/* * VMI specific paravirt-ops implementation * * Copyright (C) 2005, VMware, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Send feedback to zach@vmware.com * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Convenient for calling VMI functions indirectly in the ROM */ typedef u32 __attribute__((regparm(1))) (VROMFUNC)(void); typedef u64 __attribute__((regparm(2))) (VROMLONGFUNC)(int); #define call_vrom_func(rom,func) \ (((VROMFUNC *)(rom->func))()) #define call_vrom_long_func(rom,func,arg) \ (((VROMLONGFUNC *)(rom->func)) (arg)) static struct vrom_header *vmi_rom; static int disable_pge; static int disable_pse; static int disable_sep; static int disable_tsc; static int disable_mtrr; static int disable_noidle; static int disable_vmi_timer; /* Cached VMI operations */ static struct { void (*cpuid)(void /* non-c */); void (*_set_ldt)(u32 selector); void (*set_tr)(u32 selector); void (*write_idt_entry)(struct desc_struct *, int, u32, u32); void (*write_gdt_entry)(struct desc_struct *, int, u32, u32); void (*write_ldt_entry)(struct desc_struct *, int, u32, u32); void (*set_kernel_stack)(u32 selector, u32 sp0); void (*allocate_page)(u32, u32, u32, u32, u32); void (*release_page)(u32, u32); void (*set_pte)(pte_t, pte_t *, unsigned); void (*update_pte)(pte_t *, unsigned); void (*set_linear_mapping)(int, void *, u32, u32); void (*_flush_tlb)(int); void (*set_initial_ap_state)(int, int); void (*halt)(void); void (*set_lazy_mode)(int mode); } vmi_ops; /* Cached VMI operations */ struct vmi_timer_ops vmi_timer_ops; /* * VMI patching routines. */ #define MNEM_CALL 0xe8 #define MNEM_JMP 0xe9 #define MNEM_RET 0xc3 #define IRQ_PATCH_INT_MASK 0 #define IRQ_PATCH_DISABLE 5 static inline void patch_offset(void *insnbuf, unsigned long ip, unsigned long dest) { *(unsigned long *)(insnbuf+1) = dest-ip-5; } static unsigned patch_internal(int call, unsigned len, void *insnbuf, unsigned long ip) { u64 reloc; struct vmi_relocation_info *const rel = (struct vmi_relocation_info *)&reloc; reloc = call_vrom_long_func(vmi_rom, get_reloc, call); switch(rel->type) { case VMI_RELOCATION_CALL_REL: BUG_ON(len < 5); *(char *)insnbuf = MNEM_CALL; patch_offset(insnbuf, ip, (unsigned long)rel->eip); return 5; case VMI_RELOCATION_JUMP_REL: BUG_ON(len < 5); *(char *)insnbuf = MNEM_JMP; patch_offset(insnbuf, ip, (unsigned long)rel->eip); return 5; case VMI_RELOCATION_NOP: /* obliterate the whole thing */ return 0; case VMI_RELOCATION_NONE: /* leave native code in place */ break; default: BUG(); } return len; } /* * Apply patch if appropriate, return length of new instruction * sequence. The callee does nop padding for us. */ static unsigned vmi_patch(u8 type, u16 clobbers, void *insns, unsigned long ip, unsigned len) { switch (type) { case PARAVIRT_PATCH(pv_irq_ops.irq_disable): return patch_internal(VMI_CALL_DisableInterrupts, len, insns, ip); case PARAVIRT_PATCH(pv_irq_ops.irq_enable): return patch_internal(VMI_CALL_EnableInterrupts, len, insns, ip); case PARAVIRT_PATCH(pv_irq_ops.restore_fl): return patch_internal(VMI_CALL_SetInterruptMask, len, insns, ip); case PARAVIRT_PATCH(pv_irq_ops.save_fl): return patch_internal(VMI_CALL_GetInterruptMask, len, insns, ip); case PARAVIRT_PATCH(pv_cpu_ops.iret): return patch_internal(VMI_CALL_IRET, len, insns, ip); case PARAVIRT_PATCH(pv_cpu_ops.irq_enable_sysexit): return patch_internal(VMI_CALL_SYSEXIT, len, insns, ip); default: break; } return len; } /* CPUID has non-C semantics, and