aboutsummaryrefslogtreecommitdiff
path: root/final/runtime/src/kmp_wait_release.h
diff options
context:
space:
mode:
Diffstat (limited to 'final/runtime/src/kmp_wait_release.h')
-rw-r--r--final/runtime/src/kmp_wait_release.h917
1 files changed, 917 insertions, 0 deletions
diff --git a/final/runtime/src/kmp_wait_release.h b/final/runtime/src/kmp_wait_release.h
new file mode 100644
index 0000000..eeac198
--- /dev/null
+++ b/final/runtime/src/kmp_wait_release.h
@@ -0,0 +1,917 @@
+/*
+ * kmp_wait_release.h -- Wait/Release implementation
+ */
+
+//===----------------------------------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef KMP_WAIT_RELEASE_H
+#define KMP_WAIT_RELEASE_H
+
+#include "kmp.h"
+#include "kmp_itt.h"
+#include "kmp_stats.h"
+#if OMPT_SUPPORT
+#include "ompt-specific.h"
+#endif
+
+/*!
+@defgroup WAIT_RELEASE Wait/Release operations
+
+The definitions and functions here implement the lowest level thread
+synchronizations of suspending a thread and awaking it. They are used to build
+higher level operations such as barriers and fork/join.
+*/
+
+/*!
+@ingroup WAIT_RELEASE
+@{
+*/
+
+/*!
+ * The flag_type describes the storage used for the flag.
+ */
+enum flag_type {
+ flag32, /**< 32 bit flags */
+ flag64, /**< 64 bit flags */
+ flag_oncore /**< special 64-bit flag for on-core barrier (hierarchical) */
+};
+
+/*!
+ * Base class for wait/release volatile flag
+ */
+template <typename P> class kmp_flag_native {
+ volatile P *loc;
+ flag_type t;
+
+public:
+ typedef P flag_t;
+ kmp_flag_native(volatile P *p, flag_type ft) : loc(p), t(ft) {}
+ volatile P *get() { return loc; }
+ void set(volatile P *new_loc) { loc = new_loc; }
+ flag_type get_type() { return t; }
+ P load() { return *loc; }
+ void store(P val) { *loc = val; }
+};
+
+/*!
+ * Base class for wait/release atomic flag
+ */
+template <typename P> class kmp_flag {
+ std::atomic<P>
+ *loc; /**< Pointer to the flag storage that is modified by another thread
+ */
+ flag_type t; /**< "Type" of the flag in loc */
+public:
+ typedef P flag_t;
+ kmp_flag(std::atomic<P> *p, flag_type ft) : loc(p), t(ft) {}
+ /*!
+ * @result the pointer to the actual flag
+ */
+ std::atomic<P> *get() { return loc; }
+ /*!
+ * @param new_loc in set loc to point at new_loc
+ */
+ void set(std::atomic<P> *new_loc) { loc = new_loc; }
+ /*!
+ * @result the flag_type
+ */
+ flag_type get_type() { return t; }
+ /*!
+ * @result flag value
+ */
+ P load() { return loc->load(std::memory_order_acquire); }
+ /*!
