aboutsummaryrefslogtreecommitdiff
path: root/final/Bitcode/Benchmarks/Halide/common/halide_image_info.h
blob: a3539857f9e2eec02c961dfa487a6d3e0aacb073 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
// This header defines several methods useful for debugging programs that
// operate on the Image class supporting images with arbitrary dimensions.
//
//   Image<uint16_t> input = load_image(argv[1]);
//
//   info(input, "input");  // Output the Image header info
//   dump(input, "input");  // Dump the Image data
//   stats(input, "input"); // Report statistics for the Image
//
//
#ifndef HALIDE_TOOLS_IMAGE_INFO_H
#define HALIDE_TOOLS_IMAGE_INFO_H

#include <cassert>
#include <cstdlib>
#include <limits>
#include <memory>
#include <iostream>
#include <iomanip>
#include <sstream>
#include <stdint.h>

#include "halide_buffer.h"

namespace Halide {
namespace Tools {

static inline void print_dimid(int d, int val) {
    static const char *dimid[] = {"x", "y", "z", "w"};
    int numdimid = 4;
    if (d < numdimid) {
        std::cout << " " << dimid[d] << ":" << val;
    } else {
        std::cout << " extent[" << d << "]:" << val;
    }
}

static inline void print_loc(int32_t *loc, int dim, int32_t *min) {
    for (int d = 0; d < dim; d++) {
        if (d) { 
            std::cout << ",";
        }
        std::cout << loc[d] + min[d];
    }
}

static inline void print_memalign(intptr_t val) {
    intptr_t align_chk = 1024*1024;
    while (align_chk > 0) {
        if ((val & (align_chk-1)) == 0) {
            char aunit = ' ';
            if (align_chk >= 1024) {
                align_chk >>= 10;
                aunit = 'K';
            }
            if (align_chk >= 1024) {
                align_chk >>= 10;
                aunit = 'M';
            }
            std::cout << "align:" << align_chk;
            if (aunit != ' ') {
                std::cout << aunit;
            }
            break;
        }
        align_chk >>= 1;
    }
}

template<typename T>
void info(Image<T> &img, const char *tag = "Image") {
    buffer_t *buf = &(*img);
    int32_t *min = buf->min;
    int32_t *extent = buf->extent;
    int32_t *stride = buf->stride;
    int dim = img.dimensions();
    int img_bpp = buf->elem_size;
    int img_tsize = sizeof(T);
    int img_csize = sizeof(Image<T>);
    int img_bsize = sizeof(buffer_t);
    int32_t size = 1;
    uint64_t dev = buf->dev;
    bool host_dirty = buf->host_dirty;
    bool dev_dirty = buf->dev_dirty;

    std::cout << std::endl
              << "-----------------------------------------------------------------------------";
    std::cout << std::endl << "Image info: " << tag
              << " dim:" << dim << " bpp:" << img_bpp;
    for (int d = 0; d < dim; d++) {
        print_dimid(d, extent[d]);
        size *= extent[d];
    }
    std::cout << std::endl;
    std::cout << tag << " class       = 0x" << std::left << std::setw(10) << (void*)img
                     << std::right << " # ";
    print_memalign((intptr_t)&img); std::cout << std::endl;
    std::cout << tag << " class size  = "<< img_csize
                     << " (0x"<< std::hex << img_csize << std::dec <<")\n";
    std::cout << tag << "-class => [ 0x" << (void*)&img
                     << ", 0x" << (void*)(((char*)&img)+img_csize-1)
                     << " ], # size:" << img_csize << ", ";
    print_memalign((intptr_t)&img); std::cout << std::endl;
    std::cout << tag << " buf_t size  = "<< img_bsize
                     << " (0x"<< std::hex << img_bsize << std::dec <<")\n";
    std::cout << tag << "-buf_t => [ 0x" << (void*)&buf
                     << ", 0x" << (void*)(((char*)&buf)+img_bsize-1)
                     << " ], # size:" << img_bsize << ", ";
    print_memalign((intptr_t)&buf); std::cout << std::endl;
    if (img_bpp != img_tsize) {
        std::cout << tag << " sizeof(T)   = " << img_tsize << std::endl;
    }
    std::cout << tag << " host_dirty  = " << host_dirty << std::endl;
    std::cout << tag << " dev_dirty   = " << dev_dirty << std::endl;
    std::cout << tag << " dev handle  = " << dev << std::endl;
    std::cout << tag << " elem_size   = " << img_bpp << std::endl;
    std::cout << tag << " img_dim     = " << dim << std::endl;
    std::cout << tag << " width       = " << img.width() << std::endl;
    std::cout << tag << " height      = " << img.height() << std::endl;
    std::cout << tag << " channels    = " << img.channels() << std::endl;
    std::cout << tag << " extent[]    = ";
    for (int d = 0; d < dim; d++) {
        std::cout << extent[d] << " ";
    }
    std::cout << std::endl;
    std::cout << tag << " min[]       = ";
    for (int d = 0; d < dim; d++) {
        std::cout << min[d] << " ";
    }
    std::cout << std::endl;
    std::cout << tag << " stride[]    = ";
    for (int d = 0; d < dim; d++) {
        std::cout << stride[d] << " ";
    }
    std::cout << std::endl;
    if (img_bpp > 1) {
        for (int d = 0; d < dim; d++) {
            std::cout << tag << " str[" << d << "]*bpp  = "
                             << std::left << std::setw(12) << stride[d] * img_bpp
                             << std::right << " # ";
            print_memalign(stride[d] * img_bpp); std::cout << std::endl;
        }
    }

