aboutsummaryrefslogtreecommitdiff
path: root/cpu/mpc86xx/spd_sdram.c
blob: b18e8225defb3a0e3963a5f63279abc0126ba736 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
/*
 * Copyright 2004 Freescale Semiconductor.
 * (C) Copyright 2003 Motorola Inc.
 * Xianghua Xiao (X.Xiao@motorola.com)
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */

#include <common.h>
#include <asm/processor.h>
#include <i2c.h>
#include <spd.h>
#include <asm/mmu.h>


#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
extern void dma_init(void);
extern uint dma_check(void);
extern int dma_xfer(void *dest, uint count, void *src);
#endif

#ifdef CONFIG_SPD_EEPROM

#ifndef	CFG_READ_SPD
#define CFG_READ_SPD	i2c_read
#endif

/*
 * Only one of the following three should be 1; others should be 0
 * By default the cache line interleaving is selected if
 * the CONFIG_DDR_INTERLEAVE flag is defined
 */
#define CFG_PAGE_INTERLEAVING		0
#define CFG_BANK_INTERLEAVING		0
#define CFG_SUPER_BANK_INTERLEAVING	0

/*
 * Convert picoseconds into clock cycles (rounding up if needed).
 */

int
picos_to_clk(int picos)
{
	int clks;

	clks = picos / (2000000000 / (get_bus_freq(0) / 1000));
	if (picos % (2000000000 / (get_bus_freq(0) / 1000)) != 0) {
		clks++;
	}

	return clks;
}


/*
 * Calculate the Density of each Physical Rank.
 * Returned size is in bytes.
 *
 * Study these table from Byte 31 of JEDEC SPD Spec.
 *
 *		DDR I	DDR II
 *	Bit	Size	Size
 *	---	-----	------
 *	7 high	512MB	512MB
 *	6	256MB	256MB
 *	5	128MB	128MB
 *	4	 64MB	 16GB
 *	3	 32MB	  8GB
 *	2	 16MB	  4GB
 *	1	  2GB	  2GB
 *	0 low	  1GB	  1GB
 *
 * Reorder Table to be linear by stripping the bottom
 * 2 or 5 bits off and shifting them up to the top.
 */

unsigned int
compute_banksize(unsigned int mem_type, unsigned char row_dens)
{
	unsigned int bsize;

	if (mem_type == SPD_MEMTYPE_DDR) {
		/* Bottom 2 bits up to the top. */
		bsize = ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
		debug("DDR: DDR I rank density = 0x%08x\n", bsize);
	} else {
		/* Bottom 5 bits up to the top. */
		bsize = ((row_dens >> 5) | ((row_dens & 31) << 3)) << 27;
		debug("DDR: DDR II rank density = 0x%08x\n", bsize);
	}
	return bsize;
}


/*
 * Convert a two-nibble BCD value into a cycle time.
 * While the spec calls for nano-seconds, picos are returned.
 *
 * This implements the tables for bytes 9, 23 and 25 for both
 * DDR I and II.  No allowance for distinguishing the invalid
 * fields absent for DDR I yet present in DDR II is made.
 * (That is, cycle times of .25, .33, .66 and .75 ns are
 * allowed for both DDR II and I.)
 */

unsigned int
convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
{
	/*
	 * Table look up the lower nibble, allow DDR I & II.
	 */
	unsigned int tenths_ps[16] = {
		0,
		100,
		200,
		300,
		400,
		500,
		600,
		700,
		800,
		900,
		250,
		330,
		660,
		750,
		0,	/* undefined */
		0	/* undefined */
	};

	unsigned int whole_ns = (spd_val & 0xF0) >> 4;
	unsigned int tenth_ns = spd_val & 0x0F;
	unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];

	return ps;
}


/*
 * Determine Refresh Rate.  Ignore self refresh bit on DDR I.
 * Table from SPD Spec, Byte 12, converted to picoseconds and
 * filled in with "default" normal values.
 */
unsigned int determine_refresh_rate(unsigned int spd_refresh)
{
	unsigned int refresh_time_ns[8] = {
		15625000,	/* 0 Normal    1.00x */
		3900000,	/* 1 Reduced    .25x */
		7800000,	/* 2 Extended   .50x */
		31300000,	/* 3 Extended  2.00x */
		62500000,	/* 4 Extended  4.00x */
		125000000,	/* 5 Extended  8.00x */
		15625000,	/* 6 Normal    1.00x  filler */
		15625000,	/* 7 Normal    1.00x  filler */
	};

	return picos_to_clk(refresh_time_ns[spd_refresh & 0x7]);
}


long int
spd_init(unsigned char i2c_address, unsigned int ddr_num,
	 unsigned int dimm_num, unsigned int start_addr)
{
	volatile immap_t *immap = (immap_t *)CFG_IMMR;
	volatile ccsr_ddr_t *ddr;
	volatile ccsr_gur_t *gur = &immap->im_gur;
	spd_eeprom_t spd;
	unsigned int n_ranks;
	unsigned int rank_density;
	unsigned int odt_rd_cfg, odt_wr_cfg;
	unsigned int odt_cfg, mode_odt_enable;
	unsigned int refresh_clk;
#ifdef MPC86xx_DDR_SDRAM_CLK_CNTL
	unsigned char clk_adjust;
#endif
	unsigned int dqs_cfg;
	unsigned char twr_clk, twtr_clk, twr_auto_clk;
	unsigned int tCKmin_ps, tCKmax_ps;
	unsigned int max_data_rate;
	unsigned int busfreq;
	unsigned int memsize;
	unsigned char caslat, caslat_ctrl;
	unsigned int trfc, trfc_clk, trfc_low, trfc_high;
	unsigned int trcd_clk;
	unsigned int trtp_clk;
	unsigned char cke_min_clk;
	unsigned char add_lat;
	unsigned char wr_lat;
	unsigned char wr_data_delay;
	unsigned char four_act;
	unsigned char cpo;
	unsigned char burst_len;
	unsigned int mode_caslat;
	unsigned char d_init;
	unsigned int tCycle_ps, modfreq;

	if (ddr_num == 1)
		ddr = &immap->im_ddr1;
	else
		ddr = &immap->im_ddr2;