+ * @param val the new flag value to be stored
+ */
+ void store(P val) { loc->store(val, std::memory_order_release); }
+ // Derived classes must provide the following:
+ /*
+ kmp_info_t * get_waiter(kmp_uint32 i);
+ kmp_uint32 get_num_waiters();
+ bool done_check();
+ bool done_check_val(P old_loc);
+ bool notdone_check();
+ P internal_release();
+ void suspend(int th_gtid);
+ void resume(int th_gtid);
+ P set_sleeping();
+ P unset_sleeping();
+ bool is_sleeping();
+ bool is_any_sleeping();
+ bool is_sleeping_val(P old_loc);
+ int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin,
+ int *thread_finished
+ USE_ITT_BUILD_ARG(void * itt_sync_obj), kmp_int32
+ is_constrained);
+ */
+};
+
+#if OMPT_SUPPORT
+static inline void __ompt_implicit_task_end(kmp_info_t *this_thr,
+ omp_state_t omp_state,
+ ompt_data_t *tId,
+ ompt_data_t *pId) {
+ int ds_tid = this_thr->th.th_info.ds.ds_tid;
+ if (omp_state == omp_state_wait_barrier_implicit) {
+ this_thr->th.ompt_thread_info.state = omp_state_overhead;
+#if OMPT_OPTIONAL
+ void *codeptr = NULL;
+ if (ompt_enabled.ompt_callback_sync_region_wait) {
+ ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
+ ompt_sync_region_barrier, ompt_scope_end, NULL, tId, codeptr);
+ }
+ if (ompt_enabled.ompt_callback_sync_region) {
+ ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
+ ompt_sync_region_barrier, ompt_scope_end, NULL, tId, codeptr);
+ }
+#endif
+ if (!KMP_MASTER_TID(ds_tid)) {
+ if (ompt_enabled.ompt_callback_implicit_task) {
+ ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
+ ompt_scope_end, NULL, tId, 0, ds_tid);
+ }
+#if OMPT_OPTIONAL
+ if (ompt_enabled.ompt_callback_idle) {
+ ompt_callbacks.ompt_callback(ompt_callback_idle)(ompt_scope_begin);
+ }
+#endif
+ // return to idle state
+ this_thr->th.ompt_thread_info.state = omp_state_idle;
+ } else {
+ this_thr->th.ompt_thread_info.state = omp_state_overhead;
+ }
+ }
+}
+#endif
+
+/* Spin wait loop that first does pause, then yield, then sleep. A thread that
+ calls __kmp_wait_* must make certain that another thread calls __kmp_release
+ to wake it back up to prevent deadlocks! */
+template <class C, int final_spin>
+static inline void
+__kmp_wait_template(kmp_info_t *this_thr,
+ C *flag USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
+ // NOTE: We may not belong to a team at this point.
+ volatile void *spin = flag->get();
+ kmp_uint32 spins;
+ kmp_uint32 hibernate;
+ int th_gtid;
+ int tasks_completed = FALSE;
+ int oversubscribed;
+#if !KMP_USE_MONITOR
+ kmp_uint64 poll_count;
+ kmp_uint64 hibernate_goal;
+#endif
+
+ KMP_FSYNC_SPIN_INIT(spin, NULL);
+ if (flag->done_check()) {
+ KMP_FSYNC_SPIN_ACQUIRED(CCAST(void *, spin));
+ return;
+ }
+ th_gtid = this_thr->th.th_info.ds.ds_gtid;
+#if KMP_OS_UNIX
+ if (final_spin)
+ KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, true);
+#endif
+ KA_TRACE(20,
+ ("__kmp_wait_sleep: T#%d waiting for flag(%p)\n", th_gtid, flag));
+#if KMP_STATS_ENABLED
+ stats_state_e thread_state = KMP_GET_THREAD_STATE();
+#endif
+
+/* OMPT Behavior:
+THIS function is called from
+ __kmp_barrier (2 times) (implicit or explicit barrier in parallel regions)
+ these have join / fork behavior
+
+ In these cases, we don't change the state or trigger events in THIS
+function.
+ Events are triggered in the calling code (__kmp_barrier):
+
+ state := omp_state_overhead
+ barrier-begin
+ barrier-wait-begin
+ state := omp_state_wait_barrier
+ call join-barrier-implementation (finally arrive here)
+ {}
+ call fork-barrier-implementation (finally arrive here)
+ {}
+ state := omp_state_overhead
+ barrier-wait-end
+ barrier-end
+ state := omp_state_work_parallel
+
+
