aboutsummaryrefslogtreecommitdiff
path: root/kernel/time/tsc-sync.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/time/tsc-sync.c')
-rw-r--r--kernel/time/tsc-sync.c313
1 files changed, 313 insertions, 0 deletions
diff --git a/kernel/time/tsc-sync.c b/kernel/time/tsc-sync.c
new file mode 100644
index 00000000000..2ac1544ee22
--- /dev/null
+++ b/kernel/time/tsc-sync.c
@@ -0,0 +1,313 @@
+/*
+ * kernel/time/tsc-sync.c
+ *
+ * Test TSC synchronization
+ *
+ * marks the tsc as unstable _and_ keep a simple "_tsc_is_sync" variable, which
+ * is fast to read when a simple test must determine which clock source to use
+ * for kernel tracing.
+ *
+ * - CPU init :
+ *
+ * We check whether all boot CPUs have their TSC's synchronized,
+ * print a warning if not and turn off the TSC clock-source.
+ *
+ * Only two CPUs may participate - they can enter in any order.
+ * ( The serial nature of the boot logic and the CPU hotplug lock
+ * protects against more than 2 CPUs entering this code.
+ *
+ * - When CPUs are up :
+ *
+ * TSC synchronicity of all CPUs can be checked later at run-time by calling
+ * test_tsc_synchronization().
+ *
+ * Copyright 2007, 2008
+ * Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
+ */
+#include <linux/module.h>
+#include <linux/timer.h>
+#include <linux/timex.h>
+#include <linux/jiffies.h>
+#include <linux/trace-clock.h>
+#include <linux/cpu.h>
+#include <linux/kthread.h>
+#include <linux/mutex.h>
+#include <linux/cpu.h>
+
+#define MAX_CYCLES_DELTA 3000ULL
+
+/*
+ * Number of loops to take care of MCE, NMIs, SMIs.
+ */
+#define NR_LOOPS 200
+
+static DEFINE_MUTEX(tscsync_mutex);
+
+struct sync_data {
+ int nr_waits;
+ int wait_sync;
+ cycles_t tsc_count;
+} ____cacheline_aligned;
+
+/* 0 is master, 1 is slave */
+static struct sync_data sync_data[2] = {
+ [0 ... 1] = {
+ .nr_waits = 3 * NR_LOOPS + 1,
+ .wait_sync = 3 * NR_LOOPS + 1,
+ },
+};
+
+int _tsc_is_sync = 1;
+EXPORT_SYMBOL(_tsc_is_sync);
+
+static int force_tsc_sync;
+static cycles_t slave_offset;
+static int slave_offset_ready; /* for 32-bits architectures */
+
+static int __init force_tsc_sync_setup(char *str)
+{
+ force_tsc_sync = simple_strtoul(str, NULL, 0);
+ return 1;
+}
+__setup("force_tsc_sync=", force_tsc_sync_setup);
+
+/*
+ * Mark it noinline so we make sure it is not unrolled.
+ * Wait until value is reached.
+ */
+static noinline void tsc_barrier(long this_cpu)
+{
+ sync_core();
+ sync_data[this_cpu].wait_sync--;
+ smp_mb(); /* order master/slave sync_data read/write */
+ while (unlikely(sync_data[1 - this_cpu].wait_sync >=
+ sync_data[this_cpu].nr_waits))
+ barrier(); /*
+ * barrier is used because faster and
+ * more predictable than cpu_idle().
+ */
+ smp_mb(); /* order master/slave sync_data read/write */
+ sync_data[this_cpu].nr_waits--;
+ get_cycles_barrier();
+ sync_data[this_cpu].tsc_count = get_cycles();
+ get_cycles_barrier();
+}
+
+/*
+ * Worker thread called on each CPU.
+ * First wait with interrupts enabled, then wait with interrupt disabled,
+ * for precision. We are already bound to one CPU.