	/*
	 * Read SPD information.
	 */
	debug("Performing SPD read at I2C address 0x%02lx\n",i2c_address);
	memset((void *)&spd, 0, sizeof(spd));
	CFG_READ_SPD(i2c_address, 0, 1, (uchar *) &spd, sizeof(spd));

	/*
	 * Check for supported memory module types.
	 */
	if (spd.mem_type != SPD_MEMTYPE_DDR &&
	    spd.mem_type != SPD_MEMTYPE_DDR2) {
		debug("Warning: Unable to locate DDR I or DDR II module for DIMM %d of DDR controller %d.\n"
		      "         Fundamental memory type is 0x%0x\n",
		      dimm_num,
		      ddr_num,
		      spd.mem_type);
		return 0;
	}

	debug("\nFound memory of type 0x%02lx  ", spd.mem_type);
	if (spd.mem_type == SPD_MEMTYPE_DDR)
		debug("DDR I\n");
	else
		debug("DDR II\n");

	/*
	 * These test gloss over DDR I and II differences in interpretation
	 * of bytes 3 and 4, but irrelevantly.  Multiple asymmetric banks
	 * are not supported on DDR I; and not encoded on DDR II.
	 *
	 * Also note that the 8548 controller can support:
	 *    12 <= nrow <= 16
	 * and
	 *     8 <= ncol <= 11 (still, for DDR)
	 *     6 <= ncol <=  9 (for FCRAM)
	 */
	if (spd.nrow_addr < 12 || spd.nrow_addr > 14) {
		printf("DDR: Unsupported number of Row Addr lines: %d.\n",
		       spd.nrow_addr);
		return 0;
	}
	if (spd.ncol_addr < 8 || spd.ncol_addr > 11) {
		printf("DDR: Unsupported number of Column Addr lines: %d.\n",
		       spd.ncol_addr);
		return 0;
	}

	/*
	 * Determine the number of physical banks controlled by
	 * different Chip Select signals.  This is not quite the
	 * same as the number of DIMM modules on the board.  Feh.
	 */
	if (spd.mem_type == SPD_MEMTYPE_DDR) {
		n_ranks = spd.nrows;
	} else {
		n_ranks = (spd.nrows & 0x7) + 1;
	}

	debug("DDR: number of ranks = %d\n", n_ranks);

	if (n_ranks > 2) {
		printf("DDR: Only 2 chip selects are supported: %d\n",
		       n_ranks);
		return 0;
	}

	/*
	 * Adjust DDR II IO voltage biasing.  It just makes it work.
	 */
	if (spd.mem_type == SPD_MEMTYPE_DDR2) {
		gur->ddrioovcr = (0
				  | 0x80000000		/* Enable */
				  | 0x10000000		/* VSEL to 1.8V */
				  );
	}

	/*
	 * Determine the size of each Rank in bytes.
	 */
	rank_density = compute_banksize(spd.mem_type, spd.row_dens);

	debug("Start address for this controller is 0x%08lx\n", start_addr);

	/*
	 * ODT configuration recommendation from DDR Controller Chapter.
	 */
	odt_rd_cfg = 0;			/* Never assert ODT */
	odt_wr_cfg = 0;			/* Never assert ODT */
	if (spd.mem_type == SPD_MEMTYPE_DDR2) {
		odt_wr_cfg = 1;		/* Assert ODT on writes to CS0 */
	}

#ifdef CONFIG_DDR_INTERLEAVE

	if (dimm_num != 1) {
		printf("For interleaving memory on HPCN, need to use DIMM 1 for DDR Controller %d !\n", ddr_num);
		return 0;
	} else {
		/*
		 * Since interleaved memory only uses CS0, the
		 * memory sticks have to be identical in size and quantity
		 * of ranks.  That essentially gives double the size on
		 * one rank, i.e on CS0 for both controllers put together.
		 * Confirm this???
		 */
		rank_density *= 2;

		/*
		 * Eg: Bounds: 0x0000_0000 to 0x0f000_0000	first 256 Meg
		 */
		start_addr = 0;
		ddr->cs0_bnds = (start_addr >> 8)
			| (((start_addr + rank_density - 1) >> 24));
		/*
		 * Default interleaving mode to cache-line interleaving.
		 */
		ddr->cs0_config = ( 1 << 31
#if	(CFG_PAGE_INTERLEAVING == 1)
				    | (PAGE_INTERLEAVING)
#elif	(CFG_BANK_INTERLEAVING == 1)
				    | (BANK_INTERLEAVING)
#elif	(CFG_SUPER_BANK_INTERLEAVING == 1)
				    | (SUPER_BANK_INTERLEAVING)
#else
				    | (CACHE_LINE_INTERLEAVING)
#endif
				    | (odt_rd_cfg << 20)
				    | (odt_wr_cfg << 16)
				    | (spd.nrow_addr - 12) << 8
				    | (spd.ncol_addr - 8) );

		debug("DDR: cs0_bnds   = 0x%08x\n", ddr->cs0_bnds);
		debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config);