+ __kmp_fork_barrier (after thread creation, before executing implicit task)
+ call fork-barrier-implementation (finally arrive here)
+ {} // worker arrive here with state = omp_state_idle
+
+
+ __kmp_join_barrier (implicit barrier at end of parallel region)
+ state := omp_state_barrier_implicit
+ barrier-begin
+ barrier-wait-begin
+ call join-barrier-implementation (finally arrive here
+final_spin=FALSE)
+ {
+ }
+ __kmp_fork_barrier (implicit barrier at end of parallel region)
+ call fork-barrier-implementation (finally arrive here final_spin=TRUE)
+
+ Worker after task-team is finished:
+ barrier-wait-end
+ barrier-end
+ implicit-task-end
+ idle-begin
+ state := omp_state_idle
+
+ Before leaving, if state = omp_state_idle
+ idle-end
+ state := omp_state_overhead
+*/
+#if OMPT_SUPPORT
+ omp_state_t ompt_entry_state;
+ ompt_data_t *pId = NULL;
+ ompt_data_t *tId;
+ if (ompt_enabled.enabled) {
+ ompt_entry_state = this_thr->th.ompt_thread_info.state;
+ if (!final_spin || ompt_entry_state != omp_state_wait_barrier_implicit ||
+ KMP_MASTER_TID(this_thr->th.th_info.ds.ds_tid)) {
+ ompt_lw_taskteam_t *team =
+ this_thr->th.th_team->t.ompt_serialized_team_info;
+ if (team) {
+ pId = &(team->ompt_team_info.parallel_data);
+ tId = &(team->ompt_task_info.task_data);
+ } else {
+ pId = OMPT_CUR_TEAM_DATA(this_thr);
+ tId = OMPT_CUR_TASK_DATA(this_thr);
+ }
+ } else {
+ pId = NULL;
+ tId = &(this_thr->th.ompt_thread_info.task_data);
+ }
+#if OMPT_OPTIONAL
+ if (ompt_entry_state == omp_state_idle) {
+ if (ompt_enabled.ompt_callback_idle) {
+ ompt_callbacks.ompt_callback(ompt_callback_idle)(ompt_scope_begin);
+ }
+ } else
+#endif
+ if (final_spin && (__kmp_tasking_mode == tskm_immediate_exec ||
+ this_thr->th.th_task_team == NULL)) {
+ // implicit task is done. Either no taskqueue, or task-team finished
+ __ompt_implicit_task_end(this_thr, ompt_entry_state, tId, pId);
+ }
+ }
+#endif
+
+ // Setup for waiting
+ KMP_INIT_YIELD(spins);
+
+ if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
+#if KMP_USE_MONITOR
+// The worker threads cannot rely on the team struct existing at this point.
+// Use the bt values cached in the thread struct instead.
+#ifdef KMP_ADJUST_BLOCKTIME
+ if (__kmp_zero_bt && !this_thr->th.th_team_bt_set)
+ // Force immediate suspend if not set by user and more threads than
+ // available procs
+ hibernate = 0;
+ else
+ hibernate = this_thr->th.th_team_bt_intervals;
+#else
+ hibernate = this_thr->th.th_team_bt_intervals;
+#endif /* KMP_ADJUST_BLOCKTIME */
+
+ /* If the blocktime is nonzero, we want to make sure that we spin wait for
+ the entirety of the specified #intervals, plus up to one interval more.
+ This increment make certain that this thread doesn't go to sleep too
+ soon. */
+ if (hibernate != 0)
+ hibernate++;
+
+ // Add in the current time value.
+ hibernate += TCR_4(__kmp_global.g.g_time.dt.t_value);
+ KF_TRACE(20, ("__kmp_wait_sleep: T#%d now=%d, hibernate=%d, intervals=%d\n",
+ th_gtid, __kmp_global.g.g_time.dt.t_value, hibernate,
+ hibernate - __kmp_global.g.g_time.dt.t_value));
+#else
+ hibernate_goal = KMP_NOW() + this_thr->th.th_team_bt_intervals;
+ poll_count = 0;
+#endif // KMP_USE_MONITOR
+ }
+
+ oversubscribed = (TCR_4(__kmp_nth) > __kmp_avail_proc);
+ KMP_MB();
+
+ // Main wait spin loop
+ while (flag->notdone_check()) {
+ int in_pool;
+ kmp_task_team_t *task_team = NULL;
+ if (__kmp_tasking_mode != tskm_immediate_exec) {
+ task_team = this_thr->th.th_task_team;
+ /* If the thread's task team pointer is NULL, it means one of 3 things:
+ 1) A newly-created thread is first being released by
+ __kmp_fork_barrier(), and its task team has not been set up yet.
+ 2) All tasks have been executed to completion.