    const T *img_data = img.data();
    const T *img_next = img_data + size;
    int32_t img_size = size * img_bpp;
    int32_t data_size = (char*)img_next - (char*)img_data;
    std::cout << tag << " size        = " << size << " (0x"
                             << std::hex << size << ")" << std::dec << std::endl;
    std::cout << tag << " img_size    = " << img_size << " (0x"
                             << std::hex << img_size << ")" << std::dec << std::endl;
    std::cout << tag << " data        = 0x" << std::left << std::setw(10) << (void *)img_data
                     << std::right << " # ";
    print_memalign((intptr_t)img_data); std::cout << std::endl;
    std::cout << tag << " next        = 0x" << std::left << std::setw(10) << (void *)img_next
                     << std::right << " # ";
    print_memalign((intptr_t)img_next); std::cout << std::endl;
    std::cout << tag << " data_size   = " << data_size  << " (0x"
                             << std::hex << data_size  << ")" << std::dec << std::endl;
    std::cout << tag << " => [ 0x" << (void *)img_data
                         << ", 0x" << (void *)(((char*)img_next)-1)
                         << "], # size:" << data_size << ", ";
    print_memalign((intptr_t)img_data); std::cout << std::endl;
}

template<typename T>
void dump(Image<T> &img, const char *tag = "Image") {
    buffer_t *buf = &(*img);
    int32_t *min = buf->min;
    int32_t *extent = buf->extent;
    int32_t *stride = buf->stride;
    int dim = img.dimensions();
    int bpp = buf->elem_size;
    int32_t size = 1;

    std::cout << std::endl << "Image dump: " << tag
              << " dim:" << dim << " bpp:" << bpp;
    for (int d = 0; d < dim; d++) {
        print_dimid(d, extent[d]);
        size *= extent[d];
    }

    // Arbitrary dimension image traversal
    const T *ptr = img.data();
    int32_t curloc[dim];
    for (int d = 1; d < dim; d++) {
        curloc[d] = -1;
    }
    curloc[0] = 0;

    for (int32_t i = 0; i < size; i++) {
        // Track changes in position in higher dimensions
        for (int d = 1; d < dim; d++) {
            if ((i % stride[d]) == 0) {
                curloc[d]++;
                for (int din = 0; din < d; din++) {
                    curloc[din] = 0;
                }
                std::cout << std::endl;
                // Print separators for dimensions beyond (x0,y1)
                if (d > 1) {
                    print_dimid(d, curloc[d]+min[d]);
                    std::cout << "\n==========================================";
                }
            }
        }

        // Check for start of row (or wrap due to width)
        if ((curloc[0] % 16) == 0) {
            int widx = 0;
            std::ostringstream idx;
            if (dim > 1) {   // Multi-dim, just report (x0,y1) on each row
               idx << "(" << curloc[0]+min[0] << "," << curloc[1]+min[1] << ")";
               widx = 12;
            } else {         // Single-dim
               idx << curloc[0]+min[0];
               widx = 4;
            }
            std::cout << std::endl << std::setw(widx) << idx.str() << ": ";
        }

        // Display data
        std::cout << std::setw(4) << *ptr++ + 0 << " ";

        curloc[0]++;  // Track position in row
    }
    std::cout << std::endl;
}

template<typename T>
void stats(Image<T> &img, const char *tag = "Image") {
    buffer_t *buf = &(*img);
    int32_t *min = buf->min;
    int32_t *extent = buf->extent;
    int32_t *stride = buf->stride;
    int dim = img.dimensions();
    int bpp = buf->elem_size;
    int32_t size = 1;
    std::cout << std::endl << "Image stats: " << tag
              << " dim:" << dim << " bpp:" << bpp;
    for (int d = 0; d < dim; d++) {
        print_dimid(d, extent[d]);
        size *= extent[d];
    }

    // Arbitrary dimension image traversal
    const T *ptr = img.data();
    int32_t curloc[dim];
    for (int d = 1; d < dim; d++) {
        curloc[d] = -1;
    }
    curloc[0] = 0;

    // Statistics
    int32_t cnt = 0;
    double sum = 0;
    T minval = *ptr;
    T maxval = *ptr;
    int32_t minloc[dim];
    int32_t maxloc[dim];
    for (int d = 0; d < dim; d++) {
        minloc[d] = 0;
        maxloc[d] = 0;
    }

    for (int32_t i = 0; i < size; i++) {
        // Track changes in position in higher dimensions
        for (int d = 1; d < dim; d++) {
            if ((i % stride[d]) == 0) {
                curloc[d]++;
                for (int din = 0; din < d; din++) {
                    curloc[din] = 0;
                }
            }
        }

        // Collect data
        T val = *ptr++;
        sum += val;
        cnt++;
        if (val < minval) {
            minval = val;
            for (int d = 0; d < dim; d++) {
                minloc[d] = curloc[d];
            }
        }
        if (val > maxval) {
            maxval = val;
            for (int d = 0; d < dim; d++) {
                maxloc[d] = curloc[d];
            }
        }

        curloc[0]++;  // Track position in row
    }

    double avg = sum / cnt;
    std::cout << std::endl;
    std::cout << "min        = " << minval + 0 << " @ (";
    print_loc(minloc, dim, min);
    std::cout << ")" << std::endl;
    std::cout << "max        = " << maxval + 0 << " @ (";
    print_loc(maxloc, dim, min);
    std::cout << ")" << std::endl;
    std::cout << "mean       = " << avg << std::endl;
    std::cout << "N          = " << cnt << std::endl;
    std::cout << std::endl;
}

} // namespace Tools
} // namespace Halide

#endif  // HALIDE_TOOLS_IMAGE_INFO_H