		/*
		 * Adjustment for dual rank memory to get correct memory
		 * size (return value of this function).
		 */
		if (n_ranks == 2) {
			n_ranks = 1;
			rank_density /= 2;
		} else {
			rank_density /= 2;
		}
	}
#else	/* CONFIG_DDR_INTERLEAVE */

	if (dimm_num == 1) {
		/*
		 * Eg: Bounds: 0x0000_0000 to 0x0f000_0000	first 256 Meg
		 */
		ddr->cs0_bnds = (start_addr >> 8)
			| (((start_addr + rank_density - 1) >> 24));

		ddr->cs0_config = ( 1 << 31
				    | (odt_rd_cfg << 20)
				    | (odt_wr_cfg << 16)
				    | (spd.nrow_addr - 12) << 8
				    | (spd.ncol_addr - 8) );

		debug("DDR: cs0_bnds   = 0x%08x\n", ddr->cs0_bnds);
		debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config);

		if (n_ranks == 2) {
			/*
			 * Eg: Bounds: 0x1000_0000 to 0x1f00_0000,
			 * second 256 Meg
			 */
			ddr->cs1_bnds = (((start_addr + rank_density) >> 8)
					| (( start_addr + 2*rank_density - 1)
					   >> 24));
			ddr->cs1_config = ( 1<<31
					    | (odt_rd_cfg << 20)
					    | (odt_wr_cfg << 16)
					    | (spd.nrow_addr - 12) << 8
					    | (spd.ncol_addr - 8) );
			debug("DDR: cs1_bnds   = 0x%08x\n", ddr->cs1_bnds);
			debug("DDR: cs1_config = 0x%08x\n", ddr->cs1_config);
		}

	} else {
		/*
		 * This is the 2nd DIMM slot for this controller
		 */
		/*
		 * Eg: Bounds: 0x0000_0000 to 0x0f000_0000	first 256 Meg
		 */
		ddr->cs2_bnds = (start_addr >> 8)
			| (((start_addr + rank_density - 1) >> 24));

		ddr->cs2_config = ( 1 << 31
				    | (odt_rd_cfg << 20)
				    | (odt_wr_cfg << 16)
				    | (spd.nrow_addr - 12) << 8
				    | (spd.ncol_addr - 8) );

		debug("DDR: cs2_bnds   = 0x%08x\n", ddr->cs2_bnds);
		debug("DDR: cs2_config = 0x%08x\n", ddr->cs2_config);

		if (n_ranks == 2) {
			/*
			 * Eg: Bounds: 0x1000_0000 to 0x1f00_0000,
			 * second 256 Meg
			 */
			ddr->cs3_bnds = (((start_addr + rank_density) >> 8)
					| (( start_addr + 2*rank_density - 1)
					   >> 24));
			ddr->cs3_config = ( 1<<31
					    | (odt_rd_cfg << 20)
					    | (odt_wr_cfg << 16)
					    | (spd.nrow_addr - 12) << 8
					    | (spd.ncol_addr - 8) );
			debug("DDR: cs3_bnds   = 0x%08x\n", ddr->cs3_bnds);
			debug("DDR: cs3_config = 0x%08x\n", ddr->cs3_config);
		}
	}
#endif /* CONFIG_DDR_INTERLEAVE */

	/*
	 * Find the largest CAS by locating the highest 1 bit
	 * in the spd.cas_lat field.  Translate it to a DDR
	 * controller field value:
	 *
	 *	CAS Lat	DDR I	DDR II	Ctrl
	 *	Clocks	SPD Bit	SPD Bit	Value
	 *	-------	-------	-------	-----
	 *	1.0	0		0001
	 *	1.5	1		0010
	 *	2.0	2	2	0011
	 *	2.5	3		0100
	 *	3.0	4	3	0101
	 *	3.5	5		0110
	 *	4.0		4	0111
	 *	4.5			1000
	 *	5.0		5	1001
	 */
	caslat = __ilog2(spd.cas_lat);
	if ((spd.mem_type == SPD_MEMTYPE_DDR)
	    && (caslat > 5)) {
		printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat);
		return 0;

	} else if (spd.mem_type == SPD_MEMTYPE_DDR2
		   && (caslat < 2 || caslat > 5)) {
		printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n",
		       spd.cas_lat);
		return 0;
	}
	debug("DDR: caslat SPD bit is %d\n", caslat);

	/*
	 * Calculate the Maximum Data Rate based on the Minimum Cycle time.
	 * The SPD clk_cycle field (tCKmin) is measured in tenths of
	 * nanoseconds and represented as BCD.
	 */
	tCKmin_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle);
	debug("DDR: tCKmin = %d ps\n", tCKmin_ps);

	/*
	 * Double-data rate, scaled 1000 to picoseconds, and back down to MHz.
	 */
	max_data_rate = 2 * 1000 * 1000 / tCKmin_ps;
	debug("DDR: Module max data rate = %d Mhz\n", max_data_rate);


	/*
	 * Adjust the CAS Latency to allow for bus speeds that
	 * are slower than the DDR module.
	 */
	busfreq = get_bus_freq(0) / 1000000;	/* MHz */
	tCycle_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle3);
	modfreq = 2 * 1000 * 1000 / tCycle_ps;

	if ((spd.mem_type == SPD_MEMTYPE_DDR2) && (busfreq < 266)) {
		printf("DDR: platform frequency too low for correct DDR2 controller operation\n");
		return 0;
	} else if (busfreq < 90) {
		printf("DDR: platform frequency too low for correct DDR1 operation\n");
		return 0;
	}

	if ((busfreq <= modfreq) && (spd.cas_lat & (1 << (caslat - 2)))) {
		caslat -= 2;
	} else {
		tCycle_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle2);
		modfreq = 2 * 1000 * 1000 / tCycle_ps;
		if ((busfreq <= modfreq) && (spd.cas_lat & (1 << (caslat - 1))))
			caslat -= 1;
		else if (busfreq > max_data_rate) {
			printf("DDR: Bus freq %d MHz is not fit for DDR rate %d MHz\n",
		     	busfreq, max_data_rate);
			return 0;
		}
	}