+ 3) Tasking is off for this region. This could be because we are in a
+ serialized region (perhaps the outer one), or else tasking was manually
+ disabled (KMP_TASKING=0). */
+ if (task_team != NULL) {
+ if (TCR_SYNC_4(task_team->tt.tt_active)) {
+ if (KMP_TASKING_ENABLED(task_team))
+ flag->execute_tasks(
+ this_thr, th_gtid, final_spin,
+ &tasks_completed USE_ITT_BUILD_ARG(itt_sync_obj), 0);
+ else
+ this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
+ } else {
+ KMP_DEBUG_ASSERT(!KMP_MASTER_TID(this_thr->th.th_info.ds.ds_tid));
+#if OMPT_SUPPORT
+ // task-team is done now, other cases should be catched above
+ if (final_spin && ompt_enabled.enabled)
+ __ompt_implicit_task_end(this_thr, ompt_entry_state, tId, pId);
+#endif
+ this_thr->th.th_task_team = NULL;
+ this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
+ }
+ } else {
+ this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
+ } // if
+ } // if
+
+ KMP_FSYNC_SPIN_PREPARE(CCAST(void *, spin));
+ if (TCR_4(__kmp_global.g.g_done)) {
+ if (__kmp_global.g.g_abort)
+ __kmp_abort_thread();
+ break;
+ }
+
+ // If we are oversubscribed, or have waited a bit (and
+ // KMP_LIBRARY=throughput), then yield
+ // TODO: Should it be number of cores instead of thread contexts? Like:
+ // KMP_YIELD(TCR_4(__kmp_nth) > __kmp_ncores);
+ // Need performance improvement data to make the change...
+ if (oversubscribed) {
+ KMP_YIELD(1);
+ } else {
+ KMP_YIELD_SPIN(spins);
+ }
+ // Check if this thread was transferred from a team
+ // to the thread pool (or vice-versa) while spinning.
+ in_pool = !!TCR_4(this_thr->th.th_in_pool);
+ if (in_pool != !!this_thr->th.th_active_in_pool) {
+ if (in_pool) { // Recently transferred from team to pool
+ KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
+ this_thr->th.th_active_in_pool = TRUE;
+ /* Here, we cannot assert that:
+ KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) <=
+ __kmp_thread_pool_nth);
+ __kmp_thread_pool_nth is inc/dec'd by the master thread while the
+ fork/join lock is held, whereas __kmp_thread_pool_active_nth is
+ inc/dec'd asynchronously by the workers. The two can get out of sync
+ for brief periods of time. */
+ } else { // Recently transferred from pool to team
+ KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
+ KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
+ this_thr->th.th_active_in_pool = FALSE;
+ }
+ }
+
+#if KMP_STATS_ENABLED
+ // Check if thread has been signalled to idle state
+ // This indicates that the logical "join-barrier" has finished
+ if (this_thr->th.th_stats->isIdle() &&
+ KMP_GET_THREAD_STATE() == FORK_JOIN_BARRIER) {
+ KMP_SET_THREAD_STATE(IDLE);
+ KMP_PUSH_PARTITIONED_TIMER(OMP_idle);
+ }
+#endif
+
+ // Don't suspend if KMP_BLOCKTIME is set to "infinite"
+ if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME)
+ continue;
+
+ // Don't suspend if there is a likelihood of new tasks being spawned.
