#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include unsigned int cpu_khz; /* TSC clocks / usec, not used here */ EXPORT_SYMBOL(cpu_khz); unsigned int tsc_khz; EXPORT_SYMBOL(tsc_khz); /* * TSC can be unstable due to cpufreq or due to unsynced TSCs */ static int tsc_unstable; /* native_sched_clock() is called before tsc_init(), so we must start with the TSC soft disabled to prevent erroneous rdtsc usage on !cpu_has_tsc processors */ static int tsc_disabled = -1; /* * Scheduler clock - returns current time in nanosec units. */ u64 native_sched_clock(void) { u64 this_offset; /* * Fall back to jiffies if there's no TSC available: * ( But note that we still use it if the TSC is marked * unstable. We do this because unlike Time Of Day, * the scheduler clock tolerates small errors and it's * very important for it to be as fast as the platform * can achive it. ) */ if (unlikely(tsc_disabled)) { /* No locking but a rare wrong value is not a big deal: */ return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); } /* read the Time Stamp Counter: */ rdtscll(this_offset); /* return the value in ns */ return cycles_2_ns(this_offset); } /* We need to define a real function for sched_clock, to override the weak default version */ #ifdef CONFIG_PARAVIRT unsigned long long sched_clock(void) { return paravirt_sched_clock(); } #else unsigned long long sched_clock(void) __attribute__((alias("native_sched_clock"))); #endif int check_tsc_unstable(void) { return tsc_unstable; } EXPORT_SYMBOL_GPL(check_tsc_unstable); #ifdef CONFIG_X86_TSC int __init notsc_setup(char *str) { printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, " "cannot disable TSC completely.\n"); tsc_disabled = 1; return 1; } #else /* * disable flag for tsc. Takes effect by clearing the TSC cpu flag * in cpu/common.c */ int __init notsc_setup(char *str) { setup_clear_cpu_cap(X86_FEATURE_TSC); return 1; } #endif __setup("notsc", notsc_setup); #define MAX_RETRIES 5 #define SMI_TRESHOLD 50000 /* * Read TSC and the reference counters. Take care of SMI disturbance */ static u64 __init tsc_read_refs(u64 *pm, u64 *hpet) { u64 t1, t2; int i; for (i = 0; i < MAX_RETRIES; i++) { t1 = get_cycles(); if (hpet) *hpet = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; else *pm = acpi_pm_read_early(); t2 = get_cycles(); if ((t2 - t1) < SMI_TRESHOLD) return t2; } return ULLONG_MAX; } /** * native_calibrate_tsc - calibrate the tsc on boot */ unsigned long native_calibrate_tsc(void) { unsigned long flags; u64 tsc1, tsc2, tr1, tr2, delta, pm1, pm2, hpet1, hpet2; int hpet = is_hpet_enabled(); unsigned int tsc_khz_val = 0; local_irq_save(flags); tsc1 = tsc_read_refs(&pm1, hpet ? &hpet1 : NULL); outb((inb(0x61) & ~0x02) | 0x01, 0x61); outb(0xb0, 0x43); outb((CLOCK_TICK_RATE / (1000 / 50)) & 0xff, 0x42); outb((CLOCK_TICK_RATE / (1000 / 50)) >> 8, 0x42); tr1 = get_cycles(); while ((inb(0x61) & 0x20) == 0); tr2 = get_cycles(); tsc2 = tsc_read_refs(&pm2, hpet ? &hpet2 : NULL); local_irq_restore(flags); /* * Preset the result with the raw and inaccurate PIT * calibration value */ delta = (tr2 - tr1); do_div(delta, 50); tsc_khz_val = delta; /* hpet or pmtimer available ? */ if (!hpet && !pm1 && !pm2) { printk(KERN_INFO "TSC calibrated against PIT\n"); goto out; } /* Check, whether the sampling was disturbed by an SMI */ if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) { printk(KERN_WARNING "TSC calibration disturbed by SMI, " "using PIT calibration result\n"); goto out; } tsc2 = (tsc2 - tsc1) * 1000000LL; if (hpet) { printk(KERN_INFO "TSC calibrated against HPET\n"); if (hpet2 < hpet1) hpet2 += 0x100000000ULL; hpet2 -= hpet1; tsc1 = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); do_div(tsc1, 1000000); } else { printk(KERN_INFO "TSC calibrated against PM_TIMER\n"); if (pm2 < pm1) pm2 += (u64)ACPI_PM_OVRRUN; pm2 -= pm1; tsc1 = pm2 * 