	/*
	 * Empirically set ~MCAS-to-preamble override for DDR 2.
	 * Your milage will vary.
	 */
	cpo = 0;
	if (spd.mem_type == SPD_MEMTYPE_DDR2) {
		if (busfreq <= 333) {
			cpo = 0x7;
		} else if (busfreq <= 400) {
			cpo = 0x9;
		} else {
			cpo = 0xa;
		}
	}

	/*
	 * Convert caslat clocks to DDR controller value.
	 * Force caslat_ctrl to be DDR Controller field-sized.
	 */
	if (spd.mem_type == SPD_MEMTYPE_DDR) {
		caslat_ctrl = (caslat + 1) & 0x07;
	} else {
		caslat_ctrl =  (2 * caslat - 1) & 0x0f;
	}

	debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n",
	      caslat, caslat_ctrl);

	/*
	 * Timing Config 0.
	 * Avoid writing for DDR I.  The new PQ38 DDR controller
	 * dreams up non-zero default values to be backwards compatible.
	 */
	if (spd.mem_type == SPD_MEMTYPE_DDR2) {
		unsigned char taxpd_clk = 8;		/* By the book. */
		unsigned char tmrd_clk = 2;		/* By the book. */
		unsigned char act_pd_exit = 2;		/* Empirical? */
		unsigned char pre_pd_exit = 6;		/* Empirical? */

		ddr->timing_cfg_0 = (0
			| ((act_pd_exit & 0x7) << 20)	/* ACT_PD_EXIT */
			| ((pre_pd_exit & 0x7) << 16)	/* PRE_PD_EXIT */
			| ((taxpd_clk & 0xf) << 8)	/* ODT_PD_EXIT */
			| ((tmrd_clk & 0xf) << 0)	/* MRS_CYC */
			);
		debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);

	}


	/*
	 * Some Timing Config 1 values now.
	 * Sneak Extended Refresh Recovery in here too.
	 */

	/*
	 * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD,
	 * use conservative value.
	 * For DDR II, they are bytes 36 and 37, in quarter nanos.
	 */

	if (spd.mem_type == SPD_MEMTYPE_DDR) {
		twr_clk = 3;	/* Clocks */
		twtr_clk = 1;	/* Clocks */
	} else {
		twr_clk = picos_to_clk(spd.twr * 250);
		twtr_clk = picos_to_clk(spd.twtr * 250);
	}

	/*
	 * Calculate Trfc, in picos.
	 * DDR I:  Byte 42 straight up in ns.
	 * DDR II: Byte 40 and 42 swizzled some, in ns.
	 */
	if (spd.mem_type == SPD_MEMTYPE_DDR) {
		trfc = spd.trfc * 1000;		/* up to ps */
	} else {
		unsigned int byte40_table_ps[8] = {
			0,
			250,
			330,
			500,
			660,
			750,
			0,
			0
		};

		trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000
			+ byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7];
	}
	trfc_clk = picos_to_clk(trfc);

	/*
	 * Trcd, Byte 29, from quarter nanos to ps and clocks.
	 */
	trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7;

	/*
	 * Convert trfc_clk to DDR controller fields.  DDR I should
	 * fit in the REFREC field (16-19) of TIMING_CFG_1, but the
	 * 8548 controller has an extended REFREC field of three bits.
	 * The controller automatically adds 8 clocks to this value,
	 * so preadjust it down 8 first before splitting it up.
	 */
	trfc_low = (trfc_clk - 8) & 0xf;
	trfc_high = ((trfc_clk - 8) >> 4) & 0x3;

	/*
	 * Sneak in some Extended Refresh Recovery.
	 */
	ddr->ext_refrec = (trfc_high << 16);
	debug("DDR: ext_refrec = 0x%08x\n", ddr->ext_refrec);

	ddr->timing_cfg_1 =
	    (0
	     | ((picos_to_clk(spd.trp * 250) & 0x07) << 28)	/* PRETOACT */
	     | ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24)	/* ACTTOPRE */
	     | (trcd_clk << 20)					/* ACTTORW */
	     | (caslat_ctrl << 16)				/* CASLAT */
	     | (trfc_low << 12)					/* REFEC */
	     | ((twr_clk & 0x07) << 8)				/* WRRREC */
	     | ((picos_to_clk(spd.trrd * 250) & 0x07) << 4)	/* ACTTOACT */
	     | ((twtr_clk & 0x07) << 0)				/* WRTORD */
	     );

	debug("DDR: timing_cfg_1  = 0x%08x\n", ddr->timing_cfg_1);


	/*
	 * Timing_Config_2
	 * Was: 0x00000800;
	 */

	/*
	 * Additive Latency
	 * For DDR I, 0.
	 * For DDR II, with ODT enabled, use "a value" less than ACTTORW,
	 * which comes from Trcd, and also note that:
	 *	add_lat + caslat must be >= 4
	 */
	add_lat = 0;
	if (spd.mem_type == SPD_MEMTYPE_DDR2
	    && (odt_wr_cfg || odt_rd_cfg)
	    && (caslat < 4)) {
		add_lat = 4 - caslat;
		if (add_lat >= trcd_clk) {
			add_lat = trcd_clk - 1;
		}
	}

	/*
	 * Write Data Delay
	 * Historically 0x2 == 4/8 clock delay.
	 * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266.
	 */
	wr_data_delay = 3;

	/*
	 * Write Latency
	 * Read to Precharge
	 * Minimum CKE Pulse Width.
	 * Four Activate Window
	 */
	if (spd.mem_type == SPD_MEMTYPE_DDR) {
		/*
		 * This is a lie.  It should really be 1, but if it is
		 * set to 1, bits overlap into the old controller's
		 * otherwise unused ACSM field.  If we leave it 0, then
		 * the HW will magically treat it as 1 for DDR 1.  Oh Yea.
		 */
		wr_lat = 0;

		trtp_clk = 2;		/* By the book. */
		cke_min_clk = 1;	/* By the book. */
		four_act = 1;		/* By the book. */

	} else {
		wr_lat = caslat - 1;