+ if ((task_team != NULL) && TCR_4(task_team->tt.tt_found_tasks))
+ continue;
+
+#if KMP_USE_MONITOR
+ // If we have waited a bit more, fall asleep
+ if (TCR_4(__kmp_global.g.g_time.dt.t_value) < hibernate)
+ continue;
+#else
+ if (KMP_BLOCKING(hibernate_goal, poll_count++))
+ continue;
+#endif
+
+ KF_TRACE(50, ("__kmp_wait_sleep: T#%d suspend time reached\n", th_gtid));
+#if KMP_OS_UNIX
+ if (final_spin)
+ KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, false);
+#endif
+ flag->suspend(th_gtid);
+#if KMP_OS_UNIX
+ if (final_spin)
+ KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, true);
+#endif
+
+ if (TCR_4(__kmp_global.g.g_done)) {
+ if (__kmp_global.g.g_abort)
+ __kmp_abort_thread();
+ break;
+ } else if (__kmp_tasking_mode != tskm_immediate_exec &&
+ this_thr->th.th_reap_state == KMP_SAFE_TO_REAP) {
+ this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
+ }
+ // TODO: If thread is done with work and times out, disband/free
+ }
+
+#if OMPT_SUPPORT
+ omp_state_t ompt_exit_state = this_thr->th.ompt_thread_info.state;
+ if (ompt_enabled.enabled && ompt_exit_state != omp_state_undefined) {
+#if OMPT_OPTIONAL
+ if (final_spin) {
+ __ompt_implicit_task_end(this_thr, ompt_exit_state, tId, pId);
+ ompt_exit_state = this_thr->th.ompt_thread_info.state;
+ }
+#endif
+ if (ompt_exit_state == omp_state_idle) {
+#if OMPT_OPTIONAL
+ if (ompt_enabled.ompt_callback_idle) {
+ ompt_callbacks.ompt_callback(ompt_callback_idle)(ompt_scope_end);
+ }
+#endif
+ this_thr->th.ompt_thread_info.state = omp_state_overhead;
+ }
+ }
+#endif
+#if KMP_STATS_ENABLED
+ // If we were put into idle state, pop that off the state stack
+ if (KMP_GET_THREAD_STATE() == IDLE) {
+ KMP_POP_PARTITIONED_TIMER();
+ KMP_SET_THREAD_STATE(thread_state);
+ this_thr->th.th_stats->resetIdleFlag();
+ }
+#endif
+
+#if KMP_OS_UNIX
+ if (final_spin)
+ KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, false);
+#endif
+ KMP_FSYNC_SPIN_ACQUIRED(CCAST(void *, spin));
+}
+
+/* Release any threads specified as waiting on the flag by releasing the flag
+ and resume the waiting thread if indicated by the sleep bit(s). A thread that
+ calls __kmp_wait_template must call this function to wake up the potentially
+ sleeping thread and prevent deadlocks! */
+template <class C> static inline void __kmp_release_template(C *flag) {
+#ifdef KMP_DEBUG
+ int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
+#endif
+ KF_TRACE(20, ("__kmp_release: T#%d releasing flag(%x)\n", gtid, flag->get()));
+ KMP_DEBUG_ASSERT(flag->get());
+ KMP_FSYNC_RELEASING(flag->get());
+
+ flag->internal_release();
+
+ KF_TRACE(100, ("__kmp_release: T#%d set new spin=%d\n", gtid, flag->get(),
+ flag->load()));
+
+ if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
+ // Only need to check sleep stuff if infinite block time not set.
+ // Are *any* threads waiting on flag sleeping?
+ if (flag->is_any_sleeping()) {
+ for (unsigned int i = 0; i < flag->get_num_waiters(); ++i) {
+ // if sleeping waiter exists at i, sets current_waiter to i inside flag
+ kmp_info_t *waiter = flag->get_waiter(i);
+ if (waiter) {
+ int wait_gtid = waiter->th.th_info.ds.ds_gtid;
+ // Wake up thread if needed
+ KF_TRACE(50, ("__kmp_release: T#%d waking up thread T#%d since sleep "
+ "flag(%p) set\n",
+ gtid, wait_gtid, flag->get()));
+ flag->resume(wait_gtid); // unsets flag's current_waiter when done
+ }
+ }
+ }
+ }
+}
+
+template <typename FlagType> struct flag_traits {};
+
+template <> struct flag_traits<kmp_uint32> {
+ typedef kmp_uint32 flag_t;
+ static const flag_type t = flag32;
+ static inline flag_t tcr(flag_t f) { return TCR_4(f); }
+ static inline flag_t test_then_add4(volatile flag_t *f) {
+ return KMP_TEST_THEN_ADD4_32(RCAST(volatile kmp_int32 *, f));
+ }
+ static inline flag_t test_then_or(volatile flag_t *f, flag_t v) {