paravirt-ops API doesn't match hardware ISA */ static void vmi_cpuid(unsigned int *ax, unsigned int *bx, unsigned int *cx, unsigned int *dx) { int override = 0; if (*ax == 1) override = 1; asm volatile ("call *%6" : "=a" (*ax), "=b" (*bx), "=c" (*cx), "=d" (*dx) : "0" (*ax), "2" (*cx), "r" (vmi_ops.cpuid)); if (override) { if (disable_pse) *dx &= ~X86_FEATURE_PSE; if (disable_pge) *dx &= ~X86_FEATURE_PGE; if (disable_sep) *dx &= ~X86_FEATURE_SEP; if (disable_tsc) *dx &= ~X86_FEATURE_TSC; if (disable_mtrr) *dx &= ~X86_FEATURE_MTRR; } } static inline void vmi_maybe_load_tls(struct desc_struct *gdt, int nr, struct desc_struct *new) { if (gdt[nr].a != new->a || gdt[nr].b != new->b) write_gdt_entry(gdt, nr, new, 0); } static void vmi_load_tls(struct thread_struct *t, unsigned int cpu) { struct desc_struct *gdt = get_cpu_gdt_table(cpu); vmi_maybe_load_tls(gdt, GDT_ENTRY_TLS_MIN + 0, &t->tls_array[0]); vmi_maybe_load_tls(gdt, GDT_ENTRY_TLS_MIN + 1, &t->tls_array[1]); vmi_maybe_load_tls(gdt, GDT_ENTRY_TLS_MIN + 2, &t->tls_array[2]); } static void vmi_set_ldt(const void *addr, unsigned entries) { unsigned cpu = smp_processor_id(); struct desc_struct desc; pack_descriptor(&desc, (unsigned long)addr, entries * sizeof(struct desc_struct) - 1, DESC_LDT, 0); write_gdt_entry(get_cpu_gdt_table(cpu), GDT_ENTRY_LDT, &desc, DESC_LDT); vmi_ops._set_ldt(entries ? GDT_ENTRY_LDT*sizeof(struct desc_struct) : 0); } static void vmi_set_tr(void) { vmi_ops.set_tr(GDT_ENTRY_TSS*sizeof(struct desc_struct)); } static void vmi_write_idt_entry(gate_desc *dt, int entry, const gate_desc *g) { u32 *idt_entry = (u32 *)g; vmi_ops.write_idt_entry(dt, entry, idt_entry[0], idt_entry[1]); } static void vmi_write_gdt_entry(struct desc_struct *dt, int entry, const void *desc, int type) { u32 *gdt_entry = (u32 *)desc; vmi_ops.write_gdt_entry(dt, entry, gdt_entry[0], gdt_entry[1]); } static void vmi_write_ldt_entry(struct desc_struct *dt, int entry, const void *desc) { u32 *ldt_entry = (u32 *)desc; vmi_ops.write_idt_entry(dt, entry, ldt_entry[0], ldt_entry[1]); } static void vmi_load_sp0(struct tss_struct *tss, struct thread_struct *thread) { tss->x86_tss.sp0 = thread->sp0; /* This can only happen when SEP is enabled, no need to test "SEP"arately */ if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) { tss->x86_tss.ss1 = thread->sysenter_cs; wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0); } vmi_ops.set_kernel_stack(__KERNEL_DS, tss->x86_tss.sp0); } static void vmi_flush_tlb_user(void) { vmi_ops._flush_tlb(VMI_FLUSH_TLB); } static void vmi_flush_tlb_kernel(void) { vmi_ops._flush_tlb(VMI_FLUSH_TLB | VMI_FLUSH_GLOBAL); } /* Stub to do nothing at all; used for delays and unimplemented calls */ static void vmi_nop(void) { } #ifdef CONFIG_DEBUG_PAGE_TYPE #ifdef CONFIG_X86_PAE #define MAX_BOOT_PTS (2048+4+1) #else #define MAX_BOOT_PTS (1024+1) #endif /* * During boot, mem_map is not yet available in paging_init, so stash * all the boot page allocations here. */ static struct { u32 pfn; int type; } boot_page_allocations[MAX_BOOT_PTS]; static int num_boot_page_allocations; static int boot_allocations_applied; void vmi_apply_boot_page_allocations(void) { int i; BUG_ON(!mem_map); for (i = 0; i < num_boot_page_allocations; i++) { struct page *page = pfn_to_page(boot_page_allocations[i].pfn); page->type = boot_page_allocations[i].type; page->type = boot_page_allocations[i].type & ~(VMI_PAGE_ZEROED | VMI_PAGE_CLONE); } boot_allocations_applied = 1; } static void record_page_type(u32 pfn, int type) { BUG_ON(num_boot_page_allocations >= MAX_BOOT_PTS); boot_page_allocations[num_boot_page_allocations].pfn = pfn; boot_page_allocations[num_boot_page_allocations].type = type; num_boot_page_allocations++; } static void check_zeroed_page(u32 pfn, int type, struct page *page) { u32 *ptr; int i; int limit = PAGE_SIZE / sizeof(int); if (page_address(page)) ptr = (u32 *)page_address(page); else ptr = (u32 *)__va(pfn << PAGE_SHIFT); /* * When cloning the root in non-PAE mode, only the userspace * pdes need to be zeroed. */ if (type & VMI_PAGE_CLONE) limit = KERNEL_PGD_BOUNDARY; for (i = 0; i < limit; i++) BUG_ON(ptr[i]); } /* * We stash the page type into struct page so we can verify the page * types are used properly. */ static void vmi_set_page_type(u32 pfn, int type) { /* PAE can have multiple roots per page - don't track */ if (PTRS_PER_PMD > 1 && (type & VMI_PAGE_PDP)) return; if (boot_allocations_applied) { struct page *page = pfn_to_page(pfn); if (type != VMI_PAGE_NORMAL) BUG_ON(page->type); else BUG_ON(page->type == VMI_PAGE_NORMAL); page->type = type & ~(VMI_PAGE_ZEROED | VMI_PAGE_CLONE); if (type & VMI_PAGE_ZEROED) check_zeroed_page(pfn, type, page); } else { record_page_type(pfn, type); } } static void vmi_check_page_type(u32 pfn, int type) { /* PAE can have multiple roots per page - skip checks */ if (PTRS_PER_PMD > 1 && (type & VMI_PAGE_PDP)) return; type &= ~(VMI_PAGE_ZEROED | VMI_PAGE_CLONE); if (boot_allocations_applied) { struct page *page = pfn_to_page(pfn); BUG_ON((page->type ^ type) & VMI_PAGE_PAE); BUG_ON(type == VMI_PAGE_NORMAL && page->type); BUG_ON((type & page->type) == 0); } } #else #define vmi_set_page_type(p,t) do { } while (0) #define vmi_check_page_type(p,t) do { } while (0) #endif #ifdef CONFIG_HIGHPTE static void *vmi_kmap_atomic_pte(struct page *page, enum km_type type) { void *va = kmap_atomic(page, type); /* * Internally, the VMI ROM must map virtual addresses to physical * addresses for processing MMU updates. By the time MMU updates * are issued, this information is typically already lost. * Fortunately, the VMI provides a cache of mapping slots for active * page tables. * * We use slot zero for the linear mapping of physical memory, and * in HIGHPTE kernels, slot 1 and 2 for KM_PTE0 and KM_PTE1. * * args: SLOT VA COUNT PFN */ BUG_ON(type != KM_PTE0 && type != KM_PTE1); vmi_ops.set_linear_mapping((type - KM_PTE0)+1, va, 1, page_to_pfn(page)); return va; } #endif static void vmi_allocate_pte(struct mm_struct *mm, unsigned long pfn) { vmi_set_page_type(pfn, VMI_PAGE_L1); vmi_ops.allocate_page(pfn, VMI_PAGE_L1, 0, 0, 0); } static void vmi_allocate_pmd(struct mm_struct *mm, unsigned long pfn) { /* * This call comes in very early, before mem_map is setup. * It is called only for swapper_pg_dir, which already has * data on it. */ vmi_set_page_type(pfn, VMI_PAGE_L2); vmi_ops.allocate_page(pfn, VMI_PAGE_L2, 0, 0, 0); } static void vmi_allocate_pmd_clone(unsigned long pfn, unsigned long clonepfn, unsigned long start, unsigned long count) { vmi_set_page_type(pfn, VMI_PAGE_L2 | VMI_PAGE_CLONE); vmi_check_page_type(clonepfn, VMI_PAGE_L2); vmi_ops.allocate_page(pfn, VMI_PAGE_L2 | VMI_PAGE_CLONE, clonepfn, start, count); } static void vmi_release_pte(unsigned long pfn) { vmi_ops.release_page(pfn, VMI_PAGE_L1); vmi_set_page_type(pfn, VMI_PAGE_NORMAL); } static void vmi_release_pmd(unsigned long