		/* Convert SPD value from quarter nanos to picos. */
		trtp_clk = picos_to_clk(spd.trtp * 250);

		cke_min_clk = 3;	/* By the book. */
		four_act = picos_to_clk(37500);	/* By the book. 1k pages? */
	}

	ddr->timing_cfg_2 = (0
		| ((add_lat & 0x7) << 28)		/* ADD_LAT */
		| ((cpo & 0x1f) << 23)			/* CPO */
		| ((wr_lat & 0x7) << 19)		/* WR_LAT */
		| ((trtp_clk & 0x7) << 13)		/* RD_TO_PRE */
		| ((wr_data_delay & 0x7) << 10)		/* WR_DATA_DELAY */
		| ((cke_min_clk & 0x7) << 6)		/* CKE_PLS */
		| ((four_act & 0x1f) << 0)		/* FOUR_ACT */
		);

	debug("DDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2);


	/*
	 * Determine the Mode Register Set.
	 *
	 * This is nominally part specific, but it appears to be
	 * consistent for all DDR I devices, and for all DDR II devices.
	 *
	 *     caslat must be programmed
	 *     burst length is always 4
	 *     burst type is sequential
	 *
	 * For DDR I:
	 *     operating mode is "normal"
	 *
	 * For DDR II:
	 *     other stuff
	 */

	mode_caslat = 0;

	/*
	 * Table lookup from DDR I or II Device Operation Specs.
	 */
	if (spd.mem_type == SPD_MEMTYPE_DDR) {
		if (1 <= caslat && caslat <= 4) {
			unsigned char mode_caslat_table[4] = {
				0x5,	/* 1.5 clocks */
				0x2,	/* 2.0 clocks */
				0x6,	/* 2.5 clocks */
				0x3	/* 3.0 clocks */
			};
			mode_caslat = mode_caslat_table[caslat - 1];
		} else {
			puts("DDR I: Only CAS Latencies of 1.5, 2.0, "
			     "2.5 and 3.0 clocks are supported.\n");
			return 0;
		}

	} else {
		if (2 <= caslat && caslat <= 5) {
			mode_caslat = caslat;
		} else {
			puts("DDR II: Only CAS Latencies of 2.0, 3.0, "
			     "4.0 and 5.0 clocks are supported.\n");
			return 0;
		}
	}

	/*
	 * Encoded Burst Length of 4.
	 */
	burst_len = 2;			/* Fiat. */

	if (spd.mem_type == SPD_MEMTYPE_DDR) {
		twr_auto_clk = 0;	/* Historical */
	} else {
		/*
		 * Determine tCK max in picos.  Grab tWR and convert to picos.
		 * Auto-precharge write recovery is:
		 *	WR = roundup(tWR_ns/tCKmax_ns).
		 *
		 * Ponder: Is twr_auto_clk different than twr_clk?
		 */
		tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd.tckmax);
		twr_auto_clk = (spd.twr * 250 + tCKmax_ps - 1) / tCKmax_ps;
	}

	/*
	 * Mode Reg in bits 16 ~ 31,
	 * Extended Mode Reg 1 in bits 0 ~ 15.
	 */
	mode_odt_enable = 0x0;			/* Default disabled */
	if (odt_wr_cfg || odt_rd_cfg) {
		/*
		 * Bits 6 and 2 in Extended MRS(1)
		 * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules.
		 * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module.
		 */
		mode_odt_enable = 0x40;		/* 150 Ohm */
	}

	ddr->sdram_mode_1 =
		(0
		 | (add_lat << (16 + 3))	/* Additive Latency in EMRS1 */
		 | (mode_odt_enable << 16)	/* ODT Enable in EMRS1 */
		 | (twr_auto_clk << 9)		/* Write Recovery Autopre */
		 | (mode_caslat << 4)		/* caslat */
		 | (burst_len << 0)		/* Burst length */
		 );

	debug("DDR: sdram_mode   = 0x%08x\n", ddr->sdram_mode_1);

	/*
	 * Clear EMRS2 and EMRS3.
	 */
	ddr->sdram_mode_2 = 0;
	debug("DDR: sdram_mode_2 = 0x%08x\n", ddr->sdram_mode_2);

	/*
	 * Determine Refresh Rate.
	 */
	refresh_clk = determine_refresh_rate(spd.refresh & 0x7);

	/*
	 * Set BSTOPRE to 0x100 for page mode
	 * If auto-charge is used, set BSTOPRE = 0
	 */
	ddr->sdram_interval =
		(0
		 | (refresh_clk & 0x3fff) << 16
		 | 0x100
		 );
	debug("DDR: sdram_interval = 0x%08x\n", ddr->sdram_interval);


	/*
	 * Is this an ECC DDR chip?
	 * But don't mess with it if the DDR controller will init mem.
	 */
#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
	if (spd.config == 0x02) {
		ddr->err_disable = 0x0000000d;
		ddr->err_sbe = 0x00ff0000;
	}
	debug("DDR: err_disable = 0x%08x\n", ddr->err_disable);
	debug("DDR: err_sbe = 0x%08x\n", ddr->err_sbe);
#endif

	asm volatile("sync;isync");
	udelay(500);

	/*
	 * SDRAM Cfg 2
	 */

	/*
	 * When ODT is enabled, Chap 9 suggests asserting ODT to
	 * internal IOs only during reads.
	 */
	odt_cfg = 0;
	if (odt_rd_cfg | odt_wr_cfg) {
		odt_cfg = 0x2;		/* ODT to IOs during reads */
	}

	/*
	 * Try to use differential DQS with DDR II.
	 */
	if (spd.mem_type == SPD_MEMTYPE_DDR) {
		dqs_cfg = 0;		/* No Differential DQS for DDR I */
	} else {
		dqs_cfg = 0x1;		/* Differential DQS for DDR II */
	}

