/* * kmp_atomic.h - ATOMIC header file */ //===----------------------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.txt for details. // //===----------------------------------------------------------------------===// #ifndef KMP_ATOMIC_H #define KMP_ATOMIC_H #include "kmp_os.h" #include "kmp_lock.h" #if OMPT_SUPPORT #include "ompt-specific.h" #endif // C++ build port. // Intel compiler does not support _Complex datatype on win. // Intel compiler supports _Complex datatype on lin and mac. // On the other side, there is a problem of stack alignment on lin_32 and mac_32 // if the rhs is cmplx80 or cmplx128 typedef'ed datatype. // The decision is: to use compiler supported _Complex type on lin and mac, // to use typedef'ed types on win. // Condition for WIN64 was modified in anticipation of 10.1 build compiler. #if defined( __cplusplus ) && ( KMP_OS_WINDOWS ) // create shortcuts for c99 complex types // Visual Studio cannot have function parameters that have the // align __declspec attribute, so we must remove it. (Compiler Error C2719) #if KMP_COMPILER_MSVC # undef KMP_DO_ALIGN # define KMP_DO_ALIGN(alignment) /* Nothing */ #endif #if (_MSC_VER < 1600) && defined(_DEBUG) // Workaround for the problem of _DebugHeapTag unresolved external. // This problem prevented to use our static debug library for C tests // compiled with /MDd option (the library itself built with /MTd), #undef _DEBUG #define _DEBUG_TEMPORARILY_UNSET_ #endif #include template< typename type_lhs, typename type_rhs > std::complex< type_lhs > __kmp_lhs_div_rhs( const std::complex< type_lhs >& lhs, const std::complex< type_rhs >& rhs ) { type_lhs a = lhs.real(); type_lhs b = lhs.imag(); type_rhs c = rhs.real(); type_rhs d = rhs.imag(); type_rhs den = c*c + d*d; type_rhs r = ( a*c + b*d ); type_rhs i = ( b*c - a*d ); std::complex< type_lhs > ret( r/den, i/den ); return ret; } // complex8 struct __kmp_cmplx64_t : std::complex< double > { __kmp_cmplx64_t() : std::complex< double > () {} __kmp_cmplx64_t( const std::complex< double >& cd ) : std::complex< double > ( cd ) {} void operator /= ( const __kmp_cmplx64_t& rhs ) { std::complex< double > lhs = *this; *this = __kmp_lhs_div_rhs( lhs, rhs ); } __kmp_cmplx64_t operator / ( const __kmp_cmplx64_t& rhs ) { std::complex< double > lhs = *this; return __kmp_lhs_div_rhs( lhs, rhs ); } }; typedef struct __kmp_cmplx64_t kmp_cmplx64; // complex4 struct __kmp_cmplx32_t : std::complex< float > { __kmp_cmplx32_t() : std::complex< float > () {} __kmp_cmplx32_t( const std::complex& cf ) : std::complex< float > ( cf ) {} __kmp_cmplx32_t operator + ( const __kmp_cmplx32_t& b ) { std::complex< float > lhs = *this; std::complex< float > rhs = b; return ( lhs + rhs ); } __kmp_cmplx32_t operator - ( const __kmp_cmplx32_t& b ) { std::complex< float > lhs = *this; std::complex< float > rhs = b; return ( lhs - rhs ); } __kmp_cmplx32_t operator * ( const __kmp_cmplx32_t& b ) { std::complex< float > lhs = *this; std::complex< float > rhs = b; return ( lhs * rhs ); } __kmp_cmplx32_t operator + ( const kmp_cmplx64& b ) { kmp_cmplx64 t = kmp_cmplx64( *this ) + b; std::complex< double > d( t ); std::complex< float > f( d ); __kmp_cmplx32_t r( f ); return r; } __kmp_cmplx32_t operator - ( const kmp_cmplx64& b ) { kmp_cmplx64 t = kmp_cmplx64( *this ) - b; std::complex< double > d( t ); std::complex< float > f( d ); __kmp_cmplx32_t r( f ); return r; } __kmp_cmplx32_t operator * ( const kmp_cmplx64& b ) { kmp_cmplx64 t = kmp_cmplx64( *this ) * b; std::complex< double > d( t ); std::complex< float > f( d ); __kmp_cmplx32_t r( f ); return r; } void operator /= ( const __kmp_cmplx32_t& rhs ) { std::complex< float > lhs = *this; *this = __kmp_lhs_div_rhs( lhs, rhs ); } __kmp_cmplx32_t operator / ( const __kmp_cmplx32_t& rhs ) { std::complex< float > lhs = *this; return __kmp_lhs_div_rhs( lhs, rhs ); } void operator /= ( const kmp_cmplx64& rhs ) { std::complex< float > lhs = *this; *this = __kmp_lhs_div_rhs( lhs, rhs ); } __kmp_cmplx32_t operator / ( const kmp_cmplx64& rhs ) { std::complex< float > lhs = *this; return __kmp_lhs_div_rhs( lhs, rhs ); } }; typedef struct __kmp_cmplx32_t kmp_cmplx32; // complex10 struct KMP_DO_ALIGN( 16 ) __kmp_cmplx80_t : std::complex< long double > { __kmp_cmplx80_t() : std::complex< long double > () {} __kmp_cmplx80_t( const std::complex< long double >& cld ) : std::complex< long double > ( cld ) {} void operator /= ( const __kmp_cmplx80_t& rhs ) { std::complex< long double > lhs = *this; *this = __kmp_lhs_div_rhs( lhs, rhs ); } __kmp_cmplx80_t operator / ( const __kmp_cmplx80_t& rhs ) { std::complex< long double > lhs = *this; return __kmp_lhs_div_rhs( lhs, rhs ); } }; typedef KMP_DO_ALIGN( 16 ) struct __kmp_cmplx80_t kmp_cmplx80; // complex16 #if KMP_HAVE_QUAD struct __kmp_cmplx128_t : std::complex< _Quad > { __kmp_cmplx128_t() : std::complex< _Quad > () {} __kmp_cmplx128_t( const std::complex< _Quad >& cq ) : std::complex< _Quad > ( cq ) {} void operator /= ( const __kmp_cmplx128_t& rhs ) { std::complex< _Quad > lhs = *this; *this = __kmp_lhs_div_rhs( lhs, rhs ); } __kmp_cmplx128_t operator / ( const __kmp_cmplx128_t& rhs ) { std::complex< _Quad > lhs = *this; return __kmp_lhs_div_rhs( lhs, rhs ); } }; typedef struct __kmp_cmplx128_t kmp_cmplx128; #endif /* KMP_HAVE_QUAD */ #ifdef _DEBUG_TEMPORARILY_UNSET_ #undef _DEBUG_TEMPORARILY_UNSET_ // Set it back now #define _DEBUG 1 #endif #else // create shortcuts for c99 complex types typedef float _Complex kmp_cmplx32; typedef double _Complex kmp_cmplx64; typedef long double _Complex kmp_cmplx80; #if KMP_HAVE_QUAD typedef _Quad _Complex kmp_cmplx128; #endif #endif // Compiler 12.0 changed alignment of 16 and 32-byte arguments (like _Quad // and kmp_cmplx128) on IA-32 architecture. The following aligned structures // are implemented to support the old alignment in 10.1, 11.0, 11.1 and // introduce the new alignment in 12.0. See CQ88405. #if KMP_ARCH_X86 && KMP_HAVE_QUAD // 4-byte aligned structures for backward compatibility. #pragma pack( push, 4 ) struct KMP_DO_ALIGN( 4 ) Quad_a4_t { _Quad q; Quad_a4_t( ) : q( ) {} Quad_a4_t( const _Quad & cq ) : q ( cq ) {} Quad_a4_t operator + ( const Quad_a4_t& b ) { _Quad lhs = (*this).q; _Quad rhs = b.q; return (Quad_a4_t)( lhs + rhs ); } Quad_a4_t operator - ( const Quad_a4_t& b ) { _Quad lhs = (*this).q; _Quad rhs = b.q; return (Quad_a4_t)( lhs - rhs ); } Quad_a4_t operator * ( const Quad_a4_t& b ) { _Quad lhs = (*this).q; _Quad rhs = b.q; return (Quad_a4_t)( lhs * rhs ); } Quad_a4_t operator / ( const Quad_a4_t& b ) { _Quad lhs = (*this).q; _Quad rhs = b.q; return (Quad_a4_t)( lhs / rhs ); } }; struct KMP_DO_ALIGN( 4 ) kmp_cmplx128_a4_t { kmp_cmplx128 q; kmp_cmplx128_a4_t() : q () {} kmp_cmplx128_a4_t( const kmp_cmplx128 & c128 ) : q ( c128 ) {} kmp_cmplx128_a4_t operator + ( const kmp_cmplx128_a4_t& b ) { kmp_cmplx128 lhs = (*this).q; kmp_cmplx128 rhs = b.q; return (kmp_cmplx128_a4_t)( lhs + rhs ); } kmp_cmplx128_a4_t operator - ( const kmp_cmplx128_a4_t& b ) { kmp_cmplx128 lhs = (*this).q; kmp_cmplx128 rhs = b.q; return (kmp_cmplx128_a4_t)( lhs - rhs ); } kmp_cmplx128_a4_t operator * ( const kmp_cmplx128_a4_t& b ) { kmp_cmplx128 lhs = (*this).q; kmp_cmplx128 rhs = b.q; return (kmp_cmplx128_a4_t)( lhs * rhs ); } kmp_cmplx128_a4_t operator / ( const kmp_cmplx128_a4_t& b ) { kmp_cmplx128 lhs = (*this).q; kmp_cmplx128 rhs = b.q; return (kmp_cmplx128_a4_t)( lhs / rhs ); } }; #pragma pack( pop ) // New 16-byte aligned structures for 12.0 compiler. struct KMP_DO_ALIGN( 16 ) Quad_a16_t { _Quad q; Quad_a16_t( ) : q( ) {} Quad_a16_t( const _Quad & cq ) : q ( cq ) {} Quad_a16_t operator + ( const Quad_a16_t& b ) { _Quad lhs = (*this).q; _Quad rhs = b.q; return (Quad_a16_t)( lhs + rhs ); } Quad_a16_t operator - ( const Quad_a16_t& b ) { _Quad lhs = (*this).q; _Quad rhs = b.q; return (Quad_a16_t)( lhs - rhs ); } Quad_a16_t operator * ( const Quad_a16_t& b ) { _Quad lhs = (*this).q; _Quad rhs = b.q; return (Quad_a16_t)( lhs * rhs ); } Quad_a16_t operator / ( const Quad_a16_t& b ) { _Quad lhs = (*this).q; _Quad rhs = b.q; return (Quad_a16_t)( lhs / rhs ); } }; struct KMP_DO_ALIGN( 16 ) kmp_cmplx128_a16_t { kmp_cmplx128 q; kmp_cmplx128_a16_t() : q () {} kmp_cmplx128_a16_t( const kmp_cmplx128 & c128 ) : q ( c128 ) {} kmp_cmplx128_a16_t operator + ( const kmp_cmplx128_a16_t& b ) { kmp_cmplx128 lhs = (*this).q; kmp_cmplx128 rhs = b.q; return (kmp_cmplx128_a16_t)( lhs + rhs ); } kmp_cmplx128_a16_t operator - ( const kmp_cmplx128_a16_t& b ) { kmp_cmplx128 lhs = (*this).q; kmp_cmplx128 rhs = b.q; return (kmp_cmplx128_a16_t)( lhs - rhs ); } kmp_cmplx128_a16_t operator * ( const kmp_cmplx128_a16_t& b ) { kmp_cmplx128 lhs = (*this).q; kmp_cmplx128 rhs = b.q; return (kmp_cmplx128_a16_t)( lhs * rhs ); } kmp_cmplx128_a16_t operator / ( const kmp_cmplx128_a16_t& b ) { kmp_cmplx128 lhs = (*this).q; kmp_cmplx128 rhs = b.q; return (kmp_cmplx128_a16_t)( lhs / rhs ); } }; #endif #if ( KMP_ARCH_X86 ) #define QUAD_LEGACY Quad_a4_t #define CPLX128_LEG kmp_cmplx128_a4_t #else #define QUAD_LEGACY _Quad #define CPLX128_LEG kmp_cmplx128 #endif #ifdef __cplusplus extern "C" { #endif extern int __kmp_atomic_mode; // // Atomic locks can easily become contended, so we use queuing locks for them. // typedef kmp_queuing_lock_t kmp_atomic_lock_t; static inline void __kmp_acquire_atomic_lock( kmp_atomic_lock_t *lck, kmp_int32 gtid ) { #if OMPT_SUPPORT && OMPT_TRACE if (ompt_enabled && ompt_callbacks.ompt_callback(ompt_event_wait_atomic)) { ompt_callbacks.ompt_callback(ompt_event_wait_atomic)( (ompt_wait_id_t) lck); } #endif __kmp_acquire_queuing_lock( lck, gtid ); #if OMPT_SUPPORT && OMPT_TRACE if (ompt_enabled && ompt_callbacks.ompt_callback(ompt_event_acquired_atomic)) { ompt_callbacks.ompt_callback(ompt_event_acquired_atomic)( (ompt_wait_id_t) lck); } #endif } static inline int __kmp_test_atomic_lock( kmp_atomic_lock_t *lck, kmp_int32 gtid ) { return __kmp_test_queuing_lock( lck, gtid ); } static inline void __kmp_release_atomic_lock( kmp_atomic_lock_t *lck, kmp_int32 gtid ) { __kmp_release_queuing_lock( lck, gtid ); #if OMPT_SUPPORT && OMPT_BLAME if (ompt_enabled && ompt_callbacks.ompt_callback(ompt_event_release_atomic)) { ompt_callbacks.ompt_callback(ompt_event_release_atomic)( (ompt_wait_id_t) lck); } #endif } static inline void __kmp_init_atomic_lock( kmp_atomic_lock_t *lck ) { __kmp_init_queuing_lock( lck ); } static inline void __kmp_destroy_atomic_lock( kmp_atomic_lock_t *lck ) { __kmp_destroy_queuing_lock( lck ); } // Global Locks extern kmp_atomic_lock_t __kmp_atomic_lock; /* Control access to all user coded atomics in Gnu compat mode */ extern kmp_atomic_lock_t __kmp_atomic_lock_1i; /* Control access to all user coded atomics for 1-byte fixed data types */ extern kmp_atomic_lock_t __kmp_atomic_lock_2i; /* Control access to all user coded atomics for 2-byte fixed data types */ extern kmp_atomic_lock_t __kmp_atomic_lock_4i; /* Control access to all user coded atomics for 4-byte fixed data types */ extern kmp_atomic_lock_t __kmp_atomic_lock_4r; /* Control access to all user coded atomics for kmp_real32 data type */ extern kmp_atomic_lock_t __kmp_atomic_lock_8i; /* Control access to all user coded atomics for 8-byte fixed data types */ extern kmp_atomic_lock_t __kmp_atomic_lock_8r; /* Control access to all user coded atomics for kmp_real64 data type */ extern kmp_atomic_lock_t __kmp_atomic_lock_8c; /* Control access to all user coded atomics for complex byte data type */ extern kmp_atomic_lock_t __kmp_atomic_lock_10r; /* Control access to all user coded atomics for long double data type */ extern kmp_atomic_lock_t __kmp_atomic_lock_16r; /* Control access to all user coded atomics for _Quad data type */ extern kmp_atomic_lock_t __kmp_atomic_lock_16c; /* Control access to all user coded atomics for double complex data type*/ extern kmp_atomic_lock_t __kmp_atomic_lock_20c; /* Control access to all user coded atomics for long double complex type*/ extern kmp_atomic_lock_t __kmp_atomic_lock_32c; /* Control access to all user coded atomics for _Quad complex data type */ // // Below routines for atomic UPDATE are listed // // 1-byte void __kmpc_atomic_fixed1_add( ident_t *id_ref, int gtid, char * lhs, char rhs ); void __kmpc_atomic_fixed1_andb( ident_t *id_ref, int gtid, char * lhs, char rhs ); void __kmpc_atomic_fixed1_div( ident_t *id_ref, int gtid, char * lhs, char rhs ); void __kmpc_atomic_fixed1u_div( ident_t *id_ref, int gtid, unsigned char * lhs, unsigned char rhs ); void __kmpc_atomic_fixed1_mul( ident_t *id_ref, int gtid, char * lhs, char rhs ); void __kmpc_atomic_fixed1_orb( ident_t *id_ref, int gtid, char * lhs, char rhs ); void __kmpc_atomic_fixed1_shl( ident_t *id_ref, int gtid, char * lhs, char rhs ); void __kmpc_atomic_fixed1_shr( ident_t *id_ref, int gtid, char * lhs, char rhs ); void __kmpc_atomic_fixed1u_shr( ident_t *id_ref, int gtid, unsigned char * lhs, unsigned char rhs ); void __kmpc_atomic_fixed1_sub( ident_t *id_ref, int gtid, char * lhs, char rhs ); void __kmpc_atomic_fixed1_xor( ident_t *id_ref, int gtid, char * lhs, char rhs ); // 2-byte void __kmpc_atomic_fixed2_add( ident_t *id_ref, int gtid, short * lhs, short rhs ); void __kmpc_atomic_fixed2_andb( ident_t *id_ref, int gtid, short * lhs, short rhs ); void __kmpc_atomic_fixed2_div( ident_t *id_ref, int gtid, short * lhs, short rhs ); void __kmpc_atomic_fixed2u_div( ident_t *id_ref, int gtid, unsigned short * lhs, unsigned short rhs ); void __kmpc_atomic_fixed2_mul( ident_t *id_ref, int gtid, short * lhs, short rhs ); void __kmpc_atomic_fixed2_orb( ident_t *id_ref, int gtid, short * lhs, short rhs ); void __kmpc_atomic_fixed2_shl( ident_t *id_ref, int gtid, short * lhs, short rhs ); void __kmpc_atomic_fixed2_shr( ident_t *id_ref, int gtid, short * lhs, short rhs ); void __kmpc_atomic_fixed2u_shr( ident_t *id_ref, int gtid, unsigned short * lhs, unsigned short rhs ); void __kmpc_atomic_fixed2_sub( ident_t *id_ref, int gtid, short * lhs, short rhs ); void __kmpc_atomic_fixed2_xor( ident_t *id_ref, int gtid, short * lhs, short rhs ); // 4-byte add / sub fixed void __kmpc_atomic_fixed4_add( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs ); void __kmpc_atomic_fixed4_sub( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs ); // 4-byte add / sub float void __kmpc_atomic_float4_add( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs ); void __kmpc_atomic_float4_sub( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs ); // 8-byte add / sub fixed void __kmpc_atomic_fixed8_add( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs ); void __kmpc_atomic_fixed8_sub( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs ); // 8-byte add / sub float void __kmpc_atomic_float8_add( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs ); void __kmpc_atomic_float8_sub( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs ); // 4-byte fixed void __kmpc_atomic_fixed4_andb( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs ); void __kmpc_atomic_fixed4_div( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs ); void __kmpc_atomic_fixed4u_div( ident_t *id_ref, int gtid, kmp_uint32 * lhs, kmp_uint32 rhs ); void __kmpc_atomic_fixed4_mul( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs ); void __kmpc_atomic_fixed4_orb( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs ); void __kmpc_atomic_fixed4_shl( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs ); void __kmpc_atomic_fixed4_shr( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs ); void __kmpc_atomic_fixed4u_shr( ident_t *id_ref, int gtid, kmp_uint32 * lhs, kmp_uint32 rhs ); void __kmpc_atomic_fixed4_xor( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs ); // 8-byte fixed void __kmpc_atomic_fixed8_andb( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs ); void __kmpc_atomic_fixed8_div( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs ); void __kmpc_atomic_fixed8u_div( ident_t *id_ref, int gtid, kmp_uint64 * lhs, kmp_uint64 rhs ); void __kmpc_atomic_fixed8_mul( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs ); void __kmpc_atomic_fixed8_orb( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs ); void __kmpc_atomic_fixed8_shl( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs ); void __kmpc_atomic_fixed8_shr( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs ); void __kmpc_atomic_fixed8u_shr( ident_t *id_ref, int gtid, kmp_uint64 * lhs, kmp_uint64 rhs ); void __kmpc_atomic_fixed8_xor( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs ); // 4-byte float void __kmpc_atomic_float4_div( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs ); void __kmpc_atomic_float4_mul( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs ); // 8-byte float void __kmpc_atomic_float8_div( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs ); void __kmpc_atomic_float8_mul( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs ); // 1-, 2-, 4-, 8-byte logical (&&, ||) void __kmpc_atomic_fixed1_andl( ident_t *id_ref, int gtid, char * lhs, char rhs ); void __kmpc_atomic_fixed1_orl( ident_t *id_ref, int gtid, char * lhs, char rhs ); void __kmpc_atomic_fixed2_andl( ident_t *id_ref, int gtid, short * lhs, short rhs ); void __kmpc_atomic_fixed2_orl( ident_t *id_ref, int gtid, short * lhs, short rhs ); void __kmpc_atomic_fixed4_andl( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs ); void __kmpc_atomic_fixed4_orl( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs ); void __kmpc_atomic_fixed8_andl( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs ); void __kmpc_atomic_fixed8_orl( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs ); // MIN / MAX void __kmpc_atomic_fixed1_max( ident_t *id_ref, int gtid, char * lhs, char rhs ); void __kmpc_atomic_fixed1_min( ident_t *id_ref, int gtid, char * lhs, char rhs ); void __kmpc_atomic_fixed2_max( ident_t *id_ref, int gtid, short * lhs, short rhs ); void __kmpc_atomic_fixed2_min( ident_t *id_ref, int gtid, short * lhs, short rhs ); void __kmpc_atomic_fixed4_max( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs ); void __kmpc_atomic_fixed4_min( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs ); void __kmpc_atomic_fixed8_max( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs ); void __kmpc_atomic_fixed8_min( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs ); void __kmpc_atomic_float4_max( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs ); void __kmpc_atomic_float4_min( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs ); void __kmpc_atomic_float8_max( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs ); void __kmpc_atomic_float8_min( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs ); #if KMP_HAVE_QUAD void __kmpc_atomic_float16_max( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs ); void __kmpc_atomic_float16_min( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs ); #if ( KMP_ARCH_X86 ) // Routines with 16-byte arguments aligned to 16-byte boundary; IA-32 architecture only void __kmpc_atomic_float16_max_a16( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs ); void __kmpc_atomic_float16_min_a16( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs ); #endif #endif // .NEQV. (same as xor) void __kmpc_atomic_fixed1_neqv( ident_t *id_ref, int gtid, char * lhs, char rhs ); void __kmpc_atomic_fixed2_neqv( ident_t *id_ref, int gtid, short * lhs, short rhs ); void __kmpc_atomic_fixed4_neqv( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs ); void __kmpc_atomic_fixed8_neqv( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs ); // .EQV. (same as ~xor) void __kmpc_atomic_fixed1_eqv( ident_t *id_ref, int gtid, char * lhs, char rhs ); void __kmpc_atomic_fixed2_eqv( ident_t *id_ref, int gtid, short * lhs, short rhs ); void __kmpc_atomic_fixed4_eqv( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs ); void __kmpc_atomic_fixed8_eqv( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs ); // long double type void __kmpc_atomic_float10_add( ident_t *id_ref, int gtid, long double * lhs, long double rhs ); void __kmpc_atomic_float10_sub( ident_t *id_ref, int gtid, long double * lhs, long double rhs ); void __kmpc_atomic_float10_mul( ident_t *id_ref, int gtid, long double * lhs, long double rhs ); void __kmpc_atomic_float10_div( ident_t *id_ref, int gtid, long double * lhs, long double rhs ); // _Quad type #if KMP_HAVE_QUAD void __kmpc_atomic_float16_add( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs ); void __kmpc_atomic_float16_sub( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs ); void __kmpc_atomic_float16_mul( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs ); void __kmpc_atomic_float16_div( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs ); #if ( KMP_ARCH_X86 ) // Routines with 16-byte arguments aligned to 16-byte