pfn) { vmi_ops.release_page(pfn, VMI_PAGE_L2); vmi_set_page_type(pfn, VMI_PAGE_NORMAL); } /* * Helper macros for MMU update flags. We can defer updates until a flush * or page invalidation only if the update is to the current address space * (otherwise, there is no flush). We must check against init_mm, since * this could be a kernel update, which usually passes init_mm, although * sometimes this check can be skipped if we know the particular function * is only called on user mode PTEs. We could change the kernel to pass * current->active_mm here, but in particular, I was unsure if changing * mm/highmem.c to do this would still be correct on other architectures. */ #define is_current_as(mm, mustbeuser) ((mm) == current->active_mm || \ (!mustbeuser && (mm) == &init_mm)) #define vmi_flags_addr(mm, addr, level, user) \ ((level) | (is_current_as(mm, user) ? \ (VMI_PAGE_CURRENT_AS | ((addr) & VMI_PAGE_VA_MASK)) : 0)) #define vmi_flags_addr_defer(mm, addr, level, user) \ ((level) | (is_current_as(mm, user) ? \ (VMI_PAGE_DEFER | VMI_PAGE_CURRENT_AS | ((addr) & VMI_PAGE_VA_MASK)) : 0)) static void vmi_update_pte(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE); vmi_ops.update_pte(ptep, vmi_flags_addr(mm, addr, VMI_PAGE_PT, 0)); } static void vmi_update_pte_defer(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE); vmi_ops.update_pte(ptep, vmi_flags_addr_defer(mm, addr, VMI_PAGE_PT, 0)); } static void vmi_set_pte(pte_t *ptep, pte_t pte) { /* XXX because of set_pmd_pte, this can be called on PT or PD layers */ vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE | VMI_PAGE_PD); vmi_ops.set_pte(pte, ptep, VMI_PAGE_PT); } static void vmi_set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte) { vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE); vmi_ops.set_pte(pte, ptep, vmi_flags_addr(mm, addr, VMI_PAGE_PT, 0)); } static void vmi_set_pmd(pmd_t *pmdp, pmd_t pmdval) { #ifdef CONFIG_X86_PAE const pte_t pte = { .pte = pmdval.pmd }; vmi_check_page_type(__pa(pmdp) >> PAGE_SHIFT, VMI_PAGE_PMD); #else const pte_t pte = { pmdval.pud.pgd.pgd }; vmi_check_page_type(__pa(pmdp) >> PAGE_SHIFT, VMI_PAGE_PGD); #endif vmi_ops.set_pte(pte, (pte_t *)pmdp, VMI_PAGE_PD); } #ifdef CONFIG_X86_PAE static void vmi_set_pte_atomic(pte_t *ptep, pte_t pteval) { /* * XXX This is called from set_pmd_pte, but at both PT * and PD layers so the VMI_PAGE_PT flag is wrong. But * it is only called for large page mapping changes, * the Xen backend, doesn't support large pages, and the * ESX backend doesn't depend on the flag. */ set_64bit((unsigned long long *)ptep,pte_val(pteval)); vmi_ops.update_pte(ptep, VMI_PAGE_PT); } static void vmi_set_pte_present(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte) { vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE); vmi_ops.set_pte(pte, ptep, vmi_flags_addr_defer(mm, addr, VMI_PAGE_PT, 1)); } static void vmi_set_pud(pud_t *pudp, pud_t pudval) { /* Um, eww */ const pte_t pte = { .pte = pudval.pgd.pgd }; vmi_check_page_type(__pa(pudp) >> PAGE_SHIFT, VMI_PAGE_PGD); vmi_ops.set_pte(pte, (pte_t *)pudp, VMI_PAGE_PDP); } static void vmi_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { const pte_t pte = { .pte = 0 }; vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE); vmi_ops.set_pte(pte, ptep, vmi_flags_addr(mm, addr, VMI_PAGE_PT, 0)); } static void vmi_pmd_clear(pmd_t *pmd) { const pte_t pte = { .pte = 0 }; vmi_check_page_type(__pa(pmd) >> PAGE_SHIFT, VMI_PAGE_PMD); vmi_ops.set_pte(pte, (pte_t *)pmd, VMI_PAGE_PD); } #endif #ifdef CONFIG_SMP static void __devinit vmi_startup_ipi_hook(int phys_apicid, unsigned long start_eip, unsigned long start_esp) { struct vmi_ap_state ap; /* Default everything to zero. This is fine for most GPRs. */ memset(&ap, 0, sizeof(struct vmi_ap_state)); ap.gdtr_limit = GDT_SIZE - 1; ap.gdtr_base = (unsigned long) get_cpu_gdt_table(phys_apicid); ap.idtr_limit = IDT_ENTRIES * 8 - 1; ap.idtr_base = (unsigned long) idt_table; ap.ldtr = 0; ap.cs = __KERNEL_CS; ap.eip = (unsigned long) start_eip; ap.ss = __KERNEL_DS; ap.esp = (unsigned long) start_esp; ap.ds = __USER_DS; ap.es = __USER_DS; ap.fs = __KERNEL_PERCPU; ap.gs = 0; ap.eflags = 0; #ifdef CONFIG_X86_PAE /* efer should match BSP efer. */ if (cpu_has_nx) { unsigned l, h; rdmsr(MSR_EFER, l, h); ap.efer = (unsigned long long) h << 32 | l; } #endif ap.cr3 = __pa(swapper_pg_dir); /* Protected mode, paging, AM, WP, NE, MP. */ ap.cr0 = 0x80050023; ap.cr4 = mmu_cr4_features; vmi_ops.set_initial_ap_state((u32)&ap, phys_apicid); } #endif static void vmi_enter_lazy_cpu(void) { paravirt_enter_lazy_cpu(); vmi_ops.set_lazy_mode(2); } static void vmi_enter_lazy_mmu(void) { paravirt_enter_lazy_mmu(); vmi_ops.set_lazy_mode(1); } static void vmi_leave_lazy(void) { paravirt_leave_lazy(paravirt_get_lazy_mode()); vmi_ops.set_lazy_mode(0); } static inline int __init check_vmi_rom(struct vrom_header *rom) { struct pci_header *pci; struct pnp_header *pnp; const char *manufacturer = "UNKNOWN"; const char *product = "UNKNOWN"; const char *license = "unspecified"; if (rom->rom_signature != 0xaa55) return 0; if (rom->vrom_signature != VMI_SIGNATURE) return 0; if (rom->api_version_maj != VMI_API_REV_MAJOR || rom->api_version_min+1 < VMI_API_REV_MINOR+1) { printk(KERN_WARNING "VMI: Found mismatched rom version %d.%d\n", rom->api_version_maj, rom->api_version_min); return 0; } /* * Relying on the VMI_SIGNATURE field is not 100% safe, so check * the PCI header and device type to make sure this is really a * VMI device. */ if (!rom->pci_header_offs) { printk(KERN_WARNING "VMI: ROM does not contain PCI header.\n"); return 0; } pci = (struct pci_header *)((char *)rom+rom->pci_header_offs); if (pci->vendorID != PCI_VENDOR_ID_VMWARE || pci->deviceID != PCI_DEVICE_ID_VMWARE_VMI) { /* Allow it to run... anyways, but warn */ printk(KERN_WARNING "VMI: ROM from unknown manufacturer\n"); } if (rom->pnp_header_offs) { pnp = (struct pnp_header *)((char *)rom+rom->pnp_header_offs); if (pnp->manufacturer_offset) manufacturer = (const char *)rom+pnp->manufacturer_offset; if (pnp->product_offset) product = (const char *)rom+pnp->product_offset; } if (rom->license_offs) license = (char *)rom+rom->license_offs; printk(KERN_INFO "VMI: Found %s %s, API version %d.%d, ROM version %d.%d\n", manufacturer, product, rom->api_version_maj, rom->api_version_min, pci->rom_version_maj, pci->rom_version_min); /* Don't allow BSD/MIT here for now because we don't want to end up with any binary only shim layers */ if (strcmp(license, "GPL") && strcmp(license, "GPL v2")) { printk(KERN_WARNING "VMI: Non GPL license `%s' found for ROM. Not used.