aboutsummaryrefslogtreecommitdiff
path: root/final/libomptarget/plugins/cuda/src/rtl.cpp
blob: 872e7f02aed9335e407b0191e13b2a498e49722e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
//===----RTLs/cuda/src/rtl.cpp - Target RTLs Implementation ------- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.txt for details.
//
//===----------------------------------------------------------------------===//
//
// RTL for CUDA machine
//
//===----------------------------------------------------------------------===//

#include <cassert>
#include <cstddef>
#include <cuda.h>
#include <list>
#include <string>
#include <vector>

#include "omptargetplugin.h"

#ifndef TARGET_NAME
#define TARGET_NAME CUDA
#endif

#ifdef OMPTARGET_DEBUG
static int DebugLevel = 0;

#define GETNAME2(name) #name
#define GETNAME(name) GETNAME2(name)
#define DP(...) \
  do { \
    if (DebugLevel > 0) { \
      DEBUGP("Target " GETNAME(TARGET_NAME) " RTL", __VA_ARGS__); \
    } \
  } while (false)
#else // OMPTARGET_DEBUG
#define DP(...) {}
#endif // OMPTARGET_DEBUG

#include "../../common/elf_common.c"

// Utility for retrieving and printing CUDA error string.
#ifdef CUDA_ERROR_REPORT
#define CUDA_ERR_STRING(err)                                                   \
  do {                                                                         \
    const char *errStr;                                                        \
    cuGetErrorString(err, &errStr);                                            \
    DP("CUDA error is: %s\n", errStr);                                         \
  } while (0)
#else
#define CUDA_ERR_STRING(err)                                                   \
  {}
#endif

/// Keep entries table per device.
struct FuncOrGblEntryTy {
  __tgt_target_table Table;
  std::vector<__tgt_offload_entry> Entries;
};

enum ExecutionModeType {
  SPMD, // constructors, destructors,
        // combined constructs (`teams distribute parallel for [simd]`)
  GENERIC, // everything else
  NONE
};

/// Use a single entity to encode a kernel and a set of flags
struct KernelTy {
  CUfunction Func;

  // execution mode of kernel
  // 0 - SPMD mode (without master warp)
  // 1 - Generic mode (with master warp)
  int8_t ExecutionMode;

  KernelTy(CUfunction _Func, int8_t _ExecutionMode)
      : Func(_Func), ExecutionMode(_ExecutionMode) {}
};

/// Device envrionment data
/// Manually sync with the deviceRTL side for now, move to a dedicated header file later.
struct omptarget_device_environmentTy {
  int32_t debug_level;
};

/// List that contains all the kernels.
/// FIXME: we may need this to be per device and per library.
std::list<KernelTy> KernelsList;

/// Class containing all the device information.
class RTLDeviceInfoTy {
  std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries;

public:
  int NumberOfDevices;
  std::vector<CUmodule> Modules;
  std::vector<CUcontext> Contexts;

  // Device properties
  std::vector<int> ThreadsPerBlock;
  std::vector<int> BlocksPerGrid;
  std::vector<int> WarpSize;

  // OpenMP properties
  std::vector<int> NumTeams;
  std::vector<int> NumThreads;

  // OpenMP Environment properties
  int EnvNumTeams;
  int EnvTeamLimit;

  //static int EnvNumThreads;
  static const int HardTeamLimit = 1<<16; // 64k
  static const int HardThreadLimit = 1024;
  static const int DefaultNumTeams = 128;
  static const int DefaultNumThreads = 128;

  // Record entry point associated with device
  void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) {
    assert(device_id < (int32_t)FuncGblEntries.size() &&
           "Unexpected device id!");
    FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();

    E.Entries.push_back(entry);
  }

  // Return true if the entry is associated with device
  bool findOffloadEntry(int32_t device_id, void *addr) {
    assert(device_id < (int32_t)FuncGblEntries.size() &&
           "Unexpected device id!");
    FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();

    for (auto &it : E.Entries) {
      if (it.addr == addr)
        return true;
    }

    return false;
  }

  // Return the pointer to the target entries table
  __tgt_target_table *getOffloadEntriesTable(int32_t device_id) {
    assert(device_id < (int32_t)FuncGblEntries.size() &&
           "Unexpected device id!");
    FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();

    int32_t size = E.Entries.size();