#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
	/*
	 * Use the DDR controller to auto initialize memory.
	 */
	d_init = 1;
	ddr->sdram_data_init = CONFIG_MEM_INIT_VALUE;
	debug("DDR: ddr_data_init = 0x%08x\n", ddr->sdram_data_init);
#else
	/*
	 * Memory will be initialized via DMA, or not at all.
	 */
	d_init = 0;
#endif

	ddr->sdram_cfg_2 = (0
			    | (dqs_cfg << 26)	/* Differential DQS */
			    | (odt_cfg << 21)	/* ODT */
			    | (d_init << 4)	/* D_INIT auto init DDR */
			    );

	debug("DDR: sdram_cfg_2  = 0x%08x\n", ddr->sdram_cfg_2);


#ifdef MPC86xx_DDR_SDRAM_CLK_CNTL
	/*
	 * Setup the clock control.
	 * SDRAM_CLK_CNTL[0] = Source synchronous enable == 1
	 * SDRAM_CLK_CNTL[5-7] = Clock Adjust
	 *	0110	3/4 cycle late
	 *	0111	7/8 cycle late
	 */
	if (spd.mem_type == SPD_MEMTYPE_DDR)
		clk_adjust = 0x6;
	else
		clk_adjust = 0x7;

	ddr->sdram_clk_cntl = (0
			       | 0x80000000
			       | (clk_adjust << 23)
			       );
	debug("DDR: sdram_clk_cntl = 0x%08x\n", ddr->sdram_clk_cntl);
#endif

	/*
	 * Figure out memory size in Megabytes.
	 */
	debug("# ranks = %d, rank_density = 0x%08lx\n", n_ranks, rank_density);
	memsize = n_ranks * rank_density / 0x100000;
	return memsize;
}


unsigned int enable_ddr(unsigned int ddr_num)
{
	volatile immap_t *immap = (immap_t *)CFG_IMMR;
	spd_eeprom_t spd1,spd2;
	volatile ccsr_ddr_t *ddr;
	unsigned sdram_cfg_1;
	unsigned char sdram_type, mem_type, config, mod_attr;
	unsigned char d_init;
	unsigned int no_dimm1=0, no_dimm2=0;

	/* Set up pointer to enable the current ddr controller */
	if (ddr_num == 1)
		ddr = &immap->im_ddr1;
	else
		ddr = &immap->im_ddr2;

	/*
	 * Read both dimm slots and decide whether
	 * or not to enable this controller.
	 */
	memset((void *)&spd1,0,sizeof(spd1));
	memset((void *)&spd2,0,sizeof(spd2));

	if (ddr_num == 1) {
		CFG_READ_SPD(SPD_EEPROM_ADDRESS1,
			     0, 1, (uchar *) &spd1, sizeof(spd1));
		CFG_READ_SPD(SPD_EEPROM_ADDRESS2,
			     0, 1, (uchar *) &spd2, sizeof(spd2));
	} else {
		CFG_READ_SPD(SPD_EEPROM_ADDRESS3,
			     0, 1, (uchar *) &spd1, sizeof(spd1));
		CFG_READ_SPD(SPD_EEPROM_ADDRESS4,
			     0, 1, (uchar *) &spd2, sizeof(spd2));
	}

	/*
	 * Check for supported memory module types.
	 */
	if (spd1.mem_type != SPD_MEMTYPE_DDR
	    && spd1.mem_type != SPD_MEMTYPE_DDR2) {
		no_dimm1 = 1;
	} else {
		debug("\nFound memory of type 0x%02lx  ",spd1.mem_type );
		if (spd1.mem_type == SPD_MEMTYPE_DDR)
			debug("DDR I\n");
		else
			debug("DDR II\n");
	}

	if (spd2.mem_type != SPD_MEMTYPE_DDR &&
	    spd2.mem_type != SPD_MEMTYPE_DDR2) {
		no_dimm2 = 1;
	} else {
		debug("\nFound memory of type 0x%02lx  ",spd2.mem_type );
		if (spd2.mem_type == SPD_MEMTYPE_DDR)
			debug("DDR I\n");
		else
			debug("DDR II\n");
	}

#ifdef CONFIG_DDR_INTERLEAVE
	if (no_dimm1) {
		printf("For interleaved operation memory modules need to be present in CS0 DIMM slots of both DDR controllers!\n");
		return 0;
	}
#endif

	/*
	 * Memory is not present in DIMM1 and DIMM2 - so do not enable DDRn
	 */
	if (no_dimm1  && no_dimm2) {
		printf("No memory modules found for DDR controller %d!!\n", ddr_num);
		return 0;
	} else {
		mem_type = no_dimm2 ? spd1.mem_type : spd2.mem_type;

		/*
		 * Figure out the settings for the sdram_cfg register.
		 * Build up the entire register in 'sdram_cfg' before
		 * writing since the write into the register will
		 * actually enable the memory controller; all settings
		 * must be done before enabling.
		 *
		 * sdram_cfg[0]   = 1 (ddr sdram logic enable)
		 * sdram_cfg[1]   = 1 (self-refresh-enable)
		 * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM)
		 *			010 DDR 1 SDRAM
		 *			011 DDR 2 SDRAM
		 */
		sdram_type = (mem_type == SPD_MEMTYPE_DDR) ? 2 : 3;
		sdram_cfg_1 = (0
			       | (1 << 31)		/* Enable */
			       | (1 << 30)		/* Self refresh */
			       | (sdram_type << 24)	/* SDRAM type */
			       );

		/*
		 * sdram_cfg[3] = RD_EN - registered DIMM enable
		 *   A value of 0x26 indicates micron registered
		 *   DIMMS (micron.com)
		 */
		mod_attr = no_dimm2 ? spd1.mod_attr : spd2.mod_attr;
		if (mem_type == SPD_MEMTYPE_DDR && mod_attr == 0x26) {
			sdram_cfg_1 |= 0x10000000;		/* RD_EN */
		}