\n", license); return 0; } return 1; } /* * Probe for the VMI option ROM */ static inline int __init probe_vmi_rom(void) { unsigned long base; /* VMI ROM is in option ROM area, check signature */ for (base = 0xC0000; base < 0xE0000; base += 2048) { struct vrom_header *romstart; romstart = (struct vrom_header *)isa_bus_to_virt(base); if (check_vmi_rom(romstart)) { vmi_rom = romstart; return 1; } } return 0; } /* * VMI setup common to all processors */ void vmi_bringup(void) { /* We must establish the lowmem mapping for MMU ops to work */ if (vmi_ops.set_linear_mapping) vmi_ops.set_linear_mapping(0, (void *)__PAGE_OFFSET, max_low_pfn, 0); } /* * Return a pointer to a VMI function or NULL if unimplemented */ static void *vmi_get_function(int vmicall) { u64 reloc; const struct vmi_relocation_info *rel = (struct vmi_relocation_info *)&reloc; reloc = call_vrom_long_func(vmi_rom, get_reloc, vmicall); BUG_ON(rel->type == VMI_RELOCATION_JUMP_REL); if (rel->type == VMI_RELOCATION_CALL_REL) return (void *)rel->eip; else return NULL; } /* * Helper macro for making the VMI paravirt-ops fill code readable. * For unimplemented operations, fall back to default, unless nop * is returned by the ROM. */ #define para_fill(opname, vmicall) \ do { \ reloc = call_vrom_long_func(vmi_rom, get_reloc, \ VMI_CALL_##vmicall); \ if (rel->type == VMI_RELOCATION_CALL_REL) \ opname = (void *)rel->eip; \ else if (rel->type == VMI_RELOCATION_NOP) \ opname = (void *)vmi_nop; \ else if (rel->type != VMI_RELOCATION_NONE) \ printk(KERN_WARNING "VMI: Unknown relocation " \ "type %d for " #vmicall"\n",\ rel->type); \ } while (0) /* * Helper macro for making the VMI paravirt-ops fill code readable. * For cached operations which do not match the VMI ROM ABI and must * go through a tranlation stub. Ignore NOPs, since it is not clear * a NOP * VMI function corresponds to a NOP paravirt-op when the * functions are not in 1-1 correspondence. */ #define para_wrap(opname, wrapper, cache, vmicall) \ do { \ reloc = call_vrom_long_func(vmi_rom, get_reloc, \ VMI_CALL_##vmicall); \ BUG_ON(rel->type == VMI_RELOCATION_JUMP_REL); \ if (rel->type == VMI_RELOCATION_CALL_REL) { \ opname = wrapper; \ vmi_ops.cache = (void *)rel->eip; \ } \ } while (0) /* * Activate the VMI interface and switch into paravirtualized mode */ static inline int __init activate_vmi(void) { short kernel_cs; u64 reloc; const struct vmi_relocation_info *rel = (struct vmi_relocation_info *)&reloc; if (call_vrom_func(vmi_rom, vmi_init) != 0) { printk(KERN_ERR "VMI ROM failed to initialize!"); return 0; } savesegment(cs, kernel_cs); pv_info.paravirt_enabled = 1; pv_info.kernel_rpl = kernel_cs & SEGMENT_RPL_MASK; pv_info.name = "vmi"; pv_init_ops.patch = vmi_patch; /* * Many of these operations are ABI compatible with VMI. * This means we can fill in the paravirt-ops with direct * pointers into the VMI ROM. If the calling convention for * these operations changes, this code needs to be updated. * * Exceptions * CPUID paravirt-op uses pointers, not the native ISA * halt has no VMI equivalent; all VMI halts are "safe" * no MSR support yet - just trap and emulate. VMI uses the * same ABI as the native ISA, but Linux wants exceptions * from bogus MSR read / write handled * rdpmc is not yet used in Linux */ /* CPUID is special, so very special it gets wrapped like a present */ para_wrap(pv_cpu_ops.cpuid, vmi_cpuid, cpuid, CPUID); para_fill(pv_cpu_ops.clts, CLTS); para_fill(pv_cpu_ops.get_debugreg, GetDR); para_fill(pv_cpu_ops.set_debugreg, SetDR); para_fill(pv_cpu_ops.read_cr0, GetCR0); para_fill(pv_mmu_ops.read_cr2, GetCR2); para_fill(pv_mmu_ops.read_cr3, GetCR3); para_fill(pv_cpu_ops.read_cr4, GetCR4); para_fill(pv_cpu_ops.write_cr0, SetCR0); para_fill(pv_mmu_ops.write_cr2, SetCR2); para_fill(pv_mmu_ops.write_cr3, SetCR3); para_fill(pv_cpu_ops.write_cr4, SetCR4); para_fill(pv_irq_ops.save_fl, GetInterruptMask); para_fill(pv_irq_ops.restore_fl, SetInterruptMask); para_fill(pv_irq_ops.irq_disable, DisableInterrupts); para_fill(pv_irq_ops.irq_enable, EnableInterrupts); para_fill(pv_cpu_ops.wbinvd, WBINVD); para_fill(pv_cpu_ops.read_tsc, RDTSC); /* The