev); if (ret) { printk(MY_ERR "unable to register kill-switch input device\n"); rfkill_free(toshiba_acpi.rfk_dev); toshiba_acpi.rfk_dev = NULL; toshiba_acpi_exit(); return ret; } return 0; } module_init(toshiba_acpi_init); module_exit(toshiba_acpi_exit);