aboutsummaryrefslogtreecommitdiff
path: root/rc3/runtime/src/z_Linux_util.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'rc3/runtime/src/z_Linux_util.cpp')
-rw-r--r--rc3/runtime/src/z_Linux_util.cpp2422
1 files changed, 2422 insertions, 0 deletions
diff --git a/rc3/runtime/src/z_Linux_util.cpp b/rc3/runtime/src/z_Linux_util.cpp
new file mode 100644
index 0000000..aa0302c
--- /dev/null
+++ b/rc3/runtime/src/z_Linux_util.cpp
@@ -0,0 +1,2422 @@
+/*
+ * z_Linux_util.cpp -- platform specific routines.
+ */
+
+//===----------------------------------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "kmp.h"
+#include "kmp_affinity.h"
+#include "kmp_i18n.h"
+#include "kmp_io.h"
+#include "kmp_itt.h"
+#include "kmp_lock.h"
+#include "kmp_stats.h"
+#include "kmp_str.h"
+#include "kmp_wait_release.h"
+#include "kmp_wrapper_getpid.h"
+
+#if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
+#include <alloca.h>
+#endif
+#include <math.h> // HUGE_VAL.
+#include <sys/resource.h>
+#include <sys/syscall.h>
+#include <sys/time.h>
+#include <sys/times.h>
+#include <unistd.h>
+
+#if KMP_OS_LINUX && !KMP_OS_CNK
+#include <sys/sysinfo.h>
+#if KMP_USE_FUTEX
+// We should really include <futex.h>, but that causes compatibility problems on
+// different Linux* OS distributions that either require that you include (or
+// break when you try to include) <pci/types.h>. Since all we need is the two
+// macros below (which are part of the kernel ABI, so can't change) we just
+// define the constants here and don't include <futex.h>
+#ifndef FUTEX_WAIT
+#define FUTEX_WAIT 0
+#endif
+#ifndef FUTEX_WAKE
+#define FUTEX_WAKE 1
+#endif
+#endif
+#elif KMP_OS_DARWIN
+#include <mach/mach.h>
+#include <sys/sysctl.h>
+#elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
+#include <pthread_np.h>
+#elif KMP_OS_NETBSD
+#include <sys/types.h>
+#include <sys/sysctl.h>
+#endif
+
+#include <ctype.h>
+#include <dirent.h>
+#include <fcntl.h>
+
+#include "tsan_annotations.h"
+
+struct kmp_sys_timer {
+ struct timespec start;
+};
+
+// Convert timespec to nanoseconds.
+#define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec)
+
+static struct kmp_sys_timer __kmp_sys_timer_data;
+
+#if KMP_HANDLE_SIGNALS
+typedef void (*sig_func_t)(int);
+STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
+static sigset_t __kmp_sigset;
+#endif
+
+static int __kmp_init_runtime = FALSE;
+
+static int __kmp_fork_count = 0;
+
+static pthread_condattr_t __kmp_suspend_cond_attr;
+static pthread_mutexattr_t __kmp_suspend_mutex_attr;
+
+static kmp_cond_align_t __kmp_wait_cv;
+static kmp_mutex_align_t __kmp_wait_mx;
+
+kmp_uint64 __kmp_ticks_per_msec = 1000000;
+
+#ifdef DEBUG_SUSPEND
+static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
+ KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
+ cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
+ cond->c_cond.__c_waiting);
+}
+#endif
+
+#if (KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED)
+
+/* Affinity support */
+
+void __kmp_affinity_bind_thread(int which) {
+ KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
+ "Illegal set affinity operation when not capable");
+
+ kmp_affin_mask_t *mask;
+ KMP_CPU_ALLOC_ON_STACK(mask);
+ KMP_CPU_ZERO(mask);
+ KMP_CPU_SET(which, mask);
+ __kmp_set_system_affinity(mask, TRUE);
+ KMP_CPU_FREE_FROM_STACK(mask);
+}
+
+/* Determine if we can access affinity functionality on this version of
+ * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
+ * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
+void __kmp_affinity_determine_capable(const char *env_var) {
+// Check and see if the OS supports thread affinity.
+
+#define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
+
+ int gCode;
+ int sCode;
+ unsigned char *buf;
+ buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
+
+ // If Linux* OS:
+ // If the syscall fails or returns a suggestion for the size,
+ // then we don't have to search for an appropriate size.
+ gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf);
+ KA_TRACE(30, ("__kmp_affinity_determine_capable: "
+ "initial getaffinity call returned %d errno = %d\n",
+ gCode, errno));
+
+ // if ((gCode < 0) && (errno == ENOSYS))
+ if (gCode < 0) {
+ // System call not supported
+ if (__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
+ (__kmp_affinity_type != affinity_default) &&
+ (__kmp_affinity_type != affinity_disabled))) {
+ int error = errno;
+ kmp_msg_t err_code = KMP_ERR(error);
+ __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
+ err_code, __kmp_msg_null);
+ if (__kmp_generate_warnings == kmp_warnings_off) {
+ __kmp_str_free(&err_code.str);
+ }
+ }
+ KMP_AFFINITY_DISABLE();
+ KMP_INTERNAL_FREE(buf);
+ return;
+ }
+ if (gCode > 0) { // Linux* OS only
+ // The optimal situation: the OS returns the size of the buffer it expects.
+ //
+ // A verification of correct behavior is that Isetaffinity on a NULL
+ // buffer with the same size fails with errno set to EFAULT.
+ sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
+ KA_TRACE(30, ("__kmp_affinity_determine_capable: "
+ "setaffinity for mask size %d returned %d errno = %d\n",
+ gCode, sCode, errno));
+ if (sCode < 0) {
+ if (errno == ENOSYS) {
+ if (__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings &&
+ (__kmp_affinity_type != affinity_none) &&
+ (__kmp_affinity_type != affinity_default) &&
+ (__kmp_affinity_type != affinity_disabled))) {
+ int error = errno;
+ kmp_msg_t err_code = KMP_ERR(error);
+ __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
+ err_code, __kmp_msg_null);
+ if (__kmp_generate_warnings == kmp_warnings_off) {
+ __kmp_str_free(&err_code.str);
+ }
+ }
+ KMP_AFFINITY_DISABLE();
+ KMP_INTERNAL_FREE(buf);
+ }
+ if (errno == EFAULT) {
+ KMP_AFFINITY_ENABLE(gCode);
+ KA_TRACE(10, ("__kmp_affinity_determine_capable: "
+ "affinity supported (mask size %d)\n",
+ (int)__kmp_affin_mask_size));
+ KMP_INTERNAL_FREE(buf);
+ return;
+ }
+ }
+ }
+
+ // Call the getaffinity system call repeatedly with increasing set sizes
+ // until we succeed, or reach an upper bound on the search.