boundary void __kmpc_atomic_float16_add_a16( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs ); void __kmpc_atomic_float16_sub_a16( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs ); void __kmpc_atomic_float16_mul_a16( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs ); void __kmpc_atomic_float16_div_a16( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs ); #endif #endif // routines for complex types void __kmpc_atomic_cmplx4_add( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs ); void __kmpc_atomic_cmplx4_sub( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs ); void __kmpc_atomic_cmplx4_mul( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs ); void __kmpc_atomic_cmplx4_div( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs ); void __kmpc_atomic_cmplx8_add( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs ); void __kmpc_atomic_cmplx8_sub( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs ); void __kmpc_atomic_cmplx8_mul( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs ); void __kmpc_atomic_cmplx8_div( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs ); void __kmpc_atomic_cmplx10_add( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs ); void __kmpc_atomic_cmplx10_sub( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs ); void __kmpc_atomic_cmplx10_mul( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs ); void __kmpc_atomic_cmplx10_div( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs ); #if KMP_HAVE_QUAD void __kmpc_atomic_cmplx16_add( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs ); void __kmpc_atomic_cmplx16_sub( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs ); void __kmpc_atomic_cmplx16_mul( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs ); void __kmpc_atomic_cmplx16_div( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs ); #if ( KMP_ARCH_X86 ) // Routines with 16-byte arguments aligned to 16-byte boundary void __kmpc_atomic_cmplx16_add_a16( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs ); void __kmpc_atomic_cmplx16_sub_a16( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs ); void __kmpc_atomic_cmplx16_mul_a16( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs ); void __kmpc_atomic_cmplx16_div_a16( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs ); #endif #endif #if OMP_40_ENABLED // OpenMP 4.0: x = expr binop x for non-commutative operations. // Supported only on IA-32 architecture and Intel(R) 64 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 void __kmpc_atomic_fixed1_sub_rev( ident_t *id_ref, int gtid, char * lhs, char rhs ); void __kmpc_atomic_fixed1_div_rev( ident_t *id_ref, int gtid, char * lhs, char rhs ); void __kmpc_atomic_fixed1u_div_rev( ident_t *id_ref, int gtid, unsigned char * lhs, unsigned char rhs ); void __kmpc_atomic_fixed1_shl_rev( ident_t *id_ref, int gtid, char * lhs, char rhs ); void __kmpc_atomic_fixed1_shr_rev( ident_t *id_ref, int gtid, char * lhs, char rhs ); void __kmpc_atomic_fixed1u_shr_rev( ident_t *id_ref, int gtid, unsigned char * lhs, unsigned char rhs ); void __kmpc_atomic_fixed2_sub_rev( ident_t *id_ref, int gtid, short * lhs, short rhs ); void __kmpc_atomic_fixed2_div_rev( ident_t *id_ref, int gtid, short * lhs, short rhs ); void __kmpc_atomic_fixed2u_div_rev( ident_t *id_ref, int gtid, unsigned short * lhs, unsigned short rhs ); void __kmpc_atomic_fixed2_shl_rev( ident_t *id_ref, int gtid, short * lhs, short rhs ); void __kmpc_atomic_fixed2_shr_rev( ident_t *id_ref, int gtid, short * lhs, short rhs ); void __kmpc_atomic_fixed2u_shr_rev( ident_t *id_ref, int gtid, unsigned short * lhs, unsigned short rhs ); void __kmpc_atomic_fixed4_sub_rev( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs ); void __kmpc_atomic_fixed4_div_rev( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs ); void __kmpc_atomic_fixed4u_div_rev( ident_t *id_ref, int gtid, kmp_uint32 * lhs, kmp_uint32 rhs ); void __kmpc_atomic_fixed4_shl_rev( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs ); void __kmpc_atomic_fixed4_shr_rev( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs ); void __kmpc_atomic_fixed4u_shr_rev( ident_t *id_ref, int gtid, kmp_uint32 * lhs, kmp_uint32 rhs ); void __kmpc_atomic_fixed8_sub_rev( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs ); void __kmpc_atomic_fixed8_div_rev( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs ); void __kmpc_atomic_fixed8u_div_rev( ident_t *id_ref, int gtid, kmp_uint64 * lhs, kmp_uint64 rhs ); void __kmpc_atomic_fixed8_shl_rev( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs ); void __kmpc_atomic_fixed8_shr_rev( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs ); void __kmpc_atomic_fixed8u_shr_rev( ident_t *id_ref, int gtid, kmp_uint64 * lhs, kmp_uint64 rhs ); void __kmpc_atomic_float4_sub_rev( ident_t *id_ref, int gtid, float * lhs, float rhs ); void __kmpc_atomic_float4_div_rev( ident_t *id_ref, int gtid, float * lhs, float rhs ); void __kmpc_atomic_float8_sub_rev( ident_t *id_ref, int gtid, double * lhs, double rhs ); void __kmpc_atomic_float8_div_rev( ident_t *id_ref, int gtid, double * lhs, double rhs ); void __kmpc_atomic_float10_sub_rev( ident_t *id_ref, int gtid, long double * lhs, long double rhs ); void __kmpc_atomic_float10_div_rev( ident_t *id_ref, int gtid, long double * lhs, long double rhs ); #if KMP_HAVE_QUAD void __kmpc_atomic_float16_sub_rev( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs ); void __kmpc_atomic_float16_div_rev( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs ); #endif void __kmpc_atomic_cmplx4_sub_rev( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs ); void __kmpc_atomic_cmplx4_div_rev( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs ); void __kmpc_atomic_cmplx8_sub_rev( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs ); void __kmpc_atomic_cmplx8_div_rev( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs ); void __kmpc_atomic_cmplx10_sub_rev( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs ); void __kmpc_atomic_cmplx10_div_rev( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs ); #if KMP_HAVE_QUAD void __kmpc_atomic_cmplx16_sub_rev( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs ); void __kmpc_atomic_cmplx16_div_rev( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs ); #if ( KMP_ARCH_X86 ) // Routines with 16-byte arguments aligned to 16-byte boundary void __kmpc_atomic_float16_sub_a16_rev( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs ); void __kmpc_atomic_float16_div_a16_rev( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs ); void __kmpc_atomic_cmplx16_sub_a16_rev( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs ); void __kmpc_atomic_cmplx16_div_a16_rev( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs ); #endif #endif // KMP_HAVE_QUAD #endif //KMP_ARCH_X86 || KMP_ARCH_X86_64 #endif //OMP_40_ENABLED // routines for mixed types // RHS=float8 void __kmpc_atomic_fixed1_mul_float8( ident_t *id_ref, int gtid, char * lhs, kmp_real64 rhs ); void __kmpc_atomic_fixed1_div_float8( ident_t *id_ref, int gtid, char * lhs, kmp_real64 rhs ); void __kmpc_atomic_fixed2_mul_float8( ident_t *id_ref, int gtid, short * lhs, kmp_real64 rhs ); void __kmpc_atomic_fixed2_div_float8( ident_t *id_ref, int gtid, short * lhs, kmp_real64 rhs ); void __kmpc_atomic_fixed4_mul_float8( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_real64 rhs ); void __kmpc_atomic_fixed4_div_float8( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_real64 rhs ); void __kmpc_atomic_fixed8_mul_float8( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_real64 rhs ); void __kmpc_atomic_fixed8_div_float8( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_real64 rhs ); void __kmpc_atomic_float4_add_float8( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real64 rhs ); void __kmpc_atomic_float4_sub_float8( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real64 rhs ); void __kmpc_atomic_float4_mul_float8( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real64 rhs ); void __kmpc_atomic_float4_div_float8( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real64 rhs ); // RHS=float16 (deprecated, to be removed when we are sure the compiler does not use them) #if KMP_HAVE_QUAD void __kmpc_atomic_fixed1_add_fp( ident_t *id_ref, int gtid, char * lhs, _Quad rhs ); void __kmpc_atomic_fixed1_sub_fp( ident_t *id_ref, int gtid, char * lhs, _Quad rhs ); void __kmpc_atomic_fixed1_mul_fp( ident_t *id_ref, int gtid, char * lhs, _Quad rhs ); void __kmpc_atomic_fixed1_div_fp( ident_t *id_ref, int gtid, char * lhs, _Quad rhs ); void __kmpc_atomic_fixed1u_div_fp( ident_t *id_ref, int gtid, unsigned char * lhs, _Quad rhs ); void __kmpc_atomic_fixed2_add_fp( ident_t *id_ref, int gtid, short * lhs, _Quad rhs ); void __kmpc_atomic_fixed2_sub_fp( ident_t *id_ref, int gtid, short * lhs, _Quad rhs ); void __kmpc_atomic_fixed2_mul_fp( ident_t *id_ref, int gtid, short * lhs, _Quad rhs ); void __kmpc_atomic_fixed2_div_fp( ident_t *id_ref, int gtid, short * lhs, _Quad rhs ); void __kmpc_atomic_fixed2u_div_fp( ident_t *id_ref, int gtid, unsigned short * lhs, _Quad rhs ); void __kmpc_atomic_fixed4_add_fp( ident_t *id_ref, int gtid, kmp_int32 * lhs, _Quad rhs ); void __kmpc_atomic_fixed4_sub_fp( ident_t *id_ref, int gtid, kmp_int32 * lhs, _Quad rhs ); void __kmpc_atomic_fixed4_mul_fp( ident_t *id_ref, int gtid, kmp_int32 * lhs, _Quad rhs ); void __kmpc_atomic_fixed4_div_fp( ident_t *id_ref, int gtid, kmp_int32 * lhs, _Quad rhs ); void __kmpc_atomic_fixed4u_div_fp( ident_t *id_ref, int gtid, kmp_uint32 * lhs, _Quad rhs ); void __kmpc_atomic_fixed8_add_fp( ident_t *id_ref, int gtid, kmp_int64 * lhs, _Quad rhs ); void __kmpc_atomic_fixed8_sub_fp( ident_t *id_ref, int gtid, kmp_int64 * lhs, _Quad rhs ); void __kmpc_atomic_fixed8_mul_fp( ident_t *id_ref, int gtid, kmp_int64 * lhs, _Quad rhs ); void __kmpc_atomic_fixed8_div_fp( ident_t *id_ref, int gtid, kmp_int64 * lhs, _Quad rhs ); void __kmpc_atomic_fixed8u_div_fp( ident_t *id_ref, int gtid, kmp_uint64 * lhs, _Quad rhs ); void __kmpc_atomic_float4_add_fp( ident_t *id_ref, int gtid, kmp_real32 * lhs, _Quad rhs ); void __kmpc_atomic_float4_sub_fp( ident_t *id_ref, int gtid, kmp_real32 * lhs, _Quad rhs ); void __kmpc_atomic_float4_mul_fp( ident_t *id_ref, int gtid, kmp_real32 * lhs, _Quad rhs ); void __kmpc_atomic_float4_div_fp( ident_t *id_ref, int gtid, kmp_real32 * lhs, _Quad rhs ); void __kmpc_atomic_float8_add_fp( ident_t *id_ref, int gtid, kmp_real64 * lhs, _Quad rhs ); void __kmpc_atomic_float8_sub_fp( ident_t *id_ref, int gtid, kmp_real64 * lhs, _Quad rhs ); void __kmpc_atomic_float8_mul_fp( ident_t *id_ref, int gtid, kmp_real64 * lhs, _Quad rhs ); void __kmpc_atomic_float8_div_fp( ident_t *id_ref, int gtid, kmp_real64 * lhs, _Quad rhs ); void __kmpc_atomic_float10_add_fp( ident_t *id_ref, int gtid, long double * lhs, _Quad rhs ); void __kmpc_atomic_float10_sub_fp( ident_t *id_ref, int gtid, long double * lhs, _Quad rhs ); void __kmpc_atomic_float10_mul_fp( ident_t *id_ref, int gtid, long double * lhs, _Quad rhs ); void __kmpc_atomic_float10_div_fp( ident_t *id_ref, int gtid, long double * lhs, _Quad rhs ); #endif // KMP_HAVE_QUAD // RHS=cmplx8 void __kmpc_atomic_cmplx4_add_cmplx8( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx64 rhs ); void __kmpc_atomic_cmplx4_sub_cmplx8( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx64 rhs ); void __kmpc_atomic_cmplx4_mul_cmplx8( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx64 rhs ); void __kmpc_atomic_cmplx4_div_cmplx8( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx64 rhs ); // generic atomic routines void __kmpc_atomic_1( ident_t *id_ref, int gtid, void* lhs, void* rhs, void (*f)( void *, void *, void * ) ); void __kmpc_atomic_2( ident_t *id_ref, int gtid, void* lhs, void* rhs, void (*f)( void *, void *, void * ) ); void __kmpc_atomic_4( ident_t *id_ref, int gtid, void* lhs, void* rhs, void (*f)( void *, void *, void * ) ); void __kmpc_atomic_8( ident_t *id_ref, int gtid, void* lhs, void* rhs, void (*f)( void *, void *, void * ) ); void __kmpc_atomic_10( ident_t *id_ref, int gtid, void* lhs, void* rhs, void (*f)( void *, void *, void * ) ); void __kmpc_atomic_16( ident_t *id_ref, int gtid, void* lhs, void* rhs, void (*f)( void *, void *, void * ) ); void __kmpc_atomic_20( ident_t *id_ref, int gtid, void* lhs, void* rhs, void (*f)( void *, void *, void * ) ); void __kmpc_atomic_32( ident_t *id_ref, int gtid, void* lhs, void* rhs, void (*f)( void *, void *, void * ) ); // READ, WRITE, CAPTURE are supported only on IA-32 architecture and Intel(R) 64 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 // // Below routines for atomic READ are listed // char __kmpc_atomic_fixed1_rd( ident_t *id_ref, int gtid, char * loc ); short __kmpc_atomic_fixed2_rd( ident_t *id_ref, int gtid, short * loc ); kmp_int32 __kmpc_atomic_fixed4_rd( ident_t *id_ref, int gtid, kmp_int32 * loc ); kmp_int64 __kmpc_atomic_fixed8_rd( ident_t *id_ref, int gtid, kmp_int64 * loc ); kmp_real32 __kmpc_atomic_float4_rd( ident_t *id_ref, int gtid, kmp_real32 * loc ); kmp_real64 __kmpc_atomic_float8_rd( ident_t *id_ref, int gtid, kmp_real64 * loc ); long double __kmpc_atomic_float10_rd( ident_t *id_ref, int gtid, long double * loc ); #if KMP_HAVE_QUAD QUAD_LEGACY __kmpc_atomic_float16_rd( ident_t *id_ref, int gtid, QUAD_LEGACY * loc ); #endif // Fix for CQ220361: cmplx4 READ will return void on Windows* OS; read value will be // returned through an additional parameter #if ( KMP_OS_WINDOWS ) void __kmpc_atomic_cmplx4_rd( kmp_cmplx32 * out, ident_t *id_ref, int gtid, kmp_cmplx32 * loc ); #else kmp_cmplx32 __kmpc_atomic_cmplx4_rd( ident_t *id_ref, int gtid, kmp_cmplx32 * loc ); #endif kmp_cmplx64 __kmpc_atomic_cmplx8_rd( ident_t *id_ref, int gtid, kmp_cmplx64 * loc ); kmp_cmplx80 __kmpc_atomic_cmplx10_rd( ident_t *id_ref, int