+ return KMP_TEST_THEN_OR32(f, v);
+ }
+ static inline flag_t test_then_and(volatile flag_t *f, flag_t v) {
+ return KMP_TEST_THEN_AND32(f, v);
+ }
+};
+
+template <> struct flag_traits<kmp_uint64> {
+ typedef kmp_uint64 flag_t;
+ static const flag_type t = flag64;
+ static inline flag_t tcr(flag_t f) { return TCR_8(f); }
+ static inline flag_t test_then_add4(volatile flag_t *f) {
+ return KMP_TEST_THEN_ADD4_64(RCAST(volatile kmp_int64 *, f));
+ }
+ static inline flag_t test_then_or(volatile flag_t *f, flag_t v) {
+ return KMP_TEST_THEN_OR64(f, v);
+ }
+ static inline flag_t test_then_and(volatile flag_t *f, flag_t v) {
+ return KMP_TEST_THEN_AND64(f, v);
+ }
+};
+
+// Basic flag that does not use C11 Atomics
+template <typename FlagType>
+class kmp_basic_flag_native : public kmp_flag_native<FlagType> {
+ typedef flag_traits<FlagType> traits_type;
+ FlagType checker; /**< Value to compare flag to to check if flag has been
+ released. */
+ kmp_info_t
+ *waiting_threads[1]; /**< Array of threads sleeping on this thread. */
+ kmp_uint32
+ num_waiting_threads; /**< Number of threads sleeping on this thread. */
+public:
+ kmp_basic_flag_native(volatile FlagType *p)
+ : kmp_flag_native<FlagType>(p, traits_type::t), num_waiting_threads(0) {}
+ kmp_basic_flag_native(volatile FlagType *p, kmp_info_t *thr)
+ : kmp_flag_native<FlagType>(p, traits_type::t), num_waiting_threads(1) {
+ waiting_threads[0] = thr;
+ }
+ kmp_basic_flag_native(volatile FlagType *p, FlagType c)
+ : kmp_flag_native<FlagType>(p, traits_type::t), checker(c),
+ num_waiting_threads(0) {}
+ /*!
+ * param i in index into waiting_threads
+ * @result the thread that is waiting at index i
+ */
+ kmp_info_t *get_waiter(kmp_uint32 i) {
+ KMP_DEBUG_ASSERT(i < num_waiting_threads);
+ return waiting_threads[i];
+ }
+ /*!
+ * @result num_waiting_threads
+ */
+ kmp_uint32 get_num_waiters() { return num_waiting_threads; }
+ /*!
+ * @param thr in the thread which is now waiting
+ *
+ * Insert a waiting thread at index 0.
+ */
+ void set_waiter(kmp_info_t *thr) {
+ waiting_threads[0] = thr;
+ num_waiting_threads = 1;
+ }
+ /*!
+ * @result true if the flag object has been released.
+ */
+ bool done_check() { return traits_type::tcr(*(this->get())) == checker; }
+ /*!
+ * @param old_loc in old value of flag
+ * @result true if the flag's old value indicates it was released.
+ */
+ bool done_check_val(FlagType old_loc) { return old_loc == checker; }
+ /*!
+ * @result true if the flag object is not yet released.
+ * Used in __kmp_wait_template like:
+ * @code
+ * while (flag.notdone_check()) { pause(); }
+ * @endcode
+ */
+ bool notdone_check() { return traits_type::tcr(*(this->get())) != checker; }
+ /*!
+ * @result Actual flag value before release was applied.
+ * Trigger all waiting threads to run by modifying flag to release state.
+ */
+ void internal_release() {
+ (void)traits_type::test_then_add4((volatile FlagType *)this->get());
+ }
+ /*!
+ * @result Actual flag value before sleep bit(s) set.
+ * Notes that there is at least one thread sleeping on the flag by setting
+ * sleep bit(s).
+ */
+ FlagType set_sleeping() {
+ return traits_type::test_then_or((volatile FlagType *)this->get(),
+ KMP_BARRIER_SLEEP_STATE);
+ }
+ /*!
+ * @result Actual flag value before sleep bit(s) cleared.
+ * Notes that there are no longer threads sleeping on the flag by clearing
+ * sleep bit(s).
+ */
+ FlagType unset_sleeping() {
+ return traits_type::test_then_and((volatile FlagType *)this->get(),
+ ~KMP_BARRIER_SLEEP_STATE);
+ }
+ /*!
+ * @param old_loc in old value of flag
+ * Test whether there are threads sleeping on the flag's old value in old_loc.
+ */
+ bool is_sleeping_val(FlagType old_loc) {
+ return old_loc & KMP_BARRIER_SLEEP_STATE;
+ }
+ /*!
+ * Test whether there are threads sleeping on the flag.