+ KA_TRACE(30, ("__kmp_affinity_determine_capable: "
+ "searching for proper set size\n"));
+ int size;
+ for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
+ gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
+ KA_TRACE(30, ("__kmp_affinity_determine_capable: "
+ "getaffinity for mask size %d returned %d errno = %d\n",
+ size, gCode, errno));
+
+ if (gCode < 0) {
+ if (errno == ENOSYS) {
+ // We shouldn't get here
+ KA_TRACE(30, ("__kmp_affinity_determine_capable: "
+ "inconsistent OS call behavior: errno == ENOSYS for mask "
+ "size %d\n",
+ size));
+ if (__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings &&
+ (__kmp_affinity_type != affinity_none) &&
+ (__kmp_affinity_type != affinity_default) &&
+ (__kmp_affinity_type != affinity_disabled))) {
+ int error = errno;
+ kmp_msg_t err_code = KMP_ERR(error);
+ __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
+ err_code, __kmp_msg_null);
+ if (__kmp_generate_warnings == kmp_warnings_off) {
+ __kmp_str_free(&err_code.str);
+ }
+ }
+ KMP_AFFINITY_DISABLE();
+ KMP_INTERNAL_FREE(buf);
+ return;
+ }
+ continue;
+ }
+
+ sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
+ KA_TRACE(30, ("__kmp_affinity_determine_capable: "
+ "setaffinity for mask size %d returned %d errno = %d\n",
+ gCode, sCode, errno));
+ if (sCode < 0) {
+ if (errno == ENOSYS) { // Linux* OS only
+ // We shouldn't get here
+ KA_TRACE(30, ("__kmp_affinity_determine_capable: "
+ "inconsistent OS call behavior: errno == ENOSYS for mask "
+ "size %d\n",
+ size));
+ if (__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings &&
+ (__kmp_affinity_type != affinity_none) &&
+ (__kmp_affinity_type != affinity_default) &&
+ (__kmp_affinity_type != affinity_disabled))) {
+ int error = errno;
+ kmp_msg_t err_code = KMP_ERR(error);
+ __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
+ err_code, __kmp_msg_null);
+ if (__kmp_generate_warnings == kmp_warnings_off) {
+ __kmp_str_free(&err_code.str);
+ }
+ }
+ KMP_AFFINITY_DISABLE();
+ KMP_INTERNAL_FREE(buf);
+ return;
+ }
+ if (errno == EFAULT) {
+ KMP_AFFINITY_ENABLE(gCode);
+ KA_TRACE(10, ("__kmp_affinity_determine_capable: "
+ "affinity supported (mask size %d)\n",
+ (int)__kmp_affin_mask_size));
+ KMP_INTERNAL_FREE(buf);
+ return;
+ }
+ }
+ }
+ // save uncaught error code
+ // int error = errno;
+ KMP_INTERNAL_FREE(buf);
+ // restore uncaught error code, will be printed at the next KMP_WARNING below
+ // errno = error;
+
+ // Affinity is not supported
+ KMP_AFFINITY_DISABLE();
+ KA_TRACE(10, ("__kmp_affinity_determine_capable: "
+ "cannot determine mask size - affinity not supported\n"));
+ if (__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
+ (__kmp_affinity_type != affinity_default) &&
+ (__kmp_affinity_type != affinity_disabled))) {
+ KMP_WARNING(AffCantGetMaskSize, env_var);
+ }
+}
+
+#endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
+
+#if KMP_USE_FUTEX
+
+int __kmp_futex_determine_capable() {
+ int loc = 0;
+ int rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
+ int retval = (rc == 0) || (errno != ENOSYS);
+
+ KA_TRACE(10,
+ ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
+ KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
+ retval ? "" : " not"));
+
+ return retval;
+}
+
+#endif // KMP_USE_FUTEX
+
+#if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
+/* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
+ use compare_and_store for these routines */
+
+kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
+ kmp_int8 old_value, new_value;
+
+ old_value = TCR_1(*p);
+ new_value = old_value | d;
+
+ while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
+ KMP_CPU_PAUSE();
+ old_value = TCR_1(*p);
+ new_value = old_value | d;
+ }
+ return old_value;
+}
+
+kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
+ kmp_int8 old_value, new_value;
+
+ old_value = TCR_1(*p);
+ new_value = old_value & d;
+
+ while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
+ KMP_CPU_PAUSE();
+ old_value = TCR_1(*p);
+ new_value = old_value & d;
+ }
+ return old_value;
+}
+
+kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
+ kmp_uint32 old_value, new_value;
+
+ old_value = TCR_4(*p);
+ new_value = old_value | d;
+
+ while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
+ KMP_CPU_PAUSE();
+ old_value = TCR_4(*p);
+ new_value = old_value | d;
+ }
+ return old_value;
+}
+
+kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
+ kmp_uint32 old_value, new_value;
+
+ old_value = TCR_4(*p);
+ new_value = old_value & d;
+
+ while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
+ KMP_CPU_PAUSE();
+ old_value = TCR_4(*p);
+ new_value = old_value & d;
+ }
+ return old_value;
+}
+
+#if KMP_ARCH_X86
+kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
+ kmp_int8 old_value, new_value;
+
+ old_value = TCR_1(*p);
+ new_value = old_value + d;
+
+ while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
+ KMP_CPU_PAUSE();
+ old_value = TCR_1(*p);
+ new_value = old_value + d;
+ }
+ return old_value;
+}
+
+kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
+ kmp_int64 old_value, new_value;
+
+ old_value = TCR_8(*p);
+ new_value = old_value + d;
+
+ while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
+ KMP_CPU_PAUSE();
+ old_value = TCR_8(*p);
+ new_value = old_value + d;
+ }
+ return old_value;
+}
+#endif /* KMP_ARCH_X86 */
+
+kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
+ kmp_uint64 old_value, new_value;
+
+ old_value = TCR_8(*p);
+ new_value = old_value | d;
+ while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
+ KMP_CPU_PAUSE();
+ old_value = TCR_8(*p);
+ new_value = old_value | d;
+ }
+ return old_value;
+}
+
+kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
+ kmp_uint64 old_value, new_value;
+
+ old_value = TCR_8(*p);
+ new_value = old_value & d;
+ while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
+ KMP_CPU_PAUSE();
+ old_value = TCR_8(*p);
+ new_value = old_value & d;
+ }
+ return old_value;
+}
+
+#endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
+
+void __kmp_terminate_thread(int gtid) {
+ int status;
+ kmp_info_t *th = __kmp_threads[gtid];
+
+ if (!th)
+ return;
+
+#ifdef KMP_CANCEL_THREADS
+ KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
+ status = pthread_cancel(th->th.th_info.ds.ds_thread);
+ if (status != 0 && status != ESRCH) {
+ __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
+ __kmp_msg_null);
+ }
+#endif
+ __kmp_yield(TRUE);
+} //
+
+/* Set thread stack info according to values returned by pthread_getattr_np().
+ If values are unreasonable, assume call failed and use incremental stack
+ refinement method instead. Returns TRUE if the stack parameters could be
+ determined exactly, FALSE if incremental refinement is necessary. */
+static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
+ int stack_data;
+#if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
+ KMP_OS_HURD
+ pthread_attr_t attr;
+ int status;
+ size_t size = 0;
+ void *addr = 0;
+
+ /* Always do incremental stack refinement for ubermaster threads since the
+ initial thread stack range can be reduced by sibling thread creation so
+ pthread_attr_getstack may cause thread gtid aliasing */
+ if (!KMP_UBER_GTID(gtid)) {
+
+ /* Fetch the real thread attributes */
+ status = pthread_attr_init(&attr);
+ KMP_CHECK_SYSFAIL("pthread_attr_init", status);
+#if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD
+ status = pthread_attr_get_np(pthread_self(), &attr);
+ KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
+#else
+ status = pthread_getattr_np(pthread_self(), &attr);
+ KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
+#endif
+ status = pthread_attr_getstack(&attr, &addr, &size);
+ KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
+ KA_TRACE(60,
+ ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
+ " %lu, low addr: %p\n",
+ gtid, size, addr));
+ status = pthread_attr_destroy(&attr);
+ KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
+ }
+
+ if (size != 0 && addr != 0) { // was stack parameter determination successful?
+ /* Store the correct base and size */
+ TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
+ TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
+ TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
+ return TRUE;
+ }
+#endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||
+ KMP_OS_HURD */
+ /* Use incremental refinement starting from initial conservative estimate */
+ TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
+ TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
+ TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
+ return FALSE;
+}
+
+static void *__kmp_launch_worker(void *thr) {
+ int status, old_type, old_state;
+#ifdef KMP_BLOCK_SIGNALS
+ sigset_t new_set, old_set;
+#endif /* KMP_BLOCK_SIGNALS */
+ void *exit_val;
+#if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
+ KMP_OS_OPENBSD || KMP_OS_HURD
+ void *volatile padding = 0;
+#endif
+ int gtid;
+
+ gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
+ __kmp_gtid_set_specific(gtid);
+#ifdef KMP_TDATA_GTID
+ __kmp_gtid = gtid;
+#endif
+#if KMP_STATS_ENABLED
+ // set thread local index to point to thread-specific stats
+ __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
+ __kmp_stats_thread_ptr->startLife();
+ KMP_SET_THREAD_STATE(IDLE);
+ KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
+#endif
+
+#if USE_ITT_BUILD
+ __kmp_itt_thread_name(gtid);
+#endif /* USE_ITT_BUILD */
+
+#if KMP_AFFINITY_SUPPORTED
+ __kmp_affinity_set_init_mask(gtid, FALSE);
+#endif
+
+#ifdef KMP_CANCEL_THREADS
+ status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
+ KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
+ // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
+ status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
+ KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
+#endif
+
+#if KMP_ARCH_X86 || KMP_ARCH_X86_64
+ // Set FP control regs to be a copy of the parallel initialization thread's.
+ __kmp_clear_x87_fpu_status_word();
+ __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
+ __kmp_load_mxcsr(&__kmp_init_mxcsr);
+#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
+
+#ifdef KMP_BLOCK_SIGNALS
+ status = sigfillset(&new_set);
+ KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
+ status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
+ KMP_CHECK_SYSFAIL("pthread_sigmask", status);
+#endif /* KMP_BLOCK_SIGNALS */
+
+#if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
+ KMP_OS_OPENBSD
+ if (__kmp_stkoffset > 0 && gtid > 0) {
+ padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
+ }
+#endif
+
+ KMP_MB();
+ __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
+
+ __kmp_check_stack_overlap((kmp_info_t *)thr);
+
+ exit_val = __kmp_launch_thread((kmp_info_t *)thr);
+
+#ifdef KMP_BLOCK_SIGNALS
+ status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
+ KMP_CHECK_SYSFAIL("pthread_sigmask", status);
+#endif /* KMP_BLOCK_SIGNALS */
+
+ return exit_val;
+}
+
+#if KMP_USE_MONITOR
+/* The monitor thread controls all of the threads in the complex */
+
+static void *__kmp_launch_monitor(void *thr) {
+ int status, old_type, old_state;
+#ifdef KMP_BLOCK_SIGNALS
+ sigset_t new_set;
+#endif /* KMP_BLOCK_SIGNALS */
+ struct timespec interval;
+ int yield_count;
+ int yield_cycles = 0;
+
+ KMP_MB(); /* Flush all pending memory write invalidates. */
+
+ KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
+
+ /* register us as the monitor thread */
+ __kmp_gtid_set_specific(KMP_GTID_MONITOR);
+#ifdef KMP_TDATA_GTID
+ __kmp_gtid = KMP_GTID_MONITOR;
+#endif
+
+ KMP_MB();
+
+#if USE_ITT_BUILD
+ // Instruct Intel(R) Threading Tools to ignore monitor thread.