following we emulate with trap and emulate for now */ /* paravirt_ops.read_msr = vmi_rdmsr */ /* paravirt_ops.write_msr = vmi_wrmsr */ /* paravirt_ops.rdpmc = vmi_rdpmc */ /* TR interface doesn't pass TR value, wrap */ para_wrap(pv_cpu_ops.load_tr_desc, vmi_set_tr, set_tr, SetTR); /* LDT is special, too */ para_wrap(pv_cpu_ops.set_ldt, vmi_set_ldt, _set_ldt, SetLDT); para_fill(pv_cpu_ops.load_gdt, SetGDT); para_fill(pv_cpu_ops.load_idt, SetIDT); para_fill(pv_cpu_ops.store_gdt, GetGDT); para_fill(pv_cpu_ops.store_idt, GetIDT); para_fill(pv_cpu_ops.store_tr, GetTR); pv_cpu_ops.load_tls = vmi_load_tls; para_wrap(pv_cpu_ops.write_ldt_entry, vmi_write_ldt_entry, write_ldt_entry, WriteLDTEntry); para_wrap(pv_cpu_ops.write_gdt_entry, vmi_write_gdt_entry, write_gdt_entry, WriteGDTEntry); para_wrap(pv_cpu_ops.write_idt_entry, vmi_write_idt_entry, write_idt_entry, WriteIDTEntry); para_wrap(pv_cpu_ops.load_sp0, vmi_load_sp0, set_kernel_stack, UpdateKernelStack); para_fill(pv_cpu_ops.set_iopl_mask, SetIOPLMask); para_fill(pv_cpu_ops.io_delay, IODelay); para_wrap(pv_cpu_ops.lazy_mode.enter, vmi_enter_lazy_cpu, set_lazy_mode, SetLazyMode); para_wrap(pv_cpu_ops.lazy_mode.leave, vmi_leave_lazy, set_lazy_mode, SetLazyMode); para_wrap(pv_mmu_ops.lazy_mode.enter, vmi_enter_lazy_mmu, set_lazy_mode, SetLazyMode); para_wrap(pv_mmu_ops.lazy_mode.leave, vmi_leave_lazy, set_lazy_mode, SetLazyMode); /* user and kernel flush are just handled with different flags to FlushTLB */ para_wrap(pv_mmu_ops.flush_tlb_user, vmi_flush_tlb_user, _flush_tlb, FlushTLB); para_wrap(pv_mmu_ops.flush_tlb_kernel, vmi_flush_tlb_kernel, _flush_tlb, FlushTLB); para_fill(pv_mmu_ops.flush_tlb_single, InvalPage); /* * Until a standard flag format can be agreed on, we need to * implement these as wrappers in Linux. Get the VMI ROM * function pointers for the two backend calls. */ #ifdef CONFIG_X86_PAE vmi_ops.set_pte = vmi_get_function(VMI_CALL_SetPxELong); vmi_ops.update_pte = vmi_get_function(VMI_CALL_UpdatePxELong); #else vmi_ops.set_pte = vmi_get_function(VMI_CALL_SetPxE); vmi_ops.update_pte = vmi_get_function(VMI_CALL_UpdatePxE); #endif if (vmi_ops.set_pte) { pv_mmu_ops.set_pte = vmi_set_pte; pv_mmu_ops.set_pte_at = vmi_set_pte_at; pv_mmu_ops.set_pmd = vmi_set_pmd; #ifdef CONFIG_X86_PAE pv_mmu_ops.set_pte_atomic = vmi_set_pte_atomic; pv_mmu_ops.set_pte_present = vmi_set_pte_present; pv_mmu_ops.set_pud = vmi_set_pud; pv_mmu_ops.pte_clear = vmi_pte_clear; pv_mmu_ops.pmd_clear = vmi_pmd_clear; #endif } if (vmi_ops.update_pte) { pv_mmu_ops.pte_update = vmi_update_pte; pv_mmu_ops.pte_update_defer = vmi_update_pte_defer; } vmi_ops.allocate_page = vmi_get_function(VMI_CALL_AllocatePage); if (vmi_ops.allocate_page) { pv_mmu_ops.alloc_pte = vmi_allocate_pte; pv_mmu_ops.alloc_pmd = vmi_allocate_pmd; pv_mmu_ops.alloc_pmd_clone = vmi_allocate_pmd_clone; } vmi_ops.release_page = vmi_get_function(VMI_CALL_ReleasePage); if (vmi_ops.release_page) { pv_mmu_ops.release_pte = vmi_release_pte; pv_mmu_ops.release_pmd = vmi_release_pmd; } /* Set linear is needed in all cases */ vmi_ops.set_linear_mapping = vmi_get_function(VMI_CALL_SetLinearMapping); #ifdef