/* * Copyright 2008 Freescale Semiconductor, Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * Version 2 as published by the Free Software Foundation. */ #include #include #include "ddr.h" unsigned int compute_cas_latency_ddr3(const dimm_params_t *dimm_params, common_timing_params_t *outpdimm, unsigned int number_of_dimms) { unsigned int i; unsigned int tAAmin_ps = 0; unsigned int tCKmin_X_ps = 0; unsigned int common_caslat; unsigned int caslat_actual; unsigned int retry = 16; unsigned int tmp; const unsigned int mclk_ps = get_memory_clk_period_ps(); /* compute the common CAS latency supported between slots */ tmp = dimm_params[0].caslat_X; for (i = 1; i < number_of_dimms; i++) tmp &= dimm_params[i].caslat_X; common_caslat = tmp; /* compute the max tAAmin tCKmin between slots */ for (i = 0; i < number_of_dimms; i++) { tAAmin_ps = max(tAAmin_ps, dimm_params[i].tAA_ps); tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps); } /* validate if the memory clk is in the range of dimms */ if (mclk_ps < tCKmin_X_ps) { printf("The DIMM max tCKmin is %d ps," "doesn't support the MCLK cycle %d ps\n", tCKmin_X_ps, mclk_ps); return 1; } /* determine the acutal cas latency */ caslat_actual = (tAAmin_ps + mclk_ps - 1) / mclk_ps; /* check if the dimms support the CAS latency */ while (!(common_caslat & (1 << caslat_actual)) && retry > 0) { caslat_actual++; retry--; } /* once the caculation of caslat_actual is completed * we must verify that this CAS latency value does not * exceed tAAmax, which is 20 ns for all DDR3 speed grades */ if (caslat_actual * mclk_ps > 20000) { printf("The choosen cas latency %d is too large\n", caslat_actual); return 1; } outpdimm->lowest_common_SPD_caslat = caslat_actual; return 0; } /* * compute_lowest_common_dimm_parameters() * * Determine the worst-case DIMM timing parameters from the set of DIMMs * whose parameters have been computed into the array pointed to * by dimm_params. */ unsigned int compute_lowest_common_dimm_parameters(const dimm_params_t *dimm_params, common_timing_params_t *outpdimm, unsigned int number_of_dimms) { unsigned int i; unsigned int tCKmin_X_ps = 0; unsigned int tCKmax_ps = 0xFFFFFFFF; unsigned int tCKmax_max_ps = 0; unsigned int tRCD_ps = 0; unsigned int tRP_ps = 0; unsigned int tRAS_ps = 0; unsigned int tWR_ps = 0; unsigned int tWTR_ps = 0; unsigned int tRFC_ps = 0; unsigned int tRRD_ps = 0; unsigned int tRC_ps = 0; unsigned int refresh_rate_ps = 0; unsigned int tIS_ps = 0; unsigned int tIH_ps = 0; unsigned int tDS_ps = 0; unsigned int tDH_ps = 0; unsigned int tRTP_ps = 0; unsigned int tDQSQ_max_ps = 0; unsigned int tQHS_ps = 0; unsigned int temp1, temp2; unsigned int additive_latency = 0; #if !defined(CONFIG_FSL_DDR3) const unsigned int mclk_ps = get_memory_clk_period_ps(); unsigned int lowest_good_caslat; unsigned int not_ok; debug("using mclk_ps = %u\n", mclk_ps); #endif temp1 = 0; for (i = 0; i < number_of_dimms; i++) { /* * If there are no ranks on this DIMM, * it probably doesn't exist, so skip it. */ if (dimm_params[i].n_ranks == 0) { temp1++; continue; } /* * Find minimum tCKmax_ps to find fastest slow speed, * i.e., this is the slowest the whole system can go. */ tCKmax_ps = min(tCKmax_ps, dimm_params[i].tCKmax_ps); /* Either find maximum value to determine slowest * speed, delay, time, period, etc */ tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps); tCKmax_max_ps = max(tCKmax_max_ps, dimm_params[i].tCKmax_ps); tRCD_ps = max(tRCD_ps, dimm_params[i].tRCD_ps); tRP_ps = max(tRP_ps, dimm_params[i].tRP_ps); tRAS_ps = max(tRAS_ps, dimm_params[i].tRAS_ps); tWR_ps = max(tWR_ps, dimm_params[i].tWR_ps); tWTR_ps = max(tWTR_ps, dimm_params[i].tWTR_ps); tRFC_ps = max(tRFC_ps, dimm_params[i].tRFC_ps); tRRD_ps = max(tRRD_ps, dimm_params[i].tRRD_ps); tRC_ps = max(tRC_ps, dimm_params[i].tRC_ps); tIS_ps = max(tIS_ps, dimm_params[i].tIS_ps); tIH_ps = max(tIH_ps, dimm_params[i].tIH_ps); tDS_ps = max(tDS_ps, dimm_params[i].tDS_ps); tDH_ps = max(tDH_ps, dimm_params[i].tDH_ps); tRTP_ps = max(tRTP_ps, dimm_params[i].tRTP_ps); tQHS_ps = max(tQHS_ps, dimm_params[i].tQHS_ps); refresh_rate_ps = max(refresh_rate_ps, dimm_params[i].refresh_rate_ps); /* * Find maximum tDQSQ_max_ps to find slowest. * * FIXME: is finding the slowest value the correct * strategy for this parameter? */ tDQSQ_max_ps = max(tDQSQ_max_ps, dimm_params[i].tDQSQ_max_ps); } outpdimm->ndimms_present = number_of_dimms - temp1; if (temp1 == number_of_dimms) { debug("no dimms this memory controller\n"); return 0; } outpdimm->tCKmin_X_ps = tCKmin_X_ps; outpdimm->tCKmax_ps = tCKmax_ps; outpdimm->tCKmax_max_ps = tCKmax_max_ps; outpdimm->tRCD_ps = tRCD_ps; outpdimm->tRP_ps = tRP_ps; outpdimm->tRAS_ps = tRAS_ps; outpdimm->tWR_ps = tWR_ps; outpdimm->tWTR_ps = tWTR_ps; outpdimm->tRFC_ps = tRFC_ps; outpdimm->tRRD_ps = tRRD_ps; outpdimm->tRC_ps = tRC_ps; outpdimm->refresh_rate_ps = refresh_rate_ps; outpdimm->tIS_ps = tIS_ps; outpdimm->tIH_ps = tIH_ps; outpdimm->tDS_ps = tDS_ps; outpdimm->tDH_ps = tDH_ps; outpdimm->tRTP_ps = tRTP_ps; outpdimm->tDQSQ_max_ps = tDQSQ_max_ps; outpdimm->tQHS_ps = tQHS_ps; /* Determine common burst length for all DIMMs. */ temp1 = 0xff; for (i = 0; i < number_of_dimms; i++) { if (dimm_params[i].n_ranks) { temp1 &= dimm_params[i].burst_lengths_bitmask; } } outpdimm->all_DIMMs_burst_lengths_bitmask = temp1; /* Determine if all DIMMs registered buffered. */ temp1 = temp2 = 0; for (i = 0; i < number_of_dimms; i++) { if (dimm_params[i].n_ranks) { if (dimm_params[i].registered_dimm) temp1 = 1; if (!dimm_params[i].registered_dimm) temp2 = 1; } } outpdimm->all_DIMMs_registered = 0; if (temp1 && !temp2) { outpdimm->all_DIMMs_registered = 1; } outpdimm->all_DIMMs_unbuffered = 0; if (!temp1 && temp2) { outpdimm->all_DIMMs_unbuffered = 1; } /* CHECKME: */ if (!outpdimm->all_DIMMs_registered && !outpdimm->all_DIMMs_unbuffered) { printf("ERROR: Mix of registered buffered and unbuffered " "DIMMs detected!\n"); } #if defined(CONFIG_FSL_DDR3) if (compute_cas_latency_ddr3(dimm_params, outpdimm, number_of_dimms)) return 1; #else /* * Compute a CAS latency suitable for all DIMMs * * Strategy for SPD-defined latencies: compute only * CAS latency defined by all DIMMs. */ /* * Step 1: find CAS latency common to all DIMMs using bitwise * operation. */ temp1 = 0xFF; for (i = 0; i < number_of_dimms; i++) { if (dimm_params[i].n_ranks) { temp2 = 0; temp2 |= 1 << dimm_params[i].caslat_X; temp2 |= 1 << dimm_params[i].caslat_X_minus_1; temp2 |= 1 << dimm_params[i].caslat_X_minus_2; /* * FIXME: If there was no entry for X-2 (X-1) in * the SPD, then caslat_X_minus_2 * (caslat_X_minus_1) contains either 255 or * 0xFFFFFFFF because that's what the glorious * __ilog2 function returns for an input of 0. * On 32-bit PowerPC, left shift counts with bit * 26 set (that the value of 255 or 0xFFFFFFFF * will have), cause the destination register to * be 0. That is why this works. */ temp1 &= temp2; } } /* * Step 2: check each common CAS latency against tCK of each * DIMM's SPD. */ lowest_good_caslat = 0; temp2 = 0; while (temp1) { not_ok = 0; temp2 = __ilog2(temp1); debug("checking common caslat = %u\n", temp2); /* Check if this CAS latency will work on all DIMMs at tCK. */ for (i = 0; i < number_of_dimms; i++) { if (!dimm_params[i].n_ranks) { continue; } if (dimm_params[i].caslat_X == temp2) { if (mclk_ps >= dimm_params[i].tCKmin_X_ps) { debug("CL = %u ok on DIMM %u at tCK=%u" " ps with its tCKmin_X_ps of %u\n", temp2, i, mclk_ps, dimm_params[i].tCKmin_X_ps); continue; } else { not_ok++; } } if (dimm_params[i].caslat_X_minus_1 == temp2) { unsigned int tCKmin_X_minus_1_ps = dimm_params[i].tCKmin_X_minus_1_ps; if (mclk_ps >= tCKmin_X_minus_1_ps) { debug("CL = %u ok on DIMM %u at " "tCK=%u ps with its " "tCKmin_X_minus_1_ps of %u\n", temp2, i, mclk_ps, tCKmin_X_minus_1_ps); continue; } else { not_ok++; } } if (dimm_params[i].caslat_X_minus_2 == temp2) { unsigned int tCKmin_X_minus_2_ps = dimm_params[i].tCKmin_X_minus_2_ps; if (mclk_ps >= tCKmin_X_minus_2_ps) { debug("CL = %u ok on DIMM %u at " "tCK=%u ps with its " "tCKmin_X_minus_2_ps