+ __kmp_itt_thread_ignore();
+#endif /* USE_ITT_BUILD */
+
+ __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
+ (kmp_info_t *)thr);
+
+ __kmp_check_stack_overlap((kmp_info_t *)thr);
+
+#ifdef KMP_CANCEL_THREADS
+ status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
+ KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
+ // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
+ status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
+ KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
+#endif
+
+#if KMP_REAL_TIME_FIX
+ // This is a potential fix which allows application with real-time scheduling
+ // policy work. However, decision about the fix is not made yet, so it is
+ // disabled by default.
+ { // Are program started with real-time scheduling policy?
+ int sched = sched_getscheduler(0);
+ if (sched == SCHED_FIFO || sched == SCHED_RR) {
+ // Yes, we are a part of real-time application. Try to increase the
+ // priority of the monitor.
+ struct sched_param param;
+ int max_priority = sched_get_priority_max(sched);
+ int rc;
+ KMP_WARNING(RealTimeSchedNotSupported);
+ sched_getparam(0, &param);
+ if (param.sched_priority < max_priority) {
+ param.sched_priority += 1;
+ rc = sched_setscheduler(0, sched, &param);
+ if (rc != 0) {
+ int error = errno;
+ kmp_msg_t err_code = KMP_ERR(error);
+ __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
+ err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
+ if (__kmp_generate_warnings == kmp_warnings_off) {
+ __kmp_str_free(&err_code.str);
+ }
+ }
+ } else {
+ // We cannot abort here, because number of CPUs may be enough for all
+ // the threads, including the monitor thread, so application could
+ // potentially work...
+ __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
+ KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
+ __kmp_msg_null);
+ }
+ }
+ // AC: free thread that waits for monitor started
+ TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
+ }
+#endif // KMP_REAL_TIME_FIX
+
+ KMP_MB(); /* Flush all pending memory write invalidates. */
+
+ if (__kmp_monitor_wakeups == 1) {
+ interval.tv_sec = 1;
+ interval.tv_nsec = 0;
+ } else {
+ interval.tv_sec = 0;
+ interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
+ }
+
+ KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
+
+ if (__kmp_yield_cycle) {
+ __kmp_yielding_on = 0; /* Start out with yielding shut off */
+ yield_count = __kmp_yield_off_count;
+ } else {
+ __kmp_yielding_on = 1; /* Yielding is on permanently */
+ }
+
+ while (!TCR_4(__kmp_global.g.g_done)) {
+ struct timespec now;
+ struct timeval tval;
+
+ /* This thread monitors the state of the system */
+
+ KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
+
+ status = gettimeofday(&tval, NULL);
+ KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
+ TIMEVAL_TO_TIMESPEC(&tval, &now);
+
+ now.tv_sec += interval.tv_sec;
+ now.tv_nsec += interval.tv_nsec;
+
+ if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
+ now.tv_sec += 1;
+ now.tv_nsec -= KMP_NSEC_PER_SEC;
+ }
+
+ status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
+ KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
+ // AC: the monitor should not fall asleep if g_done has been set
+ if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
+ status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
+ &__kmp_wait_mx.m_mutex, &now);
+ if (status != 0) {
+ if (status != ETIMEDOUT && status != EINTR) {
+ KMP_SYSFAIL("pthread_cond_timedwait", status);
+ }
+ }
+ }
+ status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
+ KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
+
+ if (__kmp_yield_cycle) {
+ yield_cycles++;
+ if ((yield_cycles % yield_count) == 0) {
+ if (__kmp_yielding_on) {
+ __kmp_yielding_on = 0; /* Turn it off now */
+ yield_count = __kmp_yield_off_count;
+ } else {
+ __kmp_yielding_on = 1; /* Turn it on now */
+ yield_count = __kmp_yield_on_count;
+ }
+ yield_cycles = 0;
+ }
+ } else {
+ __kmp_yielding_on = 1;
+ }
+
+ TCW_4(__kmp_global.g.g_time.dt.t_value,
+ TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
+
+ KMP_MB(); /* Flush all pending memory write invalidates. */
+ }
+
+ KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
+
+#ifdef KMP_BLOCK_SIGNALS
+ status = sigfillset(&new_set);
+ KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
+ status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
+ KMP_CHECK_SYSFAIL("pthread_sigmask", status);
+#endif /* KMP_BLOCK_SIGNALS */
+
+ KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
+
+ if (__kmp_global.g.g_abort != 0) {
+ /* now we need to terminate the worker threads */
+ /* the value of t_abort is the signal we caught */
+
+ int gtid;
+
+ KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
+ __kmp_global.g.g_abort));
+
+ /* terminate the OpenMP worker threads */
+ /* TODO this is not valid for sibling threads!!
+ * the uber master might not be 0 anymore.. */
+ for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
+ __kmp_terminate_thread(gtid);
+
+ __kmp_cleanup();
+
+ KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
+ __kmp_global.g.g_abort));
+
+ if (__kmp_global.g.g_abort > 0)
+ raise(__kmp_global.g.g_abort);
+ }
+
+ KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
+
+ return thr;
+}
+#endif // KMP_USE_MONITOR
+
+void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
+ pthread_t handle;
+ pthread_attr_t thread_attr;
+ int status;
+
+ th->th.th_info.ds.ds_gtid = gtid;
+
+#if KMP_STATS_ENABLED
+ // sets up worker thread stats
+ __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
+
+ // th->th.th_stats is used to transfer thread-specific stats-pointer to
+ // __kmp_launch_worker. So when thread is created (goes into
+ // __kmp_launch_worker) it will set its thread local pointer to
+ // th->th.th_stats
+ if (!KMP_UBER_GTID(gtid)) {
+ th->th.th_stats = __kmp_stats_list->push_back(gtid);
+ } else {
+ // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
+ // so set the th->th.th_stats field to it.
+ th->th.th_stats = __kmp_stats_thread_ptr;
+ }
+ __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
+
+#endif // KMP_STATS_ENABLED
+
+ if (KMP_UBER_GTID(gtid)) {
+ KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
+ th->th.th_info.ds.ds_thread = pthread_self();
+ __kmp_set_stack_info(gtid, th);
+ __kmp_check_stack_overlap(th);
+ return;
+ }
+
+ KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
+
+ KMP_MB(); /* Flush all pending memory write invalidates. */
+
+#ifdef KMP_THREAD_ATTR
+ status = pthread_attr_init(&thread_attr);
+ if (status != 0) {
+ __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
+ }
+ status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
+ if (status != 0) {
+ __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
+ }
+
+ /* Set stack size for this thread now.
+ The multiple of 2 is there because on some machines, requesting an unusual
+ stacksize causes the thread to have an offset before the dummy alloca()
+ takes place to create the offset. Since we want the user to have a
+ sufficient stacksize AND support a stack offset, we alloca() twice the
+ offset so that the upcoming alloca() does not eliminate any premade offset,
+ and also gives the user the stack space they requested for all threads */
+ stack_size += gtid * __kmp_stkoffset * 2;
+
+ KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
+ "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
+ gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
+
+#ifdef _POSIX_THREAD_ATTR_STACKSIZE
+ status = pthread_attr_setstacksize(&thread_attr, stack_size);
+#ifdef KMP_BACKUP_STKSIZE
+ if (status != 0) {
+ if (!__kmp_env_stksize) {
+ stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
+ __kmp_stksize = KMP_BACKUP_STKSIZE;
+ KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
+ "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
+ "bytes\n",
+ gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
+ status = pthread_attr_setstacksize(&thread_attr, stack_size);
+ }
+ }
+#endif /* KMP_BACKUP_STKSIZE */
+ if (status != 0) {
+ __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
+ KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
+ }
+#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
+
+#endif /* KMP_THREAD_ATTR */
+
+ status =
+ pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
+ if (status != 0 || !handle) { // ??? Why do we check handle??