    // Table is empty
    if (!size)
      return 0;

    __tgt_offload_entry *begin = &E.Entries[0];
    __tgt_offload_entry *end = &E.Entries[size - 1];

    // Update table info according to the entries and return the pointer
    E.Table.EntriesBegin = begin;
    E.Table.EntriesEnd = ++end;

    return &E.Table;
  }

  // Clear entries table for a device
  void clearOffloadEntriesTable(int32_t device_id) {
    assert(device_id < (int32_t)FuncGblEntries.size() &&
           "Unexpected device id!");
    FuncGblEntries[device_id].emplace_back();
    FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();
    E.Entries.clear();
    E.Table.EntriesBegin = E.Table.EntriesEnd = 0;
  }

  RTLDeviceInfoTy() {
#ifdef OMPTARGET_DEBUG
    if (char *envStr = getenv("LIBOMPTARGET_DEBUG")) {
      DebugLevel = std::stoi(envStr);
    }
#endif // OMPTARGET_DEBUG

    DP("Start initializing CUDA\n");

    CUresult err = cuInit(0);
    if (err != CUDA_SUCCESS) {
      DP("Error when initializing CUDA\n");
      CUDA_ERR_STRING(err);
      return;
    }

    NumberOfDevices = 0;

    err = cuDeviceGetCount(&NumberOfDevices);
    if (err != CUDA_SUCCESS) {
      DP("Error when getting CUDA device count\n");
      CUDA_ERR_STRING(err);
      return;
    }

    if (NumberOfDevices == 0) {
      DP("There are no devices supporting CUDA.\n");
      return;
    }

    FuncGblEntries.resize(NumberOfDevices);
    Contexts.resize(NumberOfDevices);
    ThreadsPerBlock.resize(NumberOfDevices);
    BlocksPerGrid.resize(NumberOfDevices);
    WarpSize.resize(NumberOfDevices);
    NumTeams.resize(NumberOfDevices);
    NumThreads.resize(NumberOfDevices);

    // Get environment variables regarding teams
    char *envStr = getenv("OMP_TEAM_LIMIT");
    if (envStr) {
      // OMP_TEAM_LIMIT has been set
      EnvTeamLimit = std::stoi(envStr);
      DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit);
    } else {
      EnvTeamLimit = -1;
    }
    envStr = getenv("OMP_NUM_TEAMS");
    if (envStr) {
      // OMP_NUM_TEAMS has been set
      EnvNumTeams = std::stoi(envStr);
      DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams);
    } else {
      EnvNumTeams = -1;
    }
  }

  ~RTLDeviceInfoTy() {
    // Close modules
    for (auto &module : Modules)
      if (module) {
        CUresult err = cuModuleUnload(module);
        if (err != CUDA_SUCCESS) {
          DP("Error when unloading CUDA module\n");
          CUDA_ERR_STRING(err);
        }
      }

    // Destroy contexts
    for (auto &ctx : Contexts)
      if (ctx) {
        CUresult err = cuCtxDestroy(ctx);
        if (err != CUDA_SUCCESS) {
          DP("Error when destroying CUDA context\n");
          CUDA_ERR_STRING(err);
        }
      }
  }
};

static RTLDeviceInfoTy DeviceInfo;

#ifdef __cplusplus
extern "C" {
#endif

int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) {
  return elf_check_machine(image, 190); // EM_CUDA = 190.
}

int32_t __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; }

int32_t __tgt_rtl_init_device(int32_t device_id) {

  CUdevice cuDevice;
  DP("Getting device %d\n", device_id);
  CUresult err = cuDeviceGet(&cuDevice, device_id);
  if (err != CUDA_SUCCESS) {
    DP("Error when getting CUDA device with id = %d\n", device_id);
    CUDA_ERR_STRING(err);
    return OFFLOAD_FAIL;
  }