of %u\n", temp2, i, mclk_ps, tCKmin_X_minus_2_ps); continue; } else { not_ok++; } } } if (!not_ok) { lowest_good_caslat = temp2; } temp1 &= ~(1 << temp2); } debug("lowest common SPD-defined CAS latency = %u\n", lowest_good_caslat); outpdimm->lowest_common_SPD_caslat = lowest_good_caslat; /* * Compute a common 'de-rated' CAS latency. * * The strategy here is to find the *highest* dereated cas latency * with the assumption that all of the DIMMs will support a dereated * CAS latency higher than or equal to their lowest dereated value. */ temp1 = 0; for (i = 0; i < number_of_dimms; i++) { temp1 = max(temp1, dimm_params[i].caslat_lowest_derated); } outpdimm->highest_common_derated_caslat = temp1; debug("highest common dereated CAS latency = %u\n", temp1); #endif /* #if defined(CONFIG_FSL_DDR3) */ /* Determine if all DIMMs ECC capable. */ temp1 = 1; for (i = 0; i < number_of_dimms; i++) { if (dimm_params[i].n_ranks && dimm_params[i].edc_config != 2) { temp1 = 0; break; } } if (temp1) { debug("all DIMMs ECC capable\n"); } else { debug("Warning: not all DIMMs ECC capable, cant enable ECC\n"); } outpdimm->all_DIMMs_ECC_capable = temp1; #ifndef CONFIG_FSL_DDR3 /* FIXME: move to somewhere else to validate. */ if (mclk_ps > tCKmax_max_ps) { printf("Warning: some of the installed DIMMs " "can not operate this slowly.\n"); return 1; } #endif /* * Compute additive latency. * * For DDR1, additive latency should be 0. * * For DDR2, with ODT enabled, use "a value" less than ACTTORW, * which comes from Trcd, and also note that: * add_lat + caslat must be >= 4 * * For DDR3, we use the AL=0 * * When to use additive latency for DDR2: * * I. Because you are using CL=3 and need to do ODT on writes and * want functionality. * 1. Are you going to use ODT? (Does your board not have * additional termination circuitry for DQ, DQS, DQS_, * DM, RDQS, RDQS_ for x4/x8 configs?) * 2. If so, is your lowest supported CL going to be 3? * 3. If so, then you must set AL=1 because * * WL >= 3 for ODT on writes * RL = AL + CL * WL = RL - 1 * -> * WL = AL + CL - 1 * AL + CL - 1 >= 3 * AL + CL >= 4 * QED * * RL >= 3 for ODT on reads * RL = AL + CL * * Since CL aren't usually less than 2, AL=0 is a minimum, * so the WL-derived AL should be the -- FIXME? * * II. Because you are using auto-precharge globally and want to * use additive latency (posted CAS) to get more bandwidth. * 1. Are you going to use auto-precharge mode globally? * * Use addtivie latency and compute AL to be 1 cycle less than * tRCD, i.e. the READ or WRITE command is in the cycle * immediately following the ACTIVATE command.. * * III. Because you feel like it or want to do some sort of * degraded-performance experiment. * 1. Do you just want to use additive latency because you feel * like it? * * Validation: AL is less than tRCD, and within the other * read-to-precharge constraints. */ additive_latency = 0; #if defined(CONFIG_FSL_DDR2) if (lowest_good_caslat < 4) { additive_latency = picos_to_mclk(tRCD_ps) - lowest_good_caslat; if (mclk_to_picos(additive_latency) > tRCD_ps) { additive_latency = picos_to_mclk(tRCD_ps); debug("setting additive_latency to %u because it was " " greater than tRCD_ps\n", additive_latency); } } #elif defined(CONFIG_FSL_DDR3) /* * The system will not use the global auto-precharge mode. * However, it uses the page mode, so we set AL=0 */ additive_latency = 0; #endif /* * Validate additive latency * FIXME: move to somewhere else to validate * * AL <= tRCD(min) */ if (mclk_to_picos(additive_latency) > tRCD_ps) { printf("Error: invalid additive latency exceeds tRCD(min).\n"); return 1; } /* * RL = CL + AL; RL >= 3 for ODT_RD_CFG to be enabled * WL = RL - 1; WL >= 3 for ODT_WL_CFG to be enabled * ADD_LAT (the register) must be set to a value less * than ACTTORW if WL = 1, then AL must be set to 1 * RD_TO_PRE (the register) must be set to a minimum * tRTP + AL if AL is nonzero */ /* * Additive latency will be applied only if the memctl option to * use it. */ outpdimm->additive_latency = additive_latency; return 0; }