+#ifdef _POSIX_THREAD_ATTR_STACKSIZE
+ if (status == EINVAL) {
+ __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
+ KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
+ }
+ if (status == ENOMEM) {
+ __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
+ KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
+ }
+#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
+ if (status == EAGAIN) {
+ __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
+ KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
+ }
+ KMP_SYSFAIL("pthread_create", status);
+ }
+
+ th->th.th_info.ds.ds_thread = handle;
+
+#ifdef KMP_THREAD_ATTR
+ status = pthread_attr_destroy(&thread_attr);
+ if (status) {
+ kmp_msg_t err_code = KMP_ERR(status);
+ __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
+ __kmp_msg_null);
+ if (__kmp_generate_warnings == kmp_warnings_off) {
+ __kmp_str_free(&err_code.str);
+ }
+ }
+#endif /* KMP_THREAD_ATTR */
+
+ KMP_MB(); /* Flush all pending memory write invalidates. */
+
+ KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
+
+} // __kmp_create_worker
+
+#if KMP_USE_MONITOR
+void __kmp_create_monitor(kmp_info_t *th) {
+ pthread_t handle;
+ pthread_attr_t thread_attr;
+ size_t size;
+ int status;
+ int auto_adj_size = FALSE;
+
+ if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
+ // We don't need monitor thread in case of MAX_BLOCKTIME
+ KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
+ "MAX blocktime\n"));
+ th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
+ th->th.th_info.ds.ds_gtid = 0;
+ return;
+ }
+ KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
+
+ KMP_MB(); /* Flush all pending memory write invalidates. */
+
+ th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
+ th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
+#if KMP_REAL_TIME_FIX
+ TCW_4(__kmp_global.g.g_time.dt.t_value,
+ -1); // Will use it for synchronization a bit later.
+#else
+ TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
+#endif // KMP_REAL_TIME_FIX
+
+#ifdef KMP_THREAD_ATTR
+ if (__kmp_monitor_stksize == 0) {
+ __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
+ auto_adj_size = TRUE;
+ }
+ status = pthread_attr_init(&thread_attr);
+ if (status != 0) {
+ __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
+ }
+ status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
+ if (status != 0) {
+ __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
+ }
+
+#ifdef _POSIX_THREAD_ATTR_STACKSIZE
+ status = pthread_attr_getstacksize(&thread_attr, &size);
+ KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
+#else
+ size = __kmp_sys_min_stksize;
+#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
+#endif /* KMP_THREAD_ATTR */
+
+ if (__kmp_monitor_stksize == 0) {
+ __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
+ }
+ if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
+ __kmp_monitor_stksize = __kmp_sys_min_stksize;
+ }
+
+ KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
+ "requested stacksize = %lu bytes\n",
+ size, __kmp_monitor_stksize));
+
+retry:
+
+/* Set stack size for this thread now. */
+#ifdef _POSIX_THREAD_ATTR_STACKSIZE
+ KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
+ __kmp_monitor_stksize));
+ status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
+ if (status != 0) {
+ if (auto_adj_size) {
+ __kmp_monitor_stksize *= 2;
+ goto retry;
+ }
+ kmp_msg_t err_code = KMP_ERR(status);
+ __kmp_msg(kmp_ms_warning, // should this be fatal? BB
+ KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
+ err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
+ if (__kmp_generate_warnings == kmp_warnings_off) {
+ __kmp_str_free(&err_code.str);
+ }
+ }
+#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
+
+ status =
+ pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
+
+ if (status != 0) {
+#ifdef _POSIX_THREAD_ATTR_STACKSIZE
+ if (status == EINVAL) {
+ if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
+ __kmp_monitor_stksize *= 2;
+ goto retry;
+ }
+ __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
+ KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
+ __kmp_msg_null);
+ }
+ if (status == ENOMEM) {
+ __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
+ KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
+ __kmp_msg_null);
+ }
+#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
+ if (status == EAGAIN) {
+ __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
+ KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
+ }
+ KMP_SYSFAIL("pthread_create", status);
+ }
+
+ th->th.th_info.ds.ds_thread = handle;
+
+#if KMP_REAL_TIME_FIX
+ // Wait for the monitor thread is really started and set its *priority*.
+ KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
+ sizeof(__kmp_global.g.g_time.dt.t_value));
+ __kmp_wait_yield_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value,
+ -1, &__kmp_neq_4, NULL);
+#endif // KMP_REAL_TIME_FIX
+
+#ifdef KMP_THREAD_ATTR
+ status = pthread_attr_destroy(&thread_attr);
+ if (status != 0) {
+ kmp_msg_t err_code = KMP_ERR(status);
+ __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
+ __kmp_msg_null);
+ if (__kmp_generate_warnings == kmp_warnings_off) {
+ __kmp_str_free(&err_code.str);
+ }
+ }
+#endif
+
+ KMP_MB(); /* Flush all pending memory write invalidates. */
+
+ KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
+ th->th.th_info.ds.ds_thread));
+
+} // __kmp_create_monitor
+#endif // KMP_USE_MONITOR
+
+void __kmp_exit_thread(int exit_status) {
+ pthread_exit((void *)(intptr_t)exit_status);
+} // __kmp_exit_thread
+
+#if KMP_USE_MONITOR
+void __kmp_resume_monitor();
+
+void __kmp_reap_monitor(kmp_info_t *th) {
+ int status;
+ void *exit_val;
+
+ KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
+ " %#.8lx\n",
+ th->th.th_info.ds.ds_thread));
+
+ // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
+ // If both tid and gtid are 0, it means the monitor did not ever start.
+ // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
+ KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
+ if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
+ KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
+ return;
+ }
+
+ KMP_MB(); /* Flush all pending memory write invalidates. */
+
+ /* First, check to see whether the monitor thread exists to wake it up. This
+ is to avoid performance problem when the monitor sleeps during
+ blocktime-size interval */
+
+ status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
+ if (status != ESRCH) {
+ __kmp_resume_monitor(); // Wake up the monitor thread
+ }
+ KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
+ status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
+ if (exit_val != th) {
+ __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
+ }
+
+ th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
+ th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
+
+ KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
+ " %#.8lx\n",
+ th->th.th_info.ds.ds_thread));
+
+ KMP_MB(); /* Flush all pending memory write invalidates. */
+}
+#endif // KMP_USE_MONITOR
+
+void __kmp_reap_worker(kmp_info_t *th) {
+ int status;
+ void *exit_val;
+
+ KMP_MB(); /* Flush all pending memory write invalidates. */
+
+ KA_TRACE(
+ 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
+
+ status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
+#ifdef KMP_DEBUG
+ /* Don't expose these to the user until we understand when they trigger */
+ if (status != 0) {
+ __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
+ }
+ if (exit_val != th) {
+ KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
+ "exit_val = %p\n",
+ th->th.th_info.ds.ds_gtid, exit_val));
+ }
+#endif /* KMP_DEBUG */
+
+ KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
+ th->th.th_info.ds.ds_gtid));
+
+ KMP_MB(); /* Flush all pending memory write invalidates. */
+}
+
+#if KMP_HANDLE_SIGNALS
+
+static void __kmp_null_handler(int signo) {
+ // Do nothing, for doing SIG_IGN-type actions.
+} // __kmp_null_handler
+
+static void __kmp_team_handler(int signo) {
+ if (__kmp_global.g.g_abort == 0) {
+/* Stage 1 signal handler, let's shut down all of the threads */
+#ifdef KMP_DEBUG
+ __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
+#endif
+ switch (signo) {
+ case SIGHUP:
+ case SIGINT:
+ case SIGQUIT:
+ case SIGILL:
+ case SIGABRT:
+ case SIGFPE:
+ case SIGBUS:
+ case SIGSEGV:
+#ifdef SIGSYS
+ case SIGSYS:
+#endif
+ case SIGTERM:
+ if (__kmp_debug_buf) {
+ __kmp_dump_debug_buffer();
+ }
+ KMP_MB(); // Flush all pending memory write invalidates.
+ TCW_4(__kmp_global.g.g_abort, signo);
+ KMP_MB(); // Flush all pending memory write invalidates.
+ TCW_4(__kmp_global.g.g_done, TRUE);
+ KMP_MB(); // Flush all pending memory write invalidates.
+ break;
+ default:
+#ifdef KMP_DEBUG
+ __kmp_debug_printf("__kmp_team_handler: unknown signal type");
+#endif
+ break;
+ }
+ }
+} // __kmp_team_handler
+
+static void __kmp_sigaction(int signum, const struct sigaction *act,
+ struct sigaction *oldact) {
+ int rc = sigaction(signum, act, oldact);
+ KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
+}
+
+static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
+ int parallel_init) {
+ KMP_MB(); // Flush all pending memory write invalidates.
+ KB_TRACE(60,
+ ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
+ if (parallel_init) {
+ struct sigaction new_action;
+ struct sigaction old_action;
+ new_action.sa_handler = handler_func;
+ new_action.sa_flags = 0;
+ sigfillset(&new_action.sa_mask);
+ __kmp_sigaction(sig, &new_action, &old_action);
+ if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
+ sigaddset(&__kmp_sigset, sig);
+ } else {
+ // Restore/keep user's handler if one previously installed.
+ __kmp_sigaction(sig, &old_action, NULL);
+ }
+ } else {
+ // Save initial/system signal handlers to see if user handlers installed.
+ __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
+ }
+ KMP_MB(); // Flush all pending memory write invalidates.
+} // __kmp_install_one_handler
+
+static void __kmp_remove_one_handler(int sig) {
+ KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
+ if (sigismember(&__kmp_sigset, sig)) {
+ struct sigaction old;
+ KMP_MB(); // Flush all pending memory write invalidates.
+ __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
+ if ((old.sa_handler != __kmp_team_handler) &&
+ (old.sa_handler != __kmp_null_handler)) {
+ // Restore the users signal handler.
+ KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
+ "restoring: sig=%d\n",
+ sig));
+ __kmp_sigaction(sig, &old, NULL);
+ }
+ sigdelset(&__kmp_sigset, sig);
+ KMP_MB(); // Flush all pending memory write invalidates.
+ }
+} // __kmp_remove_one_handler
+
+void __kmp_install_signals(int parallel_init) {
+ KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
+ if (__kmp_handle_signals || !parallel_init) {
+ // If ! parallel_init, we do not install handlers, just save original
+ // handlers. Let us do it even __handle_signals is 0.
+ sigemptyset(&__kmp_sigset);
+ __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
+ __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
+ __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
+ __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
+ __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
+ __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
+ __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
+ __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
+#ifdef SIGSYS
+ __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
+#endif // SIGSYS
+ __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
+#ifdef SIGPIPE
+ __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
+#endif // SIGPIPE
+ }
+} // __kmp_install_signals
+
+void __kmp_remove_signals(void) {
+ int sig;
+ KB_TRACE(10, ("__kmp_remove_signals()\n"));
+ for (sig = 1; sig < NSIG; ++sig) {
+ __kmp_remove_one_handler(sig);
+ }
+} // __kmp_remove_signals
+
+#endif // KMP_HANDLE_SIGNALS
+
+void __kmp_enable(int new_state) {
+#ifdef KMP_CANCEL_THREADS
+ int status, old_state;
+ status = pthread_setcancelstate(new_state, &old_state);
+ KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
+ KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
+#endif
+}
+
+void __kmp_disable(int *old_state) {
+#ifdef KMP_CANCEL_THREADS
+ int status;
+ status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
+ KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
+#endif
+}
+
+static void __kmp_atfork_prepare(void) {
+ __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
+ __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
+}
+
+static void __kmp_atfork_parent(void) {
+ __kmp_release_bootstrap_lock(&__kmp_initz_lock);
+ __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
+}
+
+/* Reset the library so execution in the child starts "all over again" with
+ clean data structures in initial states. Don't worry about freeing memory
+ allocated by parent, just abandon it to be safe. */
+static void __kmp_atfork_child(void) {
+ __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
+ /* TODO make sure this is done right for nested/sibling */
+ // ATT: Memory leaks are here? TODO: Check it and fix.
+ /* KMP_ASSERT( 0 ); */
+
+ ++__kmp_fork_count;
+
+#if KMP_AFFINITY_SUPPORTED
+#if KMP_OS_LINUX
+ // reset the affinity in the child to the initial thread
+ // affinity in the parent
+ kmp_set_thread_affinity_mask_initial();
+#endif
+ // Set default not to bind threads tightly in the child (we’re expecting
+ // over-subscription after the fork and this can improve things for
+ // scripting languages that use OpenMP inside process-parallel code).
+ __kmp_affinity_type = affinity_none;
+#if OMP_40_ENABLED
+ if (__kmp_nested_proc_bind.bind_types != NULL) {
+ __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
+ }
+#endif // OMP_40_ENABLED
+#endif // KMP_AFFINITY_SUPPORTED
+
+ __kmp_init_runtime = FALSE;
+#if KMP_USE_MONITOR
+ __kmp_init_monitor = 0;
+#endif
+ __kmp_init_parallel = FALSE;
+ __kmp_init_middle = FALSE;
+ __kmp_init_serial = FALSE;
+ TCW_4(__kmp_init_gtid, FALSE);
+ __kmp_init_common = FALSE;
+
+ TCW_4(__kmp_init_user_locks, FALSE);
+#if !KMP_USE_DYNAMIC_LOCK
+ __kmp_user_lock_table.used = 1;
+ __kmp_user_lock_table.allocated = 0;
+ __kmp_user_lock_table.table = NULL;
+ __kmp_lock_blocks = NULL;
+#endif
+
+ __kmp_all_nth = 0;
+ TCW_4(__kmp_nth, 0);
+
+ __kmp_thread_pool = NULL;
+ __kmp_thread_pool_insert_pt = NULL;
+ __kmp_team_pool = NULL;
+
+ /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
+ here so threadprivate doesn't use stale data */
+ KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
+ __kmp_threadpriv_cache_list));
+
+ while (__kmp_threadpriv_cache_list != NULL) {
+
+ if (*__kmp_threadpriv_cache_list->addr != NULL) {
+ KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
+ &(*__kmp_threadpriv_cache_list->addr)));
+
+ *__kmp_threadpriv_cache_list->addr = NULL;
+ }
+ __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
+ }
+
+ __kmp_init_runtime = FALSE;
+
+ /* reset statically initialized locks */
+ __kmp_init_bootstrap_lock(&__kmp_initz_lock);
+ __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
+ __kmp_init_bootstrap_lock(&__kmp_console_lock);
+ __kmp_init_bootstrap_lock(&__kmp_task_team_lock);
+
+#if USE_ITT_BUILD
+ __kmp_itt_reset(); // reset ITT's global state
+#endif /* USE_ITT_BUILD */
+
+ /* This is necessary to make sure no stale data is left around */
+ /* AC: customers complain that we use unsafe routines in the atfork
+ handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
+ in dynamic_link when check the presence of shared tbbmalloc library.
+ Suggestion is to make the library initialization lazier, similar
+ to what done for __kmpc_begin(). */
+ // TODO: synchronize all static initializations with regular library
+ // startup; look at kmp_global.cpp and etc.
+ //__kmp_internal_begin ();
+}
+
+void __kmp_register_atfork(void) {
+ if (__kmp_need_register_atfork) {
+ int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
+ __kmp_atfork_child);
+ KMP_CHECK_SYSFAIL("pthread_atfork", status);
+ __kmp_need_register_atfork = FALSE;
+ }
+}
+
+void __kmp_suspend_initialize(void) {
+ int status;
+ status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
+ KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
+ status = pthread_condattr_init(&__kmp_suspend_cond_attr);
+ KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
+}
+
+static void __kmp_suspend_initialize_thread(kmp_info_t *th) {
+ ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count);
+ if (th->th.th_suspend_init_count <= __kmp_fork_count) {
+ /* this means we haven't initialized the suspension pthread objects for this
+ thread in this instance of the process */
+ int status;
+ status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
+ &__kmp_suspend_cond_attr);
+ KMP_CHECK_SYSFAIL("pthread_cond_init", status);
+ status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
+ &__kmp_suspend_mutex_attr);
+ KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
+ *(volatile int *)&th->th.th_suspend_init_count = __kmp_fork_count + 1;
+ ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count);
+ }
+}
+
+void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
+ if (th->th.th_suspend_init_count > __kmp_fork_count) {
+ /* this means we have initialize the suspension pthread objects for this
+ thread in this instance of the process */
+ int status;
+
+ status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
+ if (status != 0 && status != EBUSY) {
+ KMP_SYSFAIL("pthread_cond_destroy", status);
+ }
+ status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
+ if (status != 0 && status != EBUSY) {
+ KMP_SYSFAIL("pthread_mutex_destroy", status);
+ }
+ --th->th.th_suspend_init_count;
+ KMP_DEBUG_ASSERT(th->th.th_suspend_init_count == __kmp_fork_count);
+ }
+}
+
+/* This routine puts the calling thread to sleep after setting the
+ sleep bit for the indicated flag variable to true. */
+template <class C>
+static inline void __kmp_suspend_template(int th_gtid, C *flag) {
+ KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
+ kmp_info_t *th = __kmp_threads[th_gtid];
+ int status;
+ typename C::flag_t old_spin;
+
+ KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
+ flag->get()));
+
+ __kmp_suspend_initialize_thread(th);
+
+ status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
+ KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
+
+ KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
+ th_gtid, flag->get()));
+
+ /* TODO: shouldn't this use release semantics to ensure that
+ __kmp_suspend_initialize_thread gets called first? */
+ old_spin = flag->set_sleeping();
+
+ KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
+ " was %x\n",
+ th_gtid, flag->get(), flag->load(), old_spin));
+
+ if (flag->done_check_val(old_spin)) {
+ old_spin = flag->unset_sleeping();
+ KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
+ "for spin(%p)\n",
+ th_gtid, flag->get()));
+ } else {
+ /* Encapsulate in a loop as the documentation states that this may
+ "with low probability" return when the condition variable has
+ not been signaled or broadcast */
+ int deactivated = FALSE;
+ TCW_PTR(th->th.th_sleep_loc, (void *)flag);
+
+ while (flag->is_sleeping()) {
+#ifdef DEBUG_SUSPEND
+ char buffer[128];
+ __kmp_suspend_count++;
+ __kmp_print_cond(buffer, &th->th.th_suspend_cv);
+ __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
+ buffer);
+#endif
+ // Mark the thread as no longer active (only in the first iteration of the
+ // loop).