1000000000LL; do_div(tsc1, PMTMR_TICKS_PER_SEC); } do_div(tsc2, tsc1); tsc_khz_val = tsc2; out: return tsc_khz_val; } #ifdef CONFIG_X86_32 /* Only called from the Powernow K7 cpu freq driver */ int recalibrate_cpu_khz(void) { #ifndef CONFIG_SMP unsigned long cpu_khz_old = cpu_khz; if (cpu_has_tsc) { tsc_khz = calibrate_tsc(); cpu_khz = tsc_khz; cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy, cpu_khz_old, cpu_khz); return 0; } else return -ENODEV; #else return -ENODEV; #endif } EXPORT_SYMBOL(recalibrate_cpu_khz); #endif /* CONFIG_X86_32 */ /* Accelerators for sched_clock() * convert from cycles(64bits) => nanoseconds (64bits) * basic equation: * ns = cycles / (freq / ns_per_sec) * ns = cycles * (ns_per_sec / freq) * ns = cycles * (10^9 / (cpu_khz * 10^3)) * ns = cycles * (10^6 / cpu_khz) * * Then we use scaling math (suggested by george@mvista.com) to get: * ns = cycles * (10^6 * SC / cpu_khz) / SC * ns = cycles * cyc2ns_scale / SC * * And since SC is a constant power of two, we can convert the div * into a shift. * * We can use khz divisor instead of mhz to keep a better precision, since * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. * (mathieu.desnoyers@polymtl.ca) * * -johnstul@us.ibm.com "math is hard, lets go shopping!" */ DEFINE_PER_CPU(unsigned long, cyc2ns); static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) { unsigned long long tsc_now, ns_now; unsigned long flags, *scale; local_irq_save(flags); sched_clock_idle_sleep_event(); scale = &per_cpu(cyc2ns, cpu); rdtscll(tsc_now); ns_now = __cycles_2_ns(tsc_now); if (cpu_khz) *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz; sched_clock_idle_wakeup_event(0); local_irq_restore(flags); } #ifdef CONFIG_CPU_FREQ /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency * changes. * * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's * not that important because current Opteron setups do not support * scaling on SMP anyroads. * * Should fix up last_tsc too. Currently gettimeofday in the * first tick after the change will be slightly wrong. */ static unsigned int ref_freq; static unsigned long loops_per_jiffy_ref; static unsigned long tsc_khz_ref; static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data) { struct cpufreq_freqs *freq = data; unsigned long *lpj, dummy; if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC)) return 0; lpj = &dummy; if (!(freq->flags & CPUFREQ_CONST_LOOPS)) #ifdef CONFIG_SMP lpj = &cpu_data(freq->cpu).loops_per_jiffy; #else lpj = &boot_cpu_data.loops_per_jiffy; #endif if (!ref_freq) { ref_freq = freq->old; loops_per_jiffy_ref = *lpj; tsc_khz_ref = tsc_khz; } if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || (val == CPUFREQ_RESUMECHANGE)) { *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); if (!(freq->flags & CPUFREQ_CONST_LOOPS)) mark_tsc_unstable("cpufreq changes"); } set_cyc2ns_scale(tsc_khz_ref, freq->cpu); return 0; } static struct notifier_block time_cpufreq_notifier_block = { .notifier_call = time_cpufreq_notifier }; static int __init cpufreq_tsc(void) { cpufreq_register_notifier(&time_cpufreq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER); return 0; } core_initcall(cpufreq_tsc); #endif /* CONFIG_CPU_FREQ */ /* clocksource code */ static struct clocksource clocksource_tsc; /* * We compare the TSC to the cycle_last value in the clocksource * structure to avoid a nasty time-warp. This can be observed in a * very small window right after one CPU updated cycle_last under * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which * is smaller than the cycle_last reference value due to a TSC which * is slighty behind. This delta is nowhere else observable, but in * that case it results in a forward time jump in the range of hours * due to the unsigned delta calculation of the time keeping core * code, which is necessary to support wrapping clocksources like pm * timer. */ static cycle_t read_tsc(void) { cycle_t ret = (cycle_t)get_cycles(); return ret >= clocksource_tsc.cycle_last ? ret : clocksource_tsc.cycle_last; } #ifdef CONFIG_X86_64 static cycle_t __vsyscall_fn vread_tsc(void) { cycle_t ret = (cycle_t)vget_cycles(); return ret >= __vsyscall_gtod_data.clock.cycle_last ? ret : __vsyscall_gtod_data.clock.cycle_last; } #endif static struct clocksource clocksource_tsc = { .name = "tsc", .rating = 300, .read = read_tsc, .mask = CLOCKSOURCE_MASK(64), .shift = 22, .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_MUST_VERIFY, #ifdef CONFIG_X86_64 .vread = vread_tsc, #endif }; void mark_tsc_unstable(char *reason) { if (!tsc_unstable) { tsc_unstable = 1; printk("Marking TSC unstable due to %s\n", reason); /* Change only the rating, when not registered */ if (clocksource_tsc.mult) clocksource_change_rating(&clocksource_tsc, 0); else clocksource_tsc.rating = 0; } } EXPORT_SYMBOL_GPL(mark_tsc_unstable); static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d) { printk(KERN_NOTICE "%s detected: marking TSC unstable.\n", d->ident); tsc_unstable = 1; return 0; } /* List of systems that have known TSC problems */ static struct dmi_system_id __initdata bad_tsc_dmi_table[] = { { .callback = dmi_mark_tsc_unstable, .ident = "IBM Thinkpad 380XD", .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "IBM"), DMI_MATCH(DMI_BOARD_NAME, "2635FA0"), }, }, {} }; /* * Geode_LX - the OLPC CPU has a possibly a very reliable TSC */ #ifdef CONFIG_MGEODE_LX /* RTSC counts during suspend */ #define RTSC_SUSP 0x100 static void __init check_geode_tsc_reliable(void) { unsigned long res_low, res_high; rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); if (res_low & RTSC_SUSP) clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; } #else static inline void check_geode_tsc_reliable(void) { } #endif /* * Make an educated guess if the TSC is trustworthy and synchronized * over all CPUs. */ __cpuinit int unsynchronized_tsc(void) { if (!cpu_has_tsc || tsc_unstable) return 1; #ifdef CONFIG_SMP if (apic_is_clustered_box()) return 1; #endif if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) return 0; /* * Intel systems are normally all synchronized. * Exceptions must mark TSC as unstable: */ if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { /* assume multi socket systems are not synchronized: */ if (num_possible_cpus() > 1) tsc_unstable = 1; } return tsc_unstable; } static void __init init_tsc_clocksource(void) { clocksource_tsc.mult = clocksource_khz2mult(tsc_khz, clocksource_tsc.shift); /* lower the rating if we already know its unstable: */ if (check_tsc_unstable()) { clocksource_tsc.rating = 0; clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS; } clocksource_register(&clocksource_tsc); } void __init tsc_init(void) { u64 lpj; int cpu; if (!cpu_has_tsc) return; tsc_khz = calibrate_tsc(); cpu_khz = tsc_khz; if (!tsc_khz) { mark_tsc_unstable("could not calculate TSC khz"); return; } #ifdef CONFIG_X86_64 if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) && (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)) cpu_khz = calibrate_cpu(); #endif lpj = ((u64)tsc_khz * 1000); do_div(lpj, HZ); lpj_fine = lpj; printk("Detected %lu.%03lu MHz processor.\n", (unsigned long)cpu_khz / 1000, (unsigned long)cpu_khz % 1000); /* * Secondary CPUs do not run through tsc_init(), so set up * all the scale factors for all CPUs, assuming the same * speed as the bootup CPU. (cpufreq notifiers will fix this * up if their speed diverges) */ for_each_possible_cpu(cpu) set_cyc2ns_scale(cpu_khz, cpu); if (tsc_disabled > 0) return; /* now allow native_sched_clock() to use rdtsc */ tsc_disabled = 0; use_tsc_delay(); /* Check and install the TSC clocksource */ dmi_check_system(bad_tsc_dmi_table); if (unsynchronized_tsc()) mark_tsc_unstable("TSCs unsynchronized"); check_geode_tsc_reliable(); init_tsc_clocksource(); }