+ * this_cpu 0 : master
+ * this_cpu 1 : slave
+ */
+static void test_sync(void *arg)
+{
+ long this_cpu = (long)arg;
+ unsigned long flags;
+
+ local_irq_save(flags);
+ /* Make sure the instructions are in I-CACHE */
+ tsc_barrier(this_cpu);
+ tsc_barrier(this_cpu);
+ sync_data[this_cpu].wait_sync--;
+ smp_mb(); /* order master/slave sync_data read/write */
+ while (unlikely(sync_data[1 - this_cpu].wait_sync >=
+ sync_data[this_cpu].nr_waits))
+ barrier(); /*
+ * barrier is used because faster and
+ * more predictable than cpu_idle().
+ */
+ smp_mb(); /* order master/slave sync_data read/write */
+ sync_data[this_cpu].nr_waits--;
+ /*
+ * Here, only the master will wait for the slave to reach this barrier.
+ * This makes sure that the master, which holds the mutex and will reset
+ * the barriers, waits for the slave to stop using the barrier values
+ * before it continues. This is only done at the complete end of all the
+ * loops. This is why there is a + 1 in original wait_sync value.
+ */
+ if (sync_data[this_cpu].nr_waits == 1)
+ sync_data[this_cpu].wait_sync--;
+ local_irq_restore(flags);
+}
+
+/*
+ * Each CPU (master and target) must decrement the wait_sync value twice (one
+ * for priming in cache), and also once after the get_cycles. After all the
+ * loops, one last synchronization is required to make sure the master waits
+ * for the slave before resetting the barriers.
+ */
+static void reset_barriers(void)
+{
+ int i;
+
+ /*
+ * Wait until slave is done so that we don't overwrite
+ * wait_end_sync prematurely.
+ */
+ smp_mb(); /* order master/slave sync_data read/write */
+ while (unlikely(sync_data[1].wait_sync >= sync_data[0].nr_waits))
+ barrier(); /*
+ * barrier is used because faster and
+ * more predictable than cpu_idle().
+ */
+ smp_mb(); /* order master/slave sync_data read/write */
+
+ for (i = 0; i < 2; i++) {
+ WARN_ON(sync_data[i].wait_sync != 0);
+ WARN_ON(sync_data[i].nr_waits != 1);
+ sync_data[i].wait_sync = 3 * NR_LOOPS + 1;
+ sync_data[i].nr_waits = 3 * NR_LOOPS + 1;
+ }
+}
+
+/*
+ * Do loops (making sure no unexpected event changes the timing), keep the best
+ * one. The result of each loop is the highest tsc delta between the master CPU
+ * and the slaves. Stop CPU hotplug when this code is executed to make sure we
+ * are concurrency-safe wrt CPU hotplug also using this code. Test TSC
+ * synchronization even if we already "know" CPUs were not synchronized. This
+ * can be used as a test to check if, for some reason, the CPUs eventually got
+ * in sync after a CPU has been unplugged. This code is kept separate from the
+ * CPU hotplug code because the slave CPU executes in an IPI, which we want to
+ * keep as short as possible (this is happening while the system is running).
+ * Therefore, we do not send a single IPI for all the test loops, but rather
+ * send one IPI per loop.
+ */
+int test_tsc_synchronization(void)
+{
+ long cpu, master;
+ cycles_t max_diff = 0, diff, best_loop, worse_loop = 0;
+ int i;
+
+ mutex_lock(&tscsync_mutex);
+ get_online_cpus();
+
+ printk(KERN_INFO
+ "checking TSC synchronization across all online CPUs:");
+
+ preempt_disable();
+ master = smp_processor_id();
+ for_each_online_cpu(cpu) {
+ if (master == cpu)
+ continue;
+ best_loop = (cycles_t)ULLONG_MAX;
+ for (i = 0; i < NR_LOOPS; i++) {
+ smp_call_function_single(cpu, test_sync,
+ (void *)1UL, 0);
+ test_sync((void *)0UL);
+ diff = abs(sync_data[1].tsc_count
+ - sync_data[0].tsc_count);
+ best_loop = min(best_loop, diff);
+ worse_loop = max(worse_loop, diff);
+ }
+ reset_barriers();
+ max_diff = max(best_loop, max_diff);
+ }
+ preempt_enable();
+ if (max_diff >= MAX_CYCLES_DELTA) {
+ printk(KERN_WARNING
+ "Measured %llu cycles TSC offset between CPUs,"
+ " turning off TSC clock.\n", (u64)max_diff);
+ mark_tsc_unstable("check_tsc_sync_source failed");
+ _tsc_is_sync = 0;
+ } else {
+ printk(" passed.\n");
+ }
+ put_online_cpus();
+ mutex_unlock(&tscsync_mutex);
+ return max_diff < MAX_CYCLES_DELTA;
+}
+EXPORT_SYMBOL_GPL(test_tsc_synchronization);
+
+/*
+ * Test synchronicity of a single core when it is hotplugged.