+ if (!deactivated) {
+ th->th.th_active = FALSE;
+ if (th->th.th_active_in_pool) {
+ th->th.th_active_in_pool = FALSE;
+ KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
+ KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
+ }
+ deactivated = TRUE;
+ }
+
+#if USE_SUSPEND_TIMEOUT
+ struct timespec now;
+ struct timeval tval;
+ int msecs;
+
+ status = gettimeofday(&tval, NULL);
+ KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
+ TIMEVAL_TO_TIMESPEC(&tval, &now);
+
+ msecs = (4 * __kmp_dflt_blocktime) + 200;
+ now.tv_sec += msecs / 1000;
+ now.tv_nsec += (msecs % 1000) * 1000;
+
+ KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
+ "pthread_cond_timedwait\n",
+ th_gtid));
+ status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
+ &th->th.th_suspend_mx.m_mutex, &now);
+#else
+ KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
+ " pthread_cond_wait\n",
+ th_gtid));
+ status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
+ &th->th.th_suspend_mx.m_mutex);
+#endif
+
+ if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
+ KMP_SYSFAIL("pthread_cond_wait", status);
+ }
+#ifdef KMP_DEBUG
+ if (status == ETIMEDOUT) {
+ if (flag->is_sleeping()) {
+ KF_TRACE(100,
+ ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
+ } else {
+ KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
+ "not set!\n",
+ th_gtid));
+ }
+ } else if (flag->is_sleeping()) {
+ KF_TRACE(100,
+ ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
+ }
+#endif
+ } // while
+
+ // Mark the thread as active again (if it was previous marked as inactive)
+ if (deactivated) {
+ th->th.th_active = TRUE;
+ if (TCR_4(th->th.th_in_pool)) {
+ KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
+ th->th.th_active_in_pool = TRUE;
+ }
+ }
+ }
+#ifdef DEBUG_SUSPEND
+ {
+ char buffer[128];
+ __kmp_print_cond(buffer, &th->th.th_suspend_cv);
+ __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
+ buffer);
+ }
+#endif
+
+ status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
+ KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
+ KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
+}
+
+void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) {
+ __kmp_suspend_template(th_gtid, flag);
+}
+void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) {
+ __kmp_suspend_template(th_gtid, flag);
+}
+void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
+ __kmp_suspend_template(th_gtid, flag);
+}
+
+/* This routine signals the thread specified by target_gtid to wake up
+ after setting the sleep bit indicated by the flag argument to FALSE.
+ The target thread must already have called __kmp_suspend_template() */
+template <class C>
+static inline void __kmp_resume_template(int target_gtid, C *flag) {
+ KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
+ kmp_info_t *th = __kmp_threads[target_gtid];
+ int status;
+
+#ifdef KMP_DEBUG
+ int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
+#endif
+
+ KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
+ gtid, target_gtid));
+ KMP_DEBUG_ASSERT(gtid != target_gtid);
+
+ __kmp_suspend_initialize_thread(th);
+
+ status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
+ KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
+
+ if (!flag) { // coming from __kmp_null_resume_wrapper
+ flag = (C *)CCAST(void *, th->th.th_sleep_loc);
+ }
+
+ // First, check if the flag is null or its type has changed. If so, someone
+ // else woke it up.
+ if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
+ // simply shows what
+ // flag was cast to
+ KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
+ "awake: flag(%p)\n",
+ gtid, target_gtid, NULL));
+ status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
+ KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
+ return;
+ } else { // if multiple threads are sleeping, flag should be internally
+ // referring to a specific thread here
+ typename C::flag_t old_spin = flag->unset_sleeping();
+ if (!flag->is_sleeping_val(old_spin)) {
+ KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
+ "awake: flag(%p): "
+ "%u => %u\n",
+ gtid, target_gtid, flag->get(), old_spin, flag->load()));
+ status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
+ KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
+ return;
+ }
+ KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
+ "sleep bit for flag's loc(%p): "
+ "%u => %u\n",
+ gtid, target_gtid, flag->get(), old_spin, flag->load()));
+ }
+ TCW_PTR(th->th.th_sleep_loc, NULL);
+
+#ifdef DEBUG_SUSPEND
+ {
+ char buffer[128];
+ __kmp_print_cond(buffer, &th->th.th_suspend_cv);
+ __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
+ target_gtid, buffer);
+ }
+#endif
+ status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
+ KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
+ status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
+ KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
+ KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
+ " for T#%d\n",
+ gtid, target_gtid));
+}
+
+void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) {
+ __kmp_resume_template(target_gtid, flag);
+}
+void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) {
+ __kmp_resume_template(target_gtid, flag);
+}
+void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
+ __kmp_resume_template(target_gtid, flag);
+}
+
+#if KMP_USE_MONITOR
+void __kmp_resume_monitor() {
+ KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
+ int status;
+#ifdef KMP_DEBUG
+ int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
+ KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
+ KMP_GTID_MONITOR));
+ KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
+#endif
+ status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
+ KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
+#ifdef DEBUG_SUSPEND
+ {
+ char buffer[128];
+ __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
+ __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
+ KMP_GTID_MONITOR, buffer);
+ }
+#endif
+ status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
+ KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
+ status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
+ KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
+ KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
+ " for T#%d\n",
+ gtid, KMP_GTID_MONITOR));
+}
+#endif // KMP_USE_MONITOR
+
+void __kmp_yield(int cond) {
+ if (!cond)
+ return;
+#if KMP_USE_MONITOR
+ if (!__kmp_yielding_on)
+ return;
+#else
+ if (__kmp_yield_cycle && !KMP_YIELD_NOW())
+ return;
+#endif
+ sched_yield();
+}
+
+void __kmp_gtid_set_specific(int gtid) {
+ if (__kmp_init_gtid) {
+ int status;
+ status = pthread_setspecific(__kmp_gtid_threadprivate_key,
+ (void *)(intptr_t)(gtid + 1));
+ KMP_CHECK_SYSFAIL("pthread_setspecific", status);
+ } else {
+ KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
+ }
+}
+
+int __kmp_gtid_get_specific() {
+ int gtid;
+ if (!__kmp_init_gtid) {
+ KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
+ "KMP_GTID_SHUTDOWN\n"));
+ return KMP_GTID_SHUTDOWN;
+ }
+ gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
+ if (gtid == 0) {
+ gtid = KMP_GTID_DNE;
+ } else {
+ gtid--;
+ }
+ KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
+ __kmp_gtid_threadprivate_key, gtid));
+ return gtid;
+}
+
+double __kmp_read_cpu_time(void) {
+ /*clock_t t;*/
+ struct tms buffer;
+
+ /*t =*/times(&buffer);
+
+ return (buffer.tms_utime + buffer.tms_cutime) / (double)CLOCKS_PER_SEC;
+}
+
+int __kmp_read_system_info(struct kmp_sys_info *info) {
+ int status;
+ struct rusage r_usage;
+
+ memset(info, 0, sizeof(*info));
+
+ status = getrusage(RUSAGE_SELF, &r_usage);
+ KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
+
+ // The maximum resident set size utilized (in kilobytes)
+ info->maxrss = r_usage.ru_maxrss;
+ // The number of page faults serviced without any I/O
+ info->minflt = r_usage.ru_minflt;
+ // The number of page faults serviced that required I/O
+ info->majflt = r_usage.ru_majflt;
+ // The number of times a process was "swapped" out of memory
+ info->nswap = r_usage.ru_nswap;
+ // The number of times the file system had to perform input
+ info->inblock = r_usage.ru_inblock;
+ // The number of times the file system had to perform output
+ info->oublock = r_usage.ru_oublock;
+ // The number of times a context switch was voluntarily
+ info->nvcsw = r_usage.ru_nvcsw;
+ // The number of times a context switch was forced
+ info->nivcsw = r_usage.ru_nivcsw;
+
+ return (status != 0);
+}
+
+void __kmp_read_system_time(double *delta) {
+ double t_ns;
+ struct timeval tval;
+ struct timespec stop;
+ int status;
+
+ status = gettimeofday(&tval, NULL);
+ KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
+ TIMEVAL_TO_TIMESPEC(&tval, &stop);
+ t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start);
+ *delta = (t_ns * 1e-9);
+}
+
+void __kmp_clear_system_time(void) {
+ struct timeval tval;
+ int status;
+ status = gettimeofday(&tval, NULL);
+ KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
+ TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
+}
+
+static int __kmp_get_xproc(void) {
+
+ int r = 0;
+
+#if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
+ KMP_OS_OPENBSD || KMP_OS_HURD
+
+ r = sysconf(_SC_NPROCESSORS_ONLN);
+
+#elif KMP_OS_DARWIN
+
+ // Bug C77011 High "OpenMP Threads and number of active cores".
+
+ // Find the number of available CPUs.
+ kern_return_t rc;
+ host_basic_info_data_t info;
+ mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
+ rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
+ if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
+ // Cannot use KA_TRACE() here because this code works before trace support
+ // is initialized.
+ r = info.avail_cpus;
+ } else {
+ KMP_WARNING(CantGetNumAvailCPU);
+ KMP_INFORM(AssumedNumCPU);
+ }
+
+#else
+
+#error "Unknown or unsupported OS."