#if defined(CONFIG_DDR_ECC)

		config = no_dimm2 ? spd1.config : spd2.config;

		/*
		 * If the user wanted ECC (enabled via sdram_cfg[2])
		 */
		if (config == 0x02) {
			ddr->err_disable = 0x00000000;
			asm volatile("sync;isync;");
			ddr->err_sbe = 0x00ff0000;
			ddr->err_int_en = 0x0000000d;
			sdram_cfg_1 |= 0x20000000;		/* ECC_EN */
		}
#endif

		/*
		 * Set 1T or 2T timing based on 1 or 2 modules
		 */
		{
			if (!(no_dimm1 || no_dimm2)) {
				/*
				 * 2T timing,because both DIMMS are present.
				 * Enable 2T timing by setting sdram_cfg[16].
				 */
				sdram_cfg_1 |= 0x8000;		/* 2T_EN */
			}
		}

		/*
		 * 200 painful micro-seconds must elapse between
		 * the DDR clock setup and the DDR config enable.
		 */
		udelay(200);

		/*
		 * Go!
		 */
		ddr->sdram_cfg_1 = sdram_cfg_1;

		asm volatile("sync;isync");
		udelay(500);

		debug("DDR: sdram_cfg   = 0x%08x\n", ddr->sdram_cfg_1);


#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
		d_init = 1;
		debug("DDR: memory initializing\n");

		/*
		 * Poll until memory is initialized.
		 * 512 Meg at 400 might hit this 200 times or so.
		 */
		while ((ddr->sdram_cfg_2 & (d_init << 4)) != 0) {
			udelay(1000);
		}
		debug("DDR: memory initialized\n\n");
#endif

		debug("Enabled DDR Controller %d\n", ddr_num);
		return 1;
	}
}


long int
spd_sdram(void)
{
	int memsize_ddr1_dimm1 = 0;
	int memsize_ddr1_dimm2 = 0;
	int memsize_ddr2_dimm1 = 0;
	int memsize_ddr2_dimm2 = 0;
	int memsize_total = 0;
	int memsize_ddr1 = 0;
	int memsize_ddr2 = 0;
	unsigned int ddr1_enabled = 0;
	unsigned int ddr2_enabled = 0;
	unsigned int law_size_ddr1;
	unsigned int law_size_ddr2;
	volatile immap_t *immap = (immap_t *)CFG_IMMR;
	volatile ccsr_local_mcm_t *mcm = &immap->im_local_mcm;

#ifdef CONFIG_DDR_INTERLEAVE
	unsigned int law_size_interleaved;
	volatile ccsr_ddr_t *ddr1 = &immap->im_ddr1;
	volatile ccsr_ddr_t *ddr2 = &immap->im_ddr2;

	memsize_ddr1_dimm1 = spd_init(SPD_EEPROM_ADDRESS1,
				      1, 1,
				      (unsigned int)memsize_total * 1024*1024);
	memsize_total += memsize_ddr1_dimm1;

	memsize_ddr2_dimm1 = spd_init(SPD_EEPROM_ADDRESS3,
				      2, 1,
				      (unsigned int)memsize_total * 1024*1024);
	memsize_total += memsize_ddr2_dimm1;

	if (memsize_ddr1_dimm1 != memsize_ddr2_dimm1) {
		if (memsize_ddr1_dimm1 <  memsize_ddr2_dimm1)
			memsize_total -= memsize_ddr1_dimm1;
		else
			memsize_total -= memsize_ddr2_dimm1;
		debug("Total memory available for interleaving 0x%08lx\n",
		      memsize_total * 1024 * 1024);
		debug("Adjusting CS0_BNDS to account for unequal DIMM sizes in interleaved memory\n");
		ddr1->cs0_bnds = ((memsize_total * 1024 * 1024) - 1) >> 24;
		ddr2->cs0_bnds = ((memsize_total * 1024 * 1024) - 1) >> 24;
		debug("DDR1: cs0_bnds   = 0x%08x\n", ddr1->cs0_bnds);
		debug("DDR2: cs0_bnds   = 0x%08x\n", ddr2->cs0_bnds);
	}

	ddr1_enabled = enable_ddr(1);
	ddr2_enabled = enable_ddr(2);

	/*
	 * Both controllers need to be enabled for interleaving.
	 */
	if (ddr1_enabled && ddr2_enabled) {
		law_size_interleaved = 19 + __ilog2(memsize_total);

		/*
		 * Set up LAWBAR for DDR 1 space.
		 */
		mcm->lawbar1 = ((CFG_DDR_SDRAM_BASE >> 12) & 0xfffff);
		mcm->lawar1 = (LAWAR_EN
			       | LAWAR_TRGT_IF_DDR_INTERLEAVED
			       | (LAWAR_SIZE & law_size_interleaved));
		debug("DDR: LAWBAR1=0x%08x\n", mcm->lawbar1);
		debug("DDR: LAWAR1=0x%08x\n", mcm->lawar1);
		debug("Interleaved memory size is 0x%08lx\n", memsize_total);

#ifdef	CONFIG_DDR_INTERLEAVE
#if (CFG_PAGE_INTERLEAVING == 1)
		printf("Page ");
#elif (CFG_BANK_INTERLEAVING == 1)
		printf("Bank ");
#elif (CFG_SUPER_BANK_INTERLEAVING == 1)
		printf("Super-bank ");
#else
		printf("Cache-line ");
#endif
#endif
		printf("Interleaved");
		return memsize_total * 1024 * 1024;
	}  else {
		printf("Interleaved memory not enabled - check CS0 DIMM slots for both controllers.\n");
		return 0;
	}