  // Create the context and save it to use whenever this device is selected.
  err = cuCtxCreate(&DeviceInfo.Contexts[device_id], CU_CTX_SCHED_BLOCKING_SYNC,
                    cuDevice);
  if (err != CUDA_SUCCESS) {
    DP("Error when creating a CUDA context\n");
    CUDA_ERR_STRING(err);
    return OFFLOAD_FAIL;
  }

  // scan properties to determine number of threads/block and blocks/grid.
  CUdevprop Properties;
  err = cuDeviceGetProperties(&Properties, cuDevice);
  if (err != CUDA_SUCCESS) {
    DP("Error getting device Properties, use defaults\n");
    DeviceInfo.BlocksPerGrid[device_id] = RTLDeviceInfoTy::DefaultNumTeams;
    DeviceInfo.ThreadsPerBlock[device_id] = RTLDeviceInfoTy::DefaultNumThreads;
    DeviceInfo.WarpSize[device_id] = 32;
  } else {
    // Get blocks per grid
    if (Properties.maxGridSize[0] <= RTLDeviceInfoTy::HardTeamLimit) {
      DeviceInfo.BlocksPerGrid[device_id] = Properties.maxGridSize[0];
      DP("Using %d CUDA blocks per grid\n", Properties.maxGridSize[0]);
    } else {
      DeviceInfo.BlocksPerGrid[device_id] = RTLDeviceInfoTy::HardTeamLimit;
      DP("Max CUDA blocks per grid %d exceeds the hard team limit %d, capping "
          "at the hard limit\n", Properties.maxGridSize[0],
          RTLDeviceInfoTy::HardTeamLimit);
    }

    // Get threads per block, exploit threads only along x axis
    if (Properties.maxThreadsDim[0] <= RTLDeviceInfoTy::HardThreadLimit) {
      DeviceInfo.ThreadsPerBlock[device_id] = Properties.maxThreadsDim[0];
      DP("Using %d CUDA threads per block\n", Properties.maxThreadsDim[0]);
      if (Properties.maxThreadsDim[0] < Properties.maxThreadsPerBlock) {
        DP("(fewer than max per block along all xyz dims %d)\n",
            Properties.maxThreadsPerBlock);
      }
    } else {
      DeviceInfo.ThreadsPerBlock[device_id] = RTLDeviceInfoTy::HardThreadLimit;
      DP("Max CUDA threads per block %d exceeds the hard thread limit %d, "
          "capping at the hard limit\n", Properties.maxThreadsDim[0],
          RTLDeviceInfoTy::HardThreadLimit);
    }

    // According to the documentation, SIMDWidth is "Warp size in threads".
    DeviceInfo.WarpSize[device_id] = Properties.SIMDWidth;
  }

  // Adjust teams to the env variables
  if (DeviceInfo.EnvTeamLimit > 0 &&
      DeviceInfo.BlocksPerGrid[device_id] > DeviceInfo.EnvTeamLimit) {
    DeviceInfo.BlocksPerGrid[device_id] = DeviceInfo.EnvTeamLimit;
    DP("Capping max CUDA blocks per grid to OMP_TEAM_LIMIT=%d\n",
        DeviceInfo.EnvTeamLimit);
  }

  DP("Max number of CUDA blocks %d, threads %d & warp size %d\n",
     DeviceInfo.BlocksPerGrid[device_id], DeviceInfo.ThreadsPerBlock[device_id],
     DeviceInfo.WarpSize[device_id]);

  // Set default number of teams
  if (DeviceInfo.EnvNumTeams > 0) {
    DeviceInfo.NumTeams[device_id] = DeviceInfo.EnvNumTeams;
    DP("Default number of teams set according to environment %d\n",
        DeviceInfo.EnvNumTeams);
  } else {
    DeviceInfo.NumTeams[device_id] = RTLDeviceInfoTy::DefaultNumTeams;
    DP("Default number of teams set according to library's default %d\n",
        RTLDeviceInfoTy::DefaultNumTeams);
  }
  if (DeviceInfo.NumTeams[device_id] > DeviceInfo.BlocksPerGrid[device_id]) {
    DeviceInfo.NumTeams[device_id] = DeviceInfo.BlocksPerGrid[device_id];
    DP("Default number of teams exceeds device limit, capping at %d\n",
        DeviceInfo.BlocksPerGrid[device_id]);
  }