+ */
+ bool is_sleeping() { return is_sleeping_val(*(this->get())); }
+ bool is_any_sleeping() { return is_sleeping_val(*(this->get())); }
+ kmp_uint8 *get_stolen() { return NULL; }
+ enum barrier_type get_bt() { return bs_last_barrier; }
+};
+
+template <typename FlagType> class kmp_basic_flag : public kmp_flag<FlagType> {
+ typedef flag_traits<FlagType> traits_type;
+ FlagType checker; /**< Value to compare flag to to check if flag has been
+ released. */
+ kmp_info_t
+ *waiting_threads[1]; /**< Array of threads sleeping on this thread. */
+ kmp_uint32
+ num_waiting_threads; /**< Number of threads sleeping on this thread. */
+public:
+ kmp_basic_flag(std::atomic<FlagType> *p)
+ : kmp_flag<FlagType>(p, traits_type::t), num_waiting_threads(0) {}
+ kmp_basic_flag(std::atomic<FlagType> *p, kmp_info_t *thr)
+ : kmp_flag<FlagType>(p, traits_type::t), num_waiting_threads(1) {
+ waiting_threads[0] = thr;
+ }
+ kmp_basic_flag(std::atomic<FlagType> *p, FlagType c)
+ : kmp_flag<FlagType>(p, traits_type::t), checker(c),
+ num_waiting_threads(0) {}
+ /*!
+ * param i in index into waiting_threads
+ * @result the thread that is waiting at index i
+ */
+ kmp_info_t *get_waiter(kmp_uint32 i) {
+ KMP_DEBUG_ASSERT(i < num_waiting_threads);
+ return waiting_threads[i];
+ }
+ /*!
+ * @result num_waiting_threads
+ */
+ kmp_uint32 get_num_waiters() { return num_waiting_threads; }
+ /*!
+ * @param thr in the thread which is now waiting
+ *
+ * Insert a waiting thread at index 0.
+ */
+ void set_waiter(kmp_info_t *thr) {
+ waiting_threads[0] = thr;
+ num_waiting_threads = 1;
+ }
+ /*!
+ * @result true if the flag object has been released.
+ */
+ bool done_check() { return this->load() == checker; }
+ /*!
+ * @param old_loc in old value of flag
+ * @result true if the flag's old value indicates it was released.
+ */
+ bool done_check_val(FlagType old_loc) { return old_loc == checker; }
+ /*!
+ * @result true if the flag object is not yet released.
+ * Used in __kmp_wait_template like:
+ * @code
+ * while (flag.notdone_check()) { pause(); }
+ * @endcode
+ */
+ bool notdone_check() { return this->load() != checker; }
+ /*!
+ * @result Actual flag value before release was applied.
+ * Trigger all waiting threads to run by modifying flag to release state.
+ */
+ void internal_release() { KMP_ATOMIC_ADD(this->get(), 4); }
+ /*!
+ * @result Actual flag value before sleep bit(s) set.
+ * Notes that there is at least one thread sleeping on the flag by setting
+ * sleep bit(s).
+ */
+ FlagType set_sleeping() {
+ return KMP_ATOMIC_OR(this->get(), KMP_BARRIER_SLEEP_STATE);
+ }
+ /*!
+ * @result Actual flag value before sleep bit(s) cleared.
+ * Notes that there are no longer threads sleeping on the flag by clearing
+ * sleep bit(s).
+ */
+ FlagType unset_sleeping() {
+ return KMP_ATOMIC_AND(this->get(), ~KMP_BARRIER_SLEEP_STATE);
+ }
+ /*!
+ * @param old_loc in old value of flag
+ * Test whether there are threads sleeping on the flag's old value in old_loc.
+ */
+ bool is_sleeping_val(FlagType old_loc) {
+ return old_loc & KMP_BARRIER_SLEEP_STATE;
+ }
+ /*!
+ * Test whether there are threads sleeping on the flag.