+ * Source CPU calls into this - waits for the freshly booted target CPU to
+ * arrive and then start the measurement:
+ */
+void __cpuinit check_tsc_sync_source(int cpu)
+{
+ cycles_t diff, abs_diff,
+ best_loop = (cycles_t)ULLONG_MAX, worse_loop = 0;
+ int i;
+
+ /*
+ * No need to check if we already know that the TSC is not synchronized:
+ */
+ if (!force_tsc_sync && unsynchronized_tsc()) {
+ /*
+ * Make sure we mark _tsc_is_sync to 0 if the TSC is found
+ * to be unsynchronized for other causes than non-synchronized
+ * TSCs across CPUs.
+ */
+ _tsc_is_sync = 0;
+ set_trace_clock_is_sync(0);
+ return;
+ }
+
+ printk(KERN_INFO "checking TSC synchronization [CPU#%d -> CPU#%d]:",
+ smp_processor_id(), cpu);
+
+ for (i = 0; i < NR_LOOPS; i++) {
+ test_sync((void *)0UL);
+ diff = sync_data[1].tsc_count - sync_data[0].tsc_count;
+ abs_diff = abs(diff);
+ best_loop = min(best_loop, abs_diff);
+ worse_loop = max(worse_loop, abs_diff);
+ if (force_tsc_sync && best_loop == abs_diff)
+ slave_offset = diff;
+ }
+ reset_barriers();
+
+ if (!force_tsc_sync && best_loop >= MAX_CYCLES_DELTA) {
+ printk(" failed.\n");
+ printk(KERN_WARNING
+ "Measured %llu cycles TSC offset between CPUs,"
+ " turning off TSC clock.\n", (u64)best_loop);
+ mark_tsc_unstable("check_tsc_sync_source failed");
+ _tsc_is_sync = 0;
+ set_trace_clock_is_sync(0);
+ } else {
+ printk(" %s.\n", !force_tsc_sync ? "passed" : "forced");
+ }
+ if (force_tsc_sync) {
+ /* order slave_offset and slave_offset_ready writes */
+ smp_wmb();
+ slave_offset_ready = 1;
+ }
+}
+
+/*
+ * Freshly booted CPUs call into this:
+ */
+void __cpuinit check_tsc_sync_target(void)
+{
+ int i;
+
+ if (!force_tsc_sync && unsynchronized_tsc())
+ return;
+
+ for (i = 0; i < NR_LOOPS; i++)
+ test_sync((void *)1UL);
+
+ /*
+ * Force slave synchronization if requested.
+ */
+ if (force_tsc_sync) {
+ unsigned long flags;
+ cycles_t new_tsc;
+
+ while (!slave_offset_ready)
+ cpu_relax();
+ /* order slave_offset and slave_offset_ready reads */
+ smp_rmb();
+ local_irq_save(flags);
+ /*
+ * slave_offset is read when master has finished writing to it,
+ * and is protected by cpu hotplug serialization.
+ */
+ new_tsc = get_cycles() - slave_offset;
+ write_tsc((u32)new_tsc, (u32)((u64)new_tsc >> 32));
+ local_irq_restore(flags);
+ }
+}