+
+#endif
+
+ return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
+
+} // __kmp_get_xproc
+
+int __kmp_read_from_file(char const *path, char const *format, ...) {
+ int result;
+ va_list args;
+
+ va_start(args, format);
+ FILE *f = fopen(path, "rb");
+ if (f == NULL)
+ return 0;
+ result = vfscanf(f, format, args);
+ fclose(f);
+
+ return result;
+}
+
+void __kmp_runtime_initialize(void) {
+ int status;
+ pthread_mutexattr_t mutex_attr;
+ pthread_condattr_t cond_attr;
+
+ if (__kmp_init_runtime) {
+ return;
+ }
+
+#if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
+ if (!__kmp_cpuinfo.initialized) {
+ __kmp_query_cpuid(&__kmp_cpuinfo);
+ }
+#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
+
+ __kmp_xproc = __kmp_get_xproc();
+
+ if (sysconf(_SC_THREADS)) {
+
+ /* Query the maximum number of threads */
+ __kmp_sys_max_nth = sysconf(_SC_THREAD_THREADS_MAX);
+ if (__kmp_sys_max_nth == -1) {
+ /* Unlimited threads for NPTL */
+ __kmp_sys_max_nth = INT_MAX;
+ } else if (__kmp_sys_max_nth <= 1) {
+ /* Can't tell, just use PTHREAD_THREADS_MAX */
+ __kmp_sys_max_nth = KMP_MAX_NTH;
+ }
+
+ /* Query the minimum stack size */
+ __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
+ if (__kmp_sys_min_stksize <= 1) {
+ __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
+ }
+ }
+
+ /* Set up minimum number of threads to switch to TLS gtid */
+ __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
+
+ status = pthread_key_create(&__kmp_gtid_threadprivate_key,
+ __kmp_internal_end_dest);
+ KMP_CHECK_SYSFAIL("pthread_key_create", status);
+ status = pthread_mutexattr_init(&mutex_attr);
+ KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
+ status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
+ KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
+ status = pthread_condattr_init(&cond_attr);
+ KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
+ status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
+ KMP_CHECK_SYSFAIL("pthread_cond_init", status);
+#if USE_ITT_BUILD
+ __kmp_itt_initialize();
+#endif /* USE_ITT_BUILD */
+
+ __kmp_init_runtime = TRUE;
+}
+
+void __kmp_runtime_destroy(void) {
+ int status;
+
+ if (!__kmp_init_runtime) {
+ return; // Nothing to do.
+ }
+
+#if USE_ITT_BUILD
+ __kmp_itt_destroy();
+#endif /* USE_ITT_BUILD */
+
+ status = pthread_key_delete(__kmp_gtid_threadprivate_key);
+ KMP_CHECK_SYSFAIL("pthread_key_delete", status);
+
+ status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
+ if (status != 0 && status != EBUSY) {
+ KMP_SYSFAIL("pthread_mutex_destroy", status);
+ }
+ status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
+ if (status != 0 && status != EBUSY) {
+ KMP_SYSFAIL("pthread_cond_destroy", status);
+ }
+#if KMP_AFFINITY_SUPPORTED
+ __kmp_affinity_uninitialize();
+#endif
+
+ __kmp_init_runtime = FALSE;
+}
+
+/* Put the thread to sleep for a time period */
+/* NOTE: not currently used anywhere */
+void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
+
+/* Calculate the elapsed wall clock time for the user */
+void __kmp_elapsed(double *t) {
+ int status;
+#ifdef FIX_SGI_CLOCK
+ struct timespec ts;
+
+ status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
+ KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
+ *t =
+ (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
+#else
+ struct timeval tv;
+
+ status = gettimeofday(&tv, NULL);
+ KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
+ *t =
+ (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
+#endif
+}
+
+/* Calculate the elapsed wall clock tick for the user */
+void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
+
+/* Return the current time stamp in nsec */
+kmp_uint64 __kmp_now_nsec() {
+ struct timeval t;
+ gettimeofday(&t, NULL);
+ kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec +
+ (kmp_uint64)1000 * (kmp_uint64)t.tv_usec;
+ return nsec;
+}
+
+#if KMP_ARCH_X86 || KMP_ARCH_X86_64
+/* Measure clock ticks per millisecond */
+void __kmp_initialize_system_tick() {
+ kmp_uint64 now, nsec2, diff;
+ kmp_uint64 delay = 100000; // 50~100 usec on most machines.
+ kmp_uint64 nsec = __kmp_now_nsec();
+ kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
+ while ((now = __kmp_hardware_timestamp()) < goal)
+ ;
+ nsec2 = __kmp_now_nsec();
+ diff = nsec2 - nsec;
+ if (diff > 0) {
+ kmp_uint64 tpms = (kmp_uint64)(1e6 * (delay + (now - goal)) / diff);
+ if (tpms > 0)
+ __kmp_ticks_per_msec = tpms;
+ }
+}
+#endif
+
+/* Determine whether the given address is mapped into the current address
+ space. */
+
+int __kmp_is_address_mapped(void *addr) {
+
+ int found = 0;
+ int rc;
+
+#if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_HURD
+
+ /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the address
+ ranges mapped into the address space. */
+
+ char *name = __kmp_str_format("/proc/%d/maps", getpid());
+ FILE *file = NULL;
+
+ file = fopen(name, "r");
+ KMP_ASSERT(file != NULL);
+
+ for (;;) {
+
+ void *beginning = NULL;
+ void *ending = NULL;
+ char perms[5];
+
+ rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
+ if (rc == EOF) {
+ break;
+ }
+ KMP_ASSERT(rc == 3 &&
+ KMP_STRLEN(perms) == 4); // Make sure all fields are read.
+
+ // Ending address is not included in the region, but beginning is.
+ if ((addr >= beginning) && (addr < ending)) {
+ perms[2] = 0; // 3th and 4th character does not matter.
+ if (strcmp(perms, "rw") == 0) {
+ // Memory we are looking for should be readable and writable.
+ found = 1;
+ }
+ break;
+ }
+ }
+
+ // Free resources.
+ fclose(file);
+ KMP_INTERNAL_FREE(name);
+
+#elif KMP_OS_DARWIN
+
+ /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
+ using vm interface. */
+
+ int buffer;
+ vm_size_t count;
+ rc = vm_read_overwrite(
+ mach_task_self(), // Task to read memory of.
+ (vm_address_t)(addr), // Address to read from.
+ 1, // Number of bytes to be read.
+ (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
+ &count // Address of var to save number of read bytes in.
+ );
+ if (rc == 0) {
+ // Memory successfully read.
+ found = 1;
+ }
+
+#elif KMP_OS_NETBSD
+
+ int mib[5];
+ mib[0] = CTL_VM;
+ mib[1] = VM_PROC;
+ mib[2] = VM_PROC_MAP;
+ mib[3] = getpid();
+ mib[4] = sizeof(struct kinfo_vmentry);
+
+ size_t size;
+ rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0);
+ KMP_ASSERT(!rc);
+ KMP_ASSERT(size);
+
+ size = size * 4 / 3;
+ struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size);
+ KMP_ASSERT(kiv);
+
+ rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0);
+ KMP_ASSERT(!rc);
+ KMP_ASSERT(size);
+
+ for (size_t i = 0; i < size; i++) {
+ if (kiv[i].kve_start >= (uint64_t)addr &&
+ kiv[i].kve_end <= (uint64_t)addr) {
+ found = 1;
+ break;
+ }
+ }
+ KMP_INTERNAL_FREE(kiv);
+#elif KMP_OS_DRAGONFLY || KMP_OS_OPENBSD
+
+ // FIXME(DragonFly, OpenBSD): Implement this
+ found = 1;
+
+#else
+
+#error "Unknown or unsupported OS"
+
+#endif
+
+ return found;
+
+} // __kmp_is_address_mapped
+
+#ifdef USE_LOAD_BALANCE
+
+#if KMP_OS_DARWIN || KMP_OS_NETBSD
+
+// The function returns the rounded value of the system load average
+// during given time interval which depends on the value of
+// __kmp_load_balance_interval variable (default is 60 sec, other values
+// may be 300 sec or 900 sec).
+// It returns -1 in case of error.
+int __kmp_get_load_balance(int max) {
+ double averages[3];
+ int ret_avg = 0;
+
+ int res = getloadavg(averages, 3);
+
+ // Check __kmp_load_balance_interval to determine which of averages to use.
+ // getloadavg() may return the number of samples less than requested that is
+ // less than 3.
+ if (__kmp_load_balance_interval < 180 && (res >= 1)) {
+ ret_avg = averages[0]; // 1 min
+ } else if ((__kmp_load_balance_interval >= 180 &&
+ __kmp_load_balance_interval < 600) &&
+ (res >= 2)) {
+ ret_avg = averages[1]; // 5 min
+ } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
+ ret_avg = averages[2]; // 15 min
+ } else { // Error occurred
+ return -1;
+ }
+
+ return ret_avg;
+}
+
+#else // Linux* OS
+
+// The fuction returns number of running (not sleeping) threads, or -1 in case
+// of error. Error could be reported if Linux* OS kernel too old (without
+// "/proc" support). Counting running threads stops if max running threads
+// encountered.