  // Set default number of threads
  DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::DefaultNumThreads;
  DP("Default number of threads set according to library's default %d\n",
          RTLDeviceInfoTy::DefaultNumThreads);
  if (DeviceInfo.NumThreads[device_id] >
      DeviceInfo.ThreadsPerBlock[device_id]) {
    DeviceInfo.NumTeams[device_id] = DeviceInfo.ThreadsPerBlock[device_id];
    DP("Default number of threads exceeds device limit, capping at %d\n",
        DeviceInfo.ThreadsPerBlock[device_id]);
  }

  return OFFLOAD_SUCCESS;
}

__tgt_target_table *__tgt_rtl_load_binary(int32_t device_id,
    __tgt_device_image *image) {

  // Set the context we are using.
  CUresult err = cuCtxSetCurrent(DeviceInfo.Contexts[device_id]);
  if (err != CUDA_SUCCESS) {
    DP("Error when setting a CUDA context for device %d\n", device_id);
    CUDA_ERR_STRING(err);
    return NULL;
  }

  // Clear the offload table as we are going to create a new one.
  DeviceInfo.clearOffloadEntriesTable(device_id);

  // Create the module and extract the function pointers.

  CUmodule cumod;
  DP("Load data from image " DPxMOD "\n", DPxPTR(image->ImageStart));
  err = cuModuleLoadDataEx(&cumod, image->ImageStart, 0, NULL, NULL);
  if (err != CUDA_SUCCESS) {
    DP("Error when loading CUDA module\n");
    CUDA_ERR_STRING(err);
    return NULL;
  }

  DP("CUDA module successfully loaded!\n");
  DeviceInfo.Modules.push_back(cumod);

  // Find the symbols in the module by name.
  __tgt_offload_entry *HostBegin = image->EntriesBegin;
  __tgt_offload_entry *HostEnd = image->EntriesEnd;

  for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) {

    if (!e->addr) {
      // We return NULL when something like this happens, the host should have
      // always something in the address to uniquely identify the target region.
      DP("Invalid binary: host entry '<null>' (size = %zd)...\n", e->size);

      return NULL;
    }

    if (e->size) {
      __tgt_offload_entry entry = *e;

      CUdeviceptr cuptr;
      size_t cusize;
      err = cuModuleGetGlobal(&cuptr, &cusize, cumod, e->name);

      if (err != CUDA_SUCCESS) {
        DP("Loading global '%s' (Failed)\n", e->name);
        CUDA_ERR_STRING(err);
        return NULL;
      }

      if (cusize != e->size) {
        DP("Loading global '%s' - size mismatch (%zd != %zd)\n", e->name,
            cusize, e->size);
        CUDA_ERR_STRING(err);
        return NULL;
      }

      DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n",
          DPxPTR(e - HostBegin), e->name, DPxPTR(cuptr));
      entry.addr = (void *)cuptr;

      DeviceInfo.addOffloadEntry(device_id, entry);

      continue;
    }

    CUfunction fun;
    err = cuModuleGetFunction(&fun, cumod, e->name);

    if (err != CUDA_SUCCESS) {
      DP("Loading '%s' (Failed)\n", e->name);
      CUDA_ERR_STRING(err);
      return NULL;
    }

    DP("Entry point " DPxMOD " maps to %s (" DPxMOD ")\n",
        DPxPTR(e - HostBegin), e->name, DPxPTR(fun));

    // default value GENERIC (in case symbol is missing from cubin file)
    int8_t ExecModeVal = ExecutionModeType::GENERIC;
    std::string ExecModeNameStr (e->name);
    ExecModeNameStr += "_exec_mode";
    const char *ExecModeName = ExecModeNameStr.c_str();