gtid, kmp_cmplx80 * loc ); #if KMP_HAVE_QUAD CPLX128_LEG __kmpc_atomic_cmplx16_rd( ident_t *id_ref, int gtid, CPLX128_LEG * loc ); #if ( KMP_ARCH_X86 ) // Routines with 16-byte arguments aligned to 16-byte boundary Quad_a16_t __kmpc_atomic_float16_a16_rd( ident_t * id_ref, int gtid, Quad_a16_t * loc ); kmp_cmplx128_a16_t __kmpc_atomic_cmplx16_a16_rd( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * loc ); #endif #endif // // Below routines for atomic WRITE are listed // void __kmpc_atomic_fixed1_wr( ident_t *id_ref, int gtid, char * lhs, char rhs ); void __kmpc_atomic_fixed2_wr( ident_t *id_ref, int gtid, short * lhs, short rhs ); void __kmpc_atomic_fixed4_wr( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs ); void __kmpc_atomic_fixed8_wr( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs ); void __kmpc_atomic_float4_wr( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs ); void __kmpc_atomic_float8_wr( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs ); void __kmpc_atomic_float10_wr( ident_t *id_ref, int gtid, long double * lhs, long double rhs ); #if KMP_HAVE_QUAD void __kmpc_atomic_float16_wr( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs ); #endif void __kmpc_atomic_cmplx4_wr( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs ); void __kmpc_atomic_cmplx8_wr( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs ); void __kmpc_atomic_cmplx10_wr( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs ); #if KMP_HAVE_QUAD void __kmpc_atomic_cmplx16_wr( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs ); #if ( KMP_ARCH_X86 ) // Routines with 16-byte arguments aligned to 16-byte boundary void __kmpc_atomic_float16_a16_wr( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs ); void __kmpc_atomic_cmplx16_a16_wr( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs ); #endif #endif // // Below routines for atomic CAPTURE are listed // // 1-byte char __kmpc_atomic_fixed1_add_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag); char __kmpc_atomic_fixed1_andb_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag); char __kmpc_atomic_fixed1_div_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag); unsigned char __kmpc_atomic_fixed1u_div_cpt( ident_t *id_ref, int gtid, unsigned char * lhs, unsigned char rhs, int flag); char __kmpc_atomic_fixed1_mul_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag); char __kmpc_atomic_fixed1_orb_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag); char __kmpc_atomic_fixed1_shl_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag); char __kmpc_atomic_fixed1_shr_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag); unsigned char __kmpc_atomic_fixed1u_shr_cpt( ident_t *id_ref, int gtid, unsigned char * lhs, unsigned char rhs, int flag); char __kmpc_atomic_fixed1_sub_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag); char __kmpc_atomic_fixed1_xor_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag); // 2-byte short __kmpc_atomic_fixed2_add_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag); short __kmpc_atomic_fixed2_andb_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag); short __kmpc_atomic_fixed2_div_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag); unsigned short __kmpc_atomic_fixed2u_div_cpt( ident_t *id_ref, int gtid, unsigned short * lhs, unsigned short rhs, int flag); short __kmpc_atomic_fixed2_mul_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag); short __kmpc_atomic_fixed2_orb_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag); short __kmpc_atomic_fixed2_shl_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag); short __kmpc_atomic_fixed2_shr_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag); unsigned short __kmpc_atomic_fixed2u_shr_cpt( ident_t *id_ref, int gtid, unsigned short * lhs, unsigned short rhs, int flag); short __kmpc_atomic_fixed2_sub_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag); short __kmpc_atomic_fixed2_xor_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag); // 4-byte add / sub fixed kmp_int32 __kmpc_atomic_fixed4_add_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_sub_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag); // 4-byte add / sub float kmp_real32 __kmpc_atomic_float4_add_cpt( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs, int flag); kmp_real32 __kmpc_atomic_float4_sub_cpt( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs, int flag); // 8-byte add / sub fixed kmp_int64 __kmpc_atomic_fixed8_add_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_sub_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag); // 8-byte add / sub float kmp_real64 __kmpc_atomic_float8_add_cpt( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs, int flag); kmp_real64 __kmpc_atomic_float8_sub_cpt( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs, int flag); // 4-byte fixed kmp_int32 __kmpc_atomic_fixed4_andb_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_div_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag); kmp_uint32 __kmpc_atomic_fixed4u_div_cpt( ident_t *id_ref, int gtid, kmp_uint32 * lhs, kmp_uint32 rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_mul_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_orb_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_shl_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_shr_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag); kmp_uint32 __kmpc_atomic_fixed4u_shr_cpt( ident_t *id_ref, int gtid, kmp_uint32 * lhs, kmp_uint32 rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_xor_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag); // 8-byte fixed kmp_int64 __kmpc_atomic_fixed8_andb_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_div_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag); kmp_uint64 __kmpc_atomic_fixed8u_div_cpt( ident_t *id_ref, int gtid, kmp_uint64 * lhs, kmp_uint64 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_mul_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_orb_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_shl_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_shr_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag); kmp_uint64 __kmpc_atomic_fixed8u_shr_cpt( ident_t *id_ref, int gtid, kmp_uint64 * lhs, kmp_uint64 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_xor_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag); // 4-byte float kmp_real32 __kmpc_atomic_float4_div_cpt( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs, int flag); kmp_real32 __kmpc_atomic_float4_mul_cpt( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs, int flag); // 8-byte float kmp_real64 __kmpc_atomic_float8_div_cpt( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs, int flag); kmp_real64 __kmpc_atomic_float8_mul_cpt( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs, int flag); // 1-, 2-, 4-, 8-byte logical (&&, ||) char __kmpc_atomic_fixed1_andl_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag); char __kmpc_atomic_fixed1_orl_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag); short __kmpc_atomic_fixed2_andl_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag); short __kmpc_atomic_fixed2_orl_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_andl_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_orl_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_andl_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_orl_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag); // MIN / MAX char __kmpc_atomic_fixed1_max_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag); char __kmpc_atomic_fixed1_min_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag); short __kmpc_atomic_fixed2_max_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag); short __kmpc_atomic_fixed2_min_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_max_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_min_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_max_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_min_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag); kmp_real32 __kmpc_atomic_float4_max_cpt( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs, int flag); kmp_real32 __kmpc_atomic_float4_min_cpt( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs, int flag); kmp_real64 __kmpc_atomic_float8_max_cpt( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs, int flag); kmp_real64 __kmpc_atomic_float8_min_cpt( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs, int flag); #if KMP_HAVE_QUAD QUAD_LEGACY __kmpc_atomic_float16_max_cpt( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs, int flag); QUAD_LEGACY __kmpc_atomic_float16_min_cpt( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs, int flag); #endif // .NEQV. (same as xor) char __kmpc_atomic_fixed1_neqv_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag); short __kmpc_atomic_fixed2_neqv_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_neqv_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_neqv_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag); // .EQV. (same as ~xor) char __kmpc_atomic_fixed1_eqv_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag); short __kmpc_atomic_fixed2_eqv_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_eqv_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_eqv_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag); // long double type long double __kmpc_atomic_float10_add_cpt( ident_t *id_ref, int gtid, long double * lhs, long double rhs, int flag); long double __kmpc_atomic_float10_sub_cpt( ident_t *id_ref, int gtid, long double * lhs, long double rhs, int flag); long double __kmpc_atomic_float10_mul_cpt( ident_t *id_ref, int gtid, long double * lhs, long double rhs, int flag); long double __kmpc_atomic_float10_div_cpt( ident_t *id_ref, int gtid, long double * lhs, long double rhs, int flag); #if KMP_HAVE_QUAD // _Quad type QUAD_LEGACY __kmpc_atomic_float16_add_cpt( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs, int flag); QUAD_LEGACY __kmpc_atomic_float16_sub_cpt( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs, int flag); QUAD_LEGACY __kmpc_atomic_float16_mul_cpt( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs, int flag); QUAD_LEGACY __kmpc_atomic_float16_div_cpt( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs, int flag); #endif // routines for complex types // Workaround for cmplx4 routines - return void; captured value is returned via the argument void __kmpc_atomic_cmplx4_add_cpt( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs, kmp_cmplx32 * out, int flag); void __kmpc_atomic_cmplx4_sub_cpt( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs, kmp_cmplx32 * out, int flag); void __kmpc_atomic_cmplx4_mul_cpt( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs, kmp_cmplx32 * out, int flag); void __kmpc_atomic_cmplx4_div_cpt( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs, kmp_cmplx32 * out, int flag); kmp_cmplx64 __kmpc_atomic_cmplx8_add_cpt( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs, int flag); kmp_cmplx64 __kmpc_atomic_cmplx8_sub_cpt( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs, int flag); kmp_cmplx64 __kmpc_atomic_cmplx8_mul_cpt( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs, int flag); kmp_cmplx64 __kmpc_atomic_cmplx8_div_cpt( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs, int flag); kmp_cmplx80 __kmpc_atomic_cmplx10_add_cpt( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs, int flag); kmp_cmplx80 __kmpc_atomic_cmplx10_sub_cpt( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs, int flag); kmp_cmplx80 __kmpc_atomic_cmplx10_mul_cpt( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs, int flag); kmp_cmplx80 __kmpc_atomic_cmplx10_div_cpt( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs, int flag); #if KMP_HAVE_QUAD CPLX128_LEG __kmpc_atomic_cmplx16_add_cpt( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs, int flag); CPLX128_LEG __kmpc_atomic_cmplx16_sub_cpt( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs, int flag); CPLX128_LEG __kmpc_atomic_cmplx16_mul_cpt( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs, int flag); CPLX128_LEG __kmpc_atomic_cmplx16_div_cpt( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs, int flag); #if ( KMP_ARCH_X86 ) // Routines with 16-byte arguments aligned to 16-byte boundary Quad_a16_t __kmpc_atomic_float16_add_a16_cpt( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs, int flag); Quad_a16_t __kmpc_atomic_float16_sub_a16_cpt( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs, int flag); Quad_a16_t __kmpc_atomic_float16_mul_a16_cpt( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs, int flag); Quad_a16_t __kmpc_atomic_float16_div_a16_cpt( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs, int flag); Quad_a16_t __kmpc_atomic_float16_max_a16_cpt( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs, int flag); Quad_a16_t __kmpc_atomic_float16_min_a16_cpt( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs, int flag); kmp_cmplx128_a16_t __kmpc_atomic_cmplx16_add_a16_cpt( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs, int flag); kmp_cmplx128_a16_t __kmpc_atomic_cmplx16_sub_a16_cpt( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs, int flag); kmp_cmplx128_a16_t __kmpc_atomic_cmplx16_mul_a16_cpt( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs, int flag); kmp_cmplx128_a16_t __kmpc_atomic_cmplx16_div_a16_cpt( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs, int flag); #endif #endif void __kmpc_atomic_start(void); void __kmpc_atomic_end(void); #if OMP_40_ENABLED // OpenMP 4.0: v = x = expr binop x; { v = x; x = expr binop x; } { x = expr binop x; v = x; } for non-commutative operations. char __kmpc_atomic_fixed1_sub_cpt_rev( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag ); char __kmpc_atomic_fixed1_div_cpt_rev( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag ); unsigned char __kmpc_atomic_fixed1u_div_cpt_rev( ident_t *id_ref, int gtid, unsigned char * lhs, unsigned char rhs, int flag ); char __kmpc_atomic_fixed1_shl_cpt_rev( ident_t *id_ref, int gtid, char * lhs, char rhs , int flag); char __kmpc_atomic_fixed1_shr_cpt_rev( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag ); unsigned char __kmpc_atomic_fixed1u_shr_cpt_rev( ident_t *id_ref, int gtid, unsigned char * lhs, unsigned char rhs, int flag ); short __kmpc_atomic_fixed2_sub_cpt_rev( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag ); short __kmpc_atomic_fixed2_div_cpt_rev( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag ); unsigned short __kmpc_atomic_fixed2u_div_cpt_rev( ident_t *id_ref, int gtid, unsigned short * lhs, unsigned short rhs, int flag ); short __kmpc_atomic_fixed2_shl_cpt_rev( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag ); short __kmpc_atomic_fixed2_shr_cpt_rev( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag ); unsigned short __kmpc_atomic_fixed2u_shr_cpt_rev( ident_t *id_ref, int gtid, unsigned short * lhs, unsigned short rhs, int flag ); kmp_int32 __kmpc_atomic_fixed4_sub_cpt_rev( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag ); kmp_int32 __kmpc_atomic_fixed4_div_cpt_rev( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag ); kmp_uint32 __kmpc_atomic_fixed4u_div_cpt_rev( ident_t *id_ref, int gtid, kmp_uint32 * lhs, kmp_uint32 rhs, int flag ); kmp_int32 __kmpc_atomic_fixed4_shl_cpt_rev( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag ); kmp_int32 __kmpc_atomic_fixed4_shr_cpt_rev( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag ); kmp_uint32 __kmpc_atomic_fixed4u_shr_cpt_rev( ident_t *id_ref, int gtid, kmp_uint32 * lhs, kmp_uint32 rhs, int flag ); kmp_int64 __kmpc_atomic_fixed8_sub_cpt_rev( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag ); kmp_int64 __kmpc_atomic_fixed8_div_cpt_rev( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag ); kmp_uint64 __kmpc_atomic_fixed8u_div_cpt_rev( ident_t *id_ref, int gtid, kmp_uint64 * lhs, kmp_uint64 rhs, int flag ); kmp_int64 __kmpc_atomic_fixed8_shl_cpt_rev( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag ); kmp_int64 __kmpc_atomic_fixed8_shr_cpt_rev( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag ); kmp_uint64 __kmpc_atomic_fixed8u_shr_cpt_rev( ident_t *id_ref, int gtid, kmp_uint64 * lhs, kmp_uint64 rhs, int flag ); float __kmpc_atomic_float4_sub_cpt_rev( ident_t *id_ref, int gtid, float * lhs, float rhs, int flag ); float __kmpc_atomic_float4_div_cpt_rev( ident_t *id_ref, int gtid, float * lhs, float rhs, int flag ); double __kmpc_atomic_float8_sub_cpt_rev( ident_t *id_ref, int gtid, double * lhs, double rhs, int flag ); double __kmpc_atomic_float8_div_cpt_rev( ident_t *id_ref, int gtid, double * lhs, double rhs, int flag ); long double __kmpc_atomic_float10_sub_cpt_rev( ident_t *id_ref, int gtid, long double * lhs, long double rhs, int flag ); long double __kmpc_atomic_float10_div_cpt_rev( ident_t *id_ref, int gtid, long double * lhs, long double rhs, int flag ); #if KMP_HAVE_QUAD QUAD_LEGACY __kmpc_atomic_float16_sub_cpt_rev( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs, int flag ); QUAD_LEGACY __kmpc_atomic_float16_div_cpt_rev( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs, int flag ); #endif // Workaround for cmplx4 routines - return void; captured value is returned via the argument void __kmpc_atomic_cmplx4_sub_cpt_rev( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs, kmp_cmplx32 * out, int flag ); void __kmpc_atomic_cmplx4_div_cpt_rev( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs, kmp_cmplx32 * out, int flag ); kmp_cmplx64 __kmpc_atomic_cmplx8_sub_cpt_rev( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs, int flag ); kmp_cmplx64 __kmpc_atomic_cmplx8_div_cpt_rev( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs, int flag ); kmp_cmplx80 __kmpc_atomic_cmplx10_sub_cpt_rev( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs, int flag ); kmp_cmplx80 __kmpc_atomic_cmplx10_div_cpt_rev( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs, int flag ); #if KMP_HAVE_QUAD CPLX128_LEG __kmpc_atomic_cmplx16_sub_cpt_rev( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs, int flag ); CPLX128_LEG __kmpc_atomic_cmplx16_div_cpt_rev( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs, int flag ); #if ( KMP_ARCH_X86 ) Quad_a16_t __kmpc_atomic_float16_sub_a16_cpt_rev( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs, int flag ); Quad_a16_t __kmpc_atomic_float16_div_a16_cpt_rev( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs, int flag ); kmp_cmplx128_a16_t __kmpc_atomic_cmplx16_sub_a16_cpt_rev( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs, int flag ); kmp_cmplx128_a16_t __kmpc_atomic_cmplx16_div_a16_cpt_rev( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs, int flag ); #endif #endif // OpenMP 4.0 Capture-write (swap): {v = x; x = expr;} char __kmpc_atomic_fixed1_swp( ident_t *id_ref, int gtid, char * lhs, char rhs ); short __kmpc_atomic_fixed2_swp( ident_t *id_ref, int gtid, short * lhs, short rhs ); kmp_int32 __kmpc_atomic_fixed4_swp( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs ); kmp_int64 __kmpc_atomic_fixed8_swp( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs ); float __kmpc_atomic_float4_swp( ident_t *id_ref, int gtid, float * lhs, float rhs ); double __kmpc_atomic_float8_swp( ident_t *id_ref, int gtid, double * lhs, double rhs ); long double __kmpc_atomic_float10_swp( ident_t *id_ref, int gtid, long double * lhs, long double rhs ); #if KMP_HAVE_QUAD QUAD_LEGACY __kmpc_atomic_float16_swp( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs ); #endif // !!! TODO: check if we need a workaround here void __kmpc_atomic_cmplx4_swp( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs, kmp_cmplx32 * out ); //kmp_cmplx32 __kmpc_atomic_cmplx4_swp( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs ); kmp_cmplx64 __kmpc_atomic_cmplx8_swp( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs ); kmp_cmplx80 __kmpc_atomic_cmplx10_swp( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs ); #if KMP_HAVE_QUAD CPLX128_LEG __kmpc_atomic_cmplx16_swp( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs ); #if ( KMP_ARCH_X86 ) Quad_a16_t __kmpc_atomic_float16_a16_swp( ident_t *id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs ); kmp_cmplx128_a16_t __kmpc_atomic_cmplx16_a16_swp( ident_t *id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs ); #endif #endif // End of OpenMP 4.0 capture #endif //OMP_40_ENABLED #endif //KMP_ARCH_X86 || KMP_ARCH_X86_64 /* ------------------------------------------------------------------------ */ /* ------------------------------------------------------------------------ */ #ifdef __cplusplus } // extern "C" #endif #endif /* KMP_ATOMIC_H */ // end of file