+int __kmp_get_load_balance(int max) {
+ static int permanent_error = 0;
+ static int glb_running_threads = 0; // Saved count of the running threads for
+ // the thread balance algortihm
+ static double glb_call_time = 0; /* Thread balance algorithm call time */
+
+ int running_threads = 0; // Number of running threads in the system.
+
+ DIR *proc_dir = NULL; // Handle of "/proc/" directory.
+ struct dirent *proc_entry = NULL;
+
+ kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
+ DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
+ struct dirent *task_entry = NULL;
+ int task_path_fixed_len;
+
+ kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
+ int stat_file = -1;
+ int stat_path_fixed_len;
+
+ int total_processes = 0; // Total number of processes in system.
+ int total_threads = 0; // Total number of threads in system.
+
+ double call_time = 0.0;
+
+ __kmp_str_buf_init(&task_path);
+ __kmp_str_buf_init(&stat_path);
+
+ __kmp_elapsed(&call_time);
+
+ if (glb_call_time &&
+ (call_time - glb_call_time < __kmp_load_balance_interval)) {
+ running_threads = glb_running_threads;
+ goto finish;
+ }
+
+ glb_call_time = call_time;
+
+ // Do not spend time on scanning "/proc/" if we have a permanent error.
+ if (permanent_error) {
+ running_threads = -1;
+ goto finish;
+ }
+
+ if (max <= 0) {
+ max = INT_MAX;
+ }
+
+ // Open "/proc/" directory.
+ proc_dir = opendir("/proc");
+ if (proc_dir == NULL) {
+ // Cannot open "/prroc/". Probably the kernel does not support it. Return an
+ // error now and in subsequent calls.
+ running_threads = -1;
+ permanent_error = 1;
+ goto finish;
+ }
+
+ // Initialize fixed part of task_path. This part will not change.
+ __kmp_str_buf_cat(&task_path, "/proc/", 6);
+ task_path_fixed_len = task_path.used; // Remember number of used characters.
+
+ proc_entry = readdir(proc_dir);
+ while (proc_entry != NULL) {
+ // Proc entry is a directory and name starts with a digit. Assume it is a
+ // process' directory.
+ if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
+
+ ++total_processes;
+ // Make sure init process is the very first in "/proc", so we can replace
+ // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
+ // 1. We are going to check that total_processes == 1 => d_name == "1" is
+ // true (where "=>" is implication). Since C++ does not have => operator,
+ // let us replace it with its equivalent: a => b == ! a || b.
+ KMP_DEBUG_ASSERT(total_processes != 1 ||
+ strcmp(proc_entry->d_name, "1") == 0);
+
+ // Construct task_path.
+ task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
+ __kmp_str_buf_cat(&task_path, proc_entry->d_name,
+ KMP_STRLEN(proc_entry->d_name));
+ __kmp_str_buf_cat(&task_path, "/task", 5);
+
+ task_dir = opendir(task_path.str);
+ if (task_dir == NULL) {
+ // Process can finish between reading "/proc/" directory entry and
+ // opening process' "task/" directory. So, in general case we should not
+ // complain, but have to skip this process and read the next one. But on
+ // systems with no "task/" support we will spend lot of time to scan
+ // "/proc/" tree again and again without any benefit. "init" process
+ // (its pid is 1) should exist always, so, if we cannot open
+ // "/proc/1/task/" directory, it means "task/" is not supported by
+ // kernel. Report an error now and in the future.
+ if (strcmp(proc_entry->d_name, "1") == 0) {
+ running_threads = -1;
+ permanent_error = 1;
+ goto finish;
+ }
+ } else {
+ // Construct fixed part of stat file path.
+ __kmp_str_buf_clear(&stat_path);
+ __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
+ __kmp_str_buf_cat(&stat_path, "/", 1);
+ stat_path_fixed_len = stat_path.used;
+
+ task_entry = readdir(task_dir);
+ while (task_entry != NULL) {
+ // It is a directory and name starts with a digit.
+ if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
+ ++total_threads;
+
+ // Consruct complete stat file path. Easiest way would be:
+ // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
+ // task_entry->d_name );
+ // but seriae of __kmp_str_buf_cat works a bit faster.
+ stat_path.used =
+ stat_path_fixed_len; // Reset stat path to its fixed part.
+ __kmp_str_buf_cat(&stat_path, task_entry->d_name,
+ KMP_STRLEN(task_entry->d_name));
+ __kmp_str_buf_cat(&stat_path, "/stat", 5);
+
+ // Note: Low-level API (open/read/close) is used. High-level API
+ // (fopen/fclose) works ~ 30 % slower.
+ stat_file = open(stat_path.str, O_RDONLY);
+ if (stat_file == -1) {
+ // We cannot report an error because task (thread) can terminate
+ // just before reading this file.
+ } else {
+ /* Content of "stat" file looks like:
+ 24285 (program) S ...
+
+ It is a single line (if program name does not include funny
+ symbols). First number is a thread id, then name of executable
+ file name in paretheses, then state of the thread. We need just
+ thread state.
+
+ Good news: Length of program name is 15 characters max. Longer
+ names are truncated.
+
+ Thus, we need rather short buffer: 15 chars for program name +
+ 2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
+
+ Bad news: Program name may contain special symbols like space,
+ closing parenthesis, or even new line. This makes parsing
+ "stat" file not 100 % reliable. In case of fanny program names
+ parsing may fail (report incorrect thread state).
+
+ Parsing "status" file looks more promissing (due to different
+ file structure and escaping special symbols) but reading and
+ parsing of "status" file works slower.
+ -- ln
+ */
+ char buffer[65];
+ int len;
+ len = read(stat_file, buffer, sizeof(buffer) - 1);
+ if (len >= 0) {
+ buffer[len] = 0;
+ // Using scanf:
+ // sscanf( buffer, "%*d (%*s) %c ", & state );
+ // looks very nice, but searching for a closing parenthesis
+ // works a bit faster.
+ char *close_parent = strstr(buffer, ") ");
+ if (close_parent != NULL) {
+ char state = *(close_parent + 2);
+ if (state == 'R') {
+ ++running_threads;
+ if (running_threads >= max) {
+ goto finish;
+ }
+ }
+ }
+ }
+ close(stat_file);
+ stat_file = -1;
+ }
+ }
+ task_entry = readdir(task_dir);
+ }
+ closedir(task_dir);
+ task_dir = NULL;
+ }
+ }
+ proc_entry = readdir(proc_dir);
+ }
+
+ // There _might_ be a timing hole where the thread executing this
+ // code get skipped in the load balance, and running_threads is 0.
+ // Assert in the debug builds only!!!
+ KMP_DEBUG_ASSERT(running_threads > 0);
+ if (running_threads <= 0) {
+ running_threads = 1;
+ }
+
+finish: // Clean up and exit.
+ if (proc_dir != NULL) {
+ closedir(proc_dir);
+ }
+ __kmp_str_buf_free(&task_path);
+ if (task_dir != NULL) {
+ closedir(task_dir);
+ }
+ __kmp_str_buf_free(&stat_path);
+ if (stat_file != -1) {
+ close(stat_file);
+ }
+
+ glb_running_threads = running_threads;
+
+ return running_threads;
+
+} // __kmp_get_load_balance
+
+#endif // KMP_OS_DARWIN
+
+#endif // USE_LOAD_BALANCE
+
+#if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \
+ ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || KMP_ARCH_PPC64)
+
+// we really only need the case with 1 argument, because CLANG always build
+// a struct of pointers to shared variables referenced in the outlined function
+int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
+ void *p_argv[]
+#if OMPT_SUPPORT
+ ,
+ void **exit_frame_ptr
+#endif
+ ) {
+#if OMPT_SUPPORT
+ *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
+#endif
+
+ switch (argc) {
+ default:
+ fprintf(stderr, "Too many args to microtask: %d!\n", argc);
+ fflush(stderr);
+ exit(-1);
+ case 0:
+ (*pkfn)(&gtid, &tid);
+ break;
+ case 1:
+ (*pkfn)(&gtid, &tid, p_argv[0]);
+ break;
+ case 2:
+ (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
+ break;
+ case 3:
+ (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
+ break;
+ case 4:
+ (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
+ break;
+ case 5:
+ (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
+ break;
+ case 6:
+ (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
+ p_argv[5]);
+ break;
+ case 7:
+ (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
+ p_argv[5], p_argv[6]);
+ break;
+ case 8:
+ (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
+ p_argv[5], p_argv[6], p_argv[7]);
+ break;
+ case 9:
+ (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
+ p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
+ break;
+ case 10:
+ (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
+ p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
+ break;
+ case 11:
+ (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
+ p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
+ break;
+ case 12:
+ (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
+ p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
+ p_argv[11]);
+ break;
+ case 13:
+ (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
+ p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
+ p_argv[11], p_argv[12]);
+ break;
+ case 14:
+ (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
+ p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
+ p_argv[11], p_argv[12], p_argv[13]);
+ break;
+ case 15:
+ (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
+ p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
+ p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
+ break;
+ }
+
+#if OMPT_SUPPORT
+ *exit_frame_ptr = 0;
+#endif
+
+ return 1;
+}
+
+#endif
+
+// end of file //