CONFIG_HIGHPTE if (vmi_ops.set_linear_mapping) pv_mmu_ops.kmap_atomic_pte = vmi_kmap_atomic_pte; #endif /* * These MUST always be patched. Don't support indirect jumps * through these operations, as the VMI interface may use either * a jump or a call to get to these operations, depending on * the backend. They are performance critical anyway, so requiring * a patch is not a big problem. */ pv_cpu_ops.irq_enable_sysexit = (void *)0xfeedbab0; pv_cpu_ops.iret = (void *)0xbadbab0; #ifdef CONFIG_SMP para_wrap(pv_apic_ops.startup_ipi_hook, vmi_startup_ipi_hook, set_initial_ap_state, SetInitialAPState); #endif #ifdef CONFIG_X86_LOCAL_APIC para_fill(pv_apic_ops.apic_read, APICRead); para_fill(pv_apic_ops.apic_write, APICWrite); #endif /* * Check for VMI timer functionality by probing for a cycle frequency method */ reloc = call_vrom_long_func(vmi_rom, get_reloc, VMI_CALL_GetCycleFrequency); if (!disable_vmi_timer && rel->type != VMI_RELOCATION_NONE) { vmi_timer_ops.get_cycle_frequency = (void *)rel->eip; vmi_timer_ops.get_cycle_counter = vmi_get_function(VMI_CALL_GetCycleCounter); vmi_timer_ops.get_wallclock = vmi_get_function(VMI_CALL_GetWallclockTime); vmi_timer_ops.wallclock_updated = vmi_get_function(VMI_CALL_WallclockUpdated); vmi_timer_ops.set_alarm = vmi_get_function(VMI_CALL_SetAlarm); vmi_timer_ops.cancel_alarm = vmi_get_function(VMI_CALL_CancelAlarm); pv_time_ops.time_init = vmi_time_init; pv_time_ops.get_wallclock = vmi_get_wallclock; pv_time_ops.set_wallclock = vmi_set_wallclock; #ifdef CONFIG_X86_LOCAL_APIC pv_apic_ops.setup_boot_clock = vmi_time_bsp_init; pv_apic_ops.setup_secondary_clock = vmi_time_ap_init; #endif pv_time_ops.sched_clock = vmi_sched_clock; pv_time_ops.get_tsc_khz = vmi_tsc_khz; /* We have true wallclock functions; disable CMOS clock sync */ no_sync_cmos_clock = 1; } else { disable_noidle = 1; disable_vmi_timer = 1; } para_fill(pv_irq_ops.safe_halt, Halt); /* * Alternative instruction rewriting doesn't happen soon enough * to convert VMI_IRET to a call instead of a jump; so we have * to do this before IRQs get reenabled. Fortunately, it is * idempotent. */ apply_paravirt(__parainstructions, __parainstructions_end); vmi_bringup(); return 1; } #undef para_fill void __init vmi_init(void) { unsigned long flags; if (!vmi_rom) probe_vmi_rom(); else check_vmi_rom(vmi_rom); /* In case probing for or validating the ROM failed, basil */ if (!vmi_rom) return; reserve_top_address(-vmi_rom->virtual_top); local_irq_save(flags); activate_vmi(); #ifdef CONFIG_X86_IO_APIC /* This is virtual hardware; timer routing is wired correctly */ no_timer_check = 1; #endif local_irq_restore(flags & X86_EFLAGS_IF); } static int __init parse_vmi(char *arg) { if (!arg) return -EINVAL; if (!strcmp(arg, "disable_pge")) { clear_cpu_cap(&boot_cpu_data, X86_FEATURE_PGE); disable_pge = 1; } else if (!strcmp(arg, "disable_pse")) { clear_cpu_cap(&boot_cpu_data, X86_FEATURE_PSE); disable_pse = 1; } else if (!strcmp(arg, "disable_sep")) { clear_cpu_cap(&boot_cpu_data, X86_FEATURE_SEP); disable_sep = 1; } else if (!strcmp(arg, "disable_tsc")) { clear_cpu_cap(&boot_cpu_data, X86_FEATURE_TSC); disable_tsc = 1; } else if (!strcmp(arg, "disable_mtrr")) { clear_cpu_cap(&boot_cpu_data, X86_FEATURE_MTRR); disable_mtrr = 1; } else if (!strcmp(arg, "disable_timer")) { disable_vmi_timer = 1; disable_noidle = 1; } else if (!strcmp(arg, "disable_noidle")) disable_noidle = 1; return 0; } early_param("vmi", parse_vmi);