    CUdeviceptr ExecModePtr;
    size_t cusize;
    err = cuModuleGetGlobal(&ExecModePtr, &cusize, cumod, ExecModeName);
    if (err == CUDA_SUCCESS) {
      if ((size_t)cusize != sizeof(int8_t)) {
        DP("Loading global exec_mode '%s' - size mismatch (%zd != %zd)\n",
           ExecModeName, cusize, sizeof(int8_t));
        CUDA_ERR_STRING(err);
        return NULL;
      }

      err = cuMemcpyDtoH(&ExecModeVal, ExecModePtr, cusize);
      if (err != CUDA_SUCCESS) {
        DP("Error when copying data from device to host. Pointers: "
           "host = " DPxMOD ", device = " DPxMOD ", size = %zd\n",
           DPxPTR(&ExecModeVal), DPxPTR(ExecModePtr), cusize);
        CUDA_ERR_STRING(err);
        return NULL;
      }

      if (ExecModeVal < 0 || ExecModeVal > 1) {
        DP("Error wrong exec_mode value specified in cubin file: %d\n",
           ExecModeVal);
        return NULL;
      }
    } else {
      DP("Loading global exec_mode '%s' - symbol missing, using default value "
          "GENERIC (1)\n", ExecModeName);
      CUDA_ERR_STRING(err);
    }

    KernelsList.push_back(KernelTy(fun, ExecModeVal));

    __tgt_offload_entry entry = *e;
    entry.addr = (void *)&KernelsList.back();
    DeviceInfo.addOffloadEntry(device_id, entry);
  }

  // send device environment data to the device
  {
    omptarget_device_environmentTy device_env;

    device_env.debug_level = 0;

#ifdef OMPTARGET_DEBUG
    if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) {
      device_env.debug_level = std::stoi(envStr);
    }
#endif

    const char * device_env_Name="omptarget_device_environment";
    CUdeviceptr device_env_Ptr;
    size_t cusize;

    err = cuModuleGetGlobal(&device_env_Ptr, &cusize, cumod, device_env_Name);

    if (err == CUDA_SUCCESS) {
      if ((size_t)cusize != sizeof(device_env)) {
        DP("Global device_environment '%s' - size mismatch (%zu != %zu)\n",
            device_env_Name, cusize, sizeof(int32_t));
        CUDA_ERR_STRING(err);
        return NULL;
      }

      err = cuMemcpyHtoD(device_env_Ptr, &device_env, cusize);
      if (err != CUDA_SUCCESS) {
        DP("Error when copying data from host to device. Pointers: "
            "host = " DPxMOD ", device = " DPxMOD ", size = %zu\n",
            DPxPTR(&device_env), DPxPTR(device_env_Ptr), cusize);
        CUDA_ERR_STRING(err);
        return NULL;
      }

      DP("Sending global device environment data %zu bytes\n", (size_t)cusize);
    } else {
      DP("Finding global device environment '%s' - symbol missing.\n", device_env_Name);
      DP("Continue, considering this is a device RTL which does not accept envrionment setting.\n");
    }
  }

  return DeviceInfo.getOffloadEntriesTable(device_id);
}

void *__tgt_rtl_data_alloc(int32_t device_id, int64_t size, void *hst_ptr) {
  if (size == 0) {
    return NULL;
  }

  // Set the context we are using.
  CUresult err = cuCtxSetCurrent(DeviceInfo.Contexts[device_id]);
  if (err != CUDA_SUCCESS) {
    DP("Error while trying to set CUDA current context\n");
    CUDA_ERR_STRING(err);
    return NULL;
  }

  CUdeviceptr ptr;
  err = cuMemAlloc(&ptr, size);
  if (err != CUDA_SUCCESS) {
    DP("Error while trying to allocate %d\n", err);
    CUDA_ERR_STRING(err);
    return NULL;
  }

  void *vptr = (void *)ptr;
  return vptr;
}

int32_t __tgt_rtl_data_submit(int32_t device_id, void *tgt_ptr, void *hst_ptr,
    int64_t size) {
  // Set the context we are using.
  CUresult err = cuCtxSetCurrent(DeviceInfo.Contexts[device_id]);
  if (err != CUDA_SUCCESS) {
    DP("Error when setting CUDA context\n");
    CUDA_ERR_STRING(err);
    return OFFLOAD_FAIL;
  }

  err = cuMemcpyHtoD((CUdeviceptr)tgt_ptr, hst_ptr, size);
  if (err != CUDA_SUCCESS) {
    DP("Error when copying data from host to device. Pointers: host = " DPxMOD
       ", device = " DPxMOD ", size = %" PRId64 "\n", DPxPTR(hst_ptr),
       DPxPTR(tgt_ptr), size);
    CUDA_ERR_STRING(err);
    return OFFLOAD_FAIL;
  }
  return OFFLOAD_SUCCESS;
}

int32_t __tgt_rtl_data_retrieve(int32_t device_id, void *hst_ptr, void *tgt_ptr,
    int64_t size) {
  // Set the context we are using.
  CUresult err = cuCtxSetCurrent(DeviceInfo.Contexts[device_id]);
  if (err != CUDA_SUCCESS) {
    DP("Error when setting CUDA context\n");
    CUDA_ERR_STRING(err);
    return OFFLOAD_FAIL;
  }

  err = cuMemcpyDtoH(hst_ptr, (CUdeviceptr)tgt_ptr, size);
  if (err != CUDA_SUCCESS) {
    DP("Error when copying data from device to host. Pointers: host = " DPxMOD
        ", device = " DPxMOD ", size = %" PRId64 "\n", DPxPTR(hst_ptr),
        DPxPTR(tgt_ptr), size);
    CUDA_ERR_STRING(err);
    return OFFLOAD_FAIL;
  }
  return OFFLOAD_SUCCESS;
}

int32_t __tgt_rtl_data_delete(int32_t device_id, void *tgt_ptr) {
  // Set the context we are using.
  CUresult err = cuCtxSetCurrent(DeviceInfo.Contexts[device_id]);
  if (err != CUDA_SUCCESS) {
    DP("Error when setting CUDA context\n");
    CUDA_ERR_STRING(err);
    return OFFLOAD_FAIL;
  }

  err = cuMemFree((CUdeviceptr)tgt_ptr);
  if (err != CUDA_SUCCESS) {
    DP("Error when freeing CUDA memory\n");
    CUDA_ERR_STRING(err);
    return OFFLOAD_FAIL;
  }
  return OFFLOAD_SUCCESS;
}

int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr,
    void **tgt_args, ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t team_num,
    int32_t thread_limit, uint64_t loop_tripcount) {
  // Set the context we are using.
  CUresult err = cuCtxSetCurrent(DeviceInfo.Contexts[device_id]);
  if (err != CUDA_SUCCESS) {
    DP("Error when setting CUDA context\n");
    CUDA_ERR_STRING(err);
    return OFFLOAD_FAIL;
  }

  // All args are references.
  std::vector<void *> args(arg_num);
  std::vector<void *> ptrs(arg_num);

  for (int32_t i = 0; i < arg_num; ++i) {
    ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]);
    args[i] = &ptrs[i];
  }

  KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr;

  int cudaThreadsPerBlock;

  if (thread_limit > 0) {
    cudaThreadsPerBlock = thread_limit;
    DP("Setting CUDA threads per block to requested %d\n", thread_limit);
    // Add master warp if necessary
    if (KernelInfo->ExecutionMode == GENERIC) {
      cudaThreadsPerBlock += DeviceInfo.WarpSize[device_id];
      DP("Adding master warp: +%d threads\n", DeviceInfo.WarpSize[device_id]);
    }
  } else {
    cudaThreadsPerBlock = DeviceInfo.NumThreads[device_id];
    DP("Setting CUDA threads per block to default %d\n",
        DeviceInfo.NumThreads[device_id]);
  }

  if (cudaThreadsPerBlock > DeviceInfo.ThreadsPerBlock[device_id]) {
    cudaThreadsPerBlock = DeviceInfo.ThreadsPerBlock[device_id];
    DP("Threads per block capped at device limit %d\n",
        DeviceInfo.ThreadsPerBlock[device_id]);
  }

  int kernel_limit;
  err = cuFuncGetAttribute(&kernel_limit,
      CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK, KernelInfo->Func);
  if (err == CUDA_SUCCESS) {
    if (kernel_limit < cudaThreadsPerBlock) {
      cudaThreadsPerBlock = kernel_limit;
      DP("Threads per block capped at kernel limit %d\n", kernel_limit);
    }
  }

  int cudaBlocksPerGrid;
  if (team_num <= 0) {
    if (loop_tripcount > 0 && DeviceInfo.EnvNumTeams < 0) {
      if (KernelInfo->ExecutionMode == SPMD) {
        // We have a combined construct, i.e. `target teams distribute parallel
        // for [simd]`. We launch so many teams so that each thread will
        // execute one iteration of the loop.
        // round up to the nearest integer
        cudaBlocksPerGrid = ((loop_tripcount - 1) / cudaThreadsPerBlock) + 1;
      } else {
        // If we reach this point, then we have a non-combined construct, i.e.
        // `teams distribute` with a nested `parallel for` and each team is
        // assigned one iteration of the `distribute` loop. E.g.:
        //
        // #pragma omp target teams distribute
        // for(...loop_tripcount...) {
        //   #pragma omp parallel for
        //   for(...) {}
        // }
        //
        // Threads within a team will execute the iterations of the `parallel`
        // loop.
        cudaBlocksPerGrid = loop_tripcount;
      }
      DP("Using %d teams due to loop trip count %" PRIu64 " and number of "
          "threads per block %d\n", cudaBlocksPerGrid, loop_tripcount,
          cudaThreadsPerBlock);
    } else {
      cudaBlocksPerGrid = DeviceInfo.NumTeams[device_id];
      DP("Using default number of teams %d\n", DeviceInfo.NumTeams[device_id]);
    }
  } else if (team_num > DeviceInfo.BlocksPerGrid[device_id]) {
    cudaBlocksPerGrid = DeviceInfo.BlocksPerGrid[device_id];
    DP("Capping number of teams to team limit %d\n",
        DeviceInfo.BlocksPerGrid[device_id]);
  } else {
    cudaBlocksPerGrid = team_num;
    DP("Using requested number of teams %d\n", team_num);
  }

  // Run on the device.
  DP("Launch kernel with %d blocks and %d threads\n", cudaBlocksPerGrid,
     cudaThreadsPerBlock);

  err = cuLaunchKernel(KernelInfo->Func, cudaBlocksPerGrid, 1, 1,
      cudaThreadsPerBlock, 1, 1, 0 /*bytes of shared memory*/, 0, &args[0], 0);
  if (err != CUDA_SUCCESS) {
    DP("Device kernel launch failed!\n");
    CUDA_ERR_STRING(err);
    return OFFLOAD_FAIL;
  }

  DP("Launch of entry point at " DPxMOD " successful!\n",
      DPxPTR(tgt_entry_ptr));

  CUresult sync_err = cuCtxSynchronize();
  if (sync_err != CUDA_SUCCESS) {
    DP("Kernel execution error at " DPxMOD "!\n", DPxPTR(tgt_entry_ptr));
    CUDA_ERR_STRING(sync_err);
    return OFFLOAD_FAIL;
  } else {
    DP("Kernel execution at " DPxMOD " successful!\n", DPxPTR(tgt_entry_ptr));
  }

  return OFFLOAD_SUCCESS;
}

int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr,
    void **tgt_args, ptrdiff_t *tgt_offsets, int32_t arg_num) {
  // use one team and the default number of threads.
  const int32_t team_num = 1;
  const int32_t thread_limit = 0;
  return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args,
      tgt_offsets, arg_num, team_num, thread_limit, 0);
}

#ifdef __cplusplus
}
#endif