#else
	/*
	 * Call spd_sdram() routine to init ddr1 - pass I2c address,
	 * controller number, dimm number, and starting address.
	 */
	memsize_ddr1_dimm1 = spd_init(SPD_EEPROM_ADDRESS1,
				      1, 1,
				      (unsigned int)memsize_total * 1024*1024);
	memsize_total += memsize_ddr1_dimm1;

	memsize_ddr1_dimm2 = spd_init(SPD_EEPROM_ADDRESS2,
				      1, 2,
				      (unsigned int)memsize_total * 1024*1024);
	memsize_total += memsize_ddr1_dimm2;

	/*
	 * Enable the DDR controller - pass ddr controller number.
	 */
	ddr1_enabled = enable_ddr(1);

	/* Keep track of memory to be addressed by DDR1 */
	memsize_ddr1 = memsize_ddr1_dimm1 + memsize_ddr1_dimm2;

	/*
	 * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23.  Fnord.
	 */
	if (ddr1_enabled) {
		law_size_ddr1 = 19 + __ilog2(memsize_ddr1);

		/*
		 * Set up LAWBAR for DDR 1 space.
		 */
		mcm->lawbar1 = ((CFG_DDR_SDRAM_BASE >> 12) & 0xfffff);
		mcm->lawar1 = (LAWAR_EN
			       | LAWAR_TRGT_IF_DDR1
			       | (LAWAR_SIZE & law_size_ddr1));
		debug("DDR: LAWBAR1=0x%08x\n", mcm->lawbar1);
		debug("DDR: LAWAR1=0x%08x\n", mcm->lawar1);
	}

#if  (CONFIG_NUM_DDR_CONTROLLERS > 1)
	memsize_ddr2_dimm1 = spd_init(SPD_EEPROM_ADDRESS3,
				      2, 1,
				      (unsigned int)memsize_total * 1024*1024);
	memsize_total += memsize_ddr2_dimm1;

	memsize_ddr2_dimm2 = spd_init(SPD_EEPROM_ADDRESS4,
				      2, 2,
				      (unsigned int)memsize_total * 1024*1024);
	memsize_total += memsize_ddr2_dimm2;

	ddr2_enabled = enable_ddr(2);

	/* Keep track of memory to be addressed by DDR2 */
	memsize_ddr2 = memsize_ddr2_dimm1 + memsize_ddr2_dimm2;

	if (ddr2_enabled) {
		law_size_ddr2 = 19 + __ilog2(memsize_ddr2);

		/*
		 * Set up LAWBAR for DDR 2 space.
		 */
		if (ddr1_enabled)
			mcm->lawbar8 = (((memsize_ddr1 * 1024 * 1024) >> 12)
					& 0xfffff);
		else
			mcm->lawbar8 = ((CFG_DDR_SDRAM_BASE >> 12) & 0xfffff);

		mcm->lawar8 = (LAWAR_EN
			       | LAWAR_TRGT_IF_DDR2
			       | (LAWAR_SIZE & law_size_ddr2));
		debug("\nDDR: LAWBAR8=0x%08x\n", mcm->lawbar8);
		debug("DDR: LAWAR8=0x%08x\n", mcm->lawar8);
	}
#endif /* CONFIG_NUM_DDR_CONTROLLERS > 1 */

	debug("\nMemory sizes are DDR1 = 0x%08lx, DDR2 = 0x%08lx\n",
	      memsize_ddr1, memsize_ddr2);

	/*
	 * If neither DDR controller is enabled return 0.
	 */
	if (!ddr1_enabled && !ddr2_enabled)
		return 0;

	printf("Non-interleaved");
	return memsize_total * 1024 * 1024;

#endif /* CONFIG_DDR_INTERLEAVE */
}


#endif /* CONFIG_SPD_EEPROM */


#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)

/*
 * Initialize all of memory for ECC, then enable errors.
 */

void
ddr_enable_ecc(unsigned int dram_size)
{
	uint *p = 0;
	uint i = 0;
	volatile immap_t *immap = (immap_t *)CFG_IMMR;
	volatile ccsr_ddr_t *ddr1= &immap->im_ddr1;

	dma_init();

	for (*p = 0; p < (uint *)(8 * 1024); p++) {
		if (((unsigned int)p & 0x1f) == 0) {
			ppcDcbz((unsigned long) p);
		}
		*p = (unsigned int)CONFIG_MEM_INIT_VALUE;
		if (((unsigned int)p & 0x1c) == 0x1c) {
			ppcDcbf((unsigned long) p);
		}
	}

	dma_xfer((uint *)0x002000, 0x002000, (uint *)0); /* 8K */
	dma_xfer((uint *)0x004000, 0x004000, (uint *)0); /* 16K */
	dma_xfer((uint *)0x008000, 0x008000, (uint *)0); /* 32K */
	dma_xfer((uint *)0x010000, 0x010000, (uint *)0); /* 64K */
	dma_xfer((uint *)0x020000, 0x020000, (uint *)0); /* 128k */
	dma_xfer((uint *)0x040000, 0x040000, (uint *)0); /* 256k */
	dma_xfer((uint *)0x080000, 0x080000, (uint *)0); /* 512k */
	dma_xfer((uint *)0x100000, 0x100000, (uint *)0); /* 1M */
	dma_xfer((uint *)0x200000, 0x200000, (uint *)0); /* 2M */
	dma_xfer((uint *)0x400000, 0x400000, (uint *)0); /* 4M */

	for (i = 1; i < dram_size / 0x800000; i++) {
		dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0);
	}

	/*
	 * Enable errors for ECC.
	 */
	debug("DMA DDR: err_disable = 0x%08x\n", ddr1->err_disable);
	ddr1->err_disable = 0x00000000;
	asm volatile("sync;isync");
	debug("DMA DDR: err_disable = 0x%08x\n", ddr1->err_disable);
}

#endif	/* CONFIG_DDR_ECC  && ! CONFIG_ECC_INIT_VIA_DDRCONTROLLER */