+ */
+ bool is_sleeping() { return is_sleeping_val(this->load()); }
+ bool is_any_sleeping() { return is_sleeping_val(this->load()); }
+ kmp_uint8 *get_stolen() { return NULL; }
+ enum barrier_type get_bt() { return bs_last_barrier; }
+};
+
+class kmp_flag_32 : public kmp_basic_flag<kmp_uint32> {
+public:
+ kmp_flag_32(std::atomic<kmp_uint32> *p) : kmp_basic_flag<kmp_uint32>(p) {}
+ kmp_flag_32(std::atomic<kmp_uint32> *p, kmp_info_t *thr)
+ : kmp_basic_flag<kmp_uint32>(p, thr) {}
+ kmp_flag_32(std::atomic<kmp_uint32> *p, kmp_uint32 c)
+ : kmp_basic_flag<kmp_uint32>(p, c) {}
+ void suspend(int th_gtid) { __kmp_suspend_32(th_gtid, this); }
+ void resume(int th_gtid) { __kmp_resume_32(th_gtid, this); }
+ int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin,
+ int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
+ kmp_int32 is_constrained) {
+ return __kmp_execute_tasks_32(
+ this_thr, gtid, this, final_spin,
+ thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
+ }
+ void wait(kmp_info_t *this_thr,
+ int final_spin USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
+ if (final_spin)
+ __kmp_wait_template<kmp_flag_32, TRUE>(
+ this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
+ else
+ __kmp_wait_template<kmp_flag_32, FALSE>(
+ this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
+ }
+ void release() { __kmp_release_template(this); }
+ flag_type get_ptr_type() { return flag32; }
+};
+
+class kmp_flag_64 : public kmp_basic_flag_native<kmp_uint64> {
+public:
+ kmp_flag_64(volatile kmp_uint64 *p) : kmp_basic_flag_native<kmp_uint64>(p) {}
+ kmp_flag_64(volatile kmp_uint64 *p, kmp_info_t *thr)
+ : kmp_basic_flag_native<kmp_uint64>(p, thr) {}
+ kmp_flag_64(volatile kmp_uint64 *p, kmp_uint64 c)
+ : kmp_basic_flag_native<kmp_uint64>(p, c) {}
+ void suspend(int th_gtid) { __kmp_suspend_64(th_gtid, this); }
+ void resume(int th_gtid) { __kmp_resume_64(th_gtid, this); }
+ int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin,
+ int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
+ kmp_int32 is_constrained) {
+ return __kmp_execute_tasks_64(
+ this_thr, gtid, this, final_spin,
+ thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
+ }
+ void wait(kmp_info_t *this_thr,
+ int final_spin USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
+ if (final_spin)
+ __kmp_wait_template<kmp_flag_64, TRUE>(
+ this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
+ else
+ __kmp_wait_template<kmp_flag_64, FALSE>(
+ this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
+ }
+ void release() { __kmp_release_template(this); }
+ flag_type get_ptr_type() { return flag64; }
+};
+
+// Hierarchical 64-bit on-core barrier instantiation
+class kmp_flag_oncore : public kmp_flag_native<kmp_uint64> {
+ kmp_uint64 checker;
+ kmp_info_t *waiting_threads[1];
+ kmp_uint32 num_waiting_threads;
+ kmp_uint32
+ offset; /**< Portion of flag that is of interest for an operation. */
+ bool flag_switch; /**< Indicates a switch in flag location. */
+ enum barrier_type bt; /**< Barrier type. */
+ kmp_info_t *this_thr; /**< Thread that may be redirected to different flag
+ location. */
+#if USE_ITT_BUILD
+ void *
+ itt_sync_obj; /**< ITT object that must be passed to new flag location. */
+#endif
+ unsigned char &byteref(volatile kmp_uint64 *loc, size_t offset) {
+ return (RCAST(unsigned char *, CCAST(kmp_uint64 *, loc)))[offset];
+ }
+
+public:
+ kmp_flag_oncore(volatile kmp_uint64 *p)
+ : kmp_flag_native<kmp_uint64>(p, flag_oncore), num_waiting_threads(0),
+ flag_switch(false) {}
+ kmp_flag_oncore(volatile kmp_uint64 *p, kmp_uint32 idx)
+ : kmp_flag_native<kmp_uint64>(p, flag_oncore), num_waiting_threads(0),
+ offset(idx), flag_switch(false) {}
+ kmp_flag_oncore(volatile kmp_uint64 *p, kmp_uint64 c, kmp_uint32 idx,
+ enum barrier_type bar_t,
+ kmp_info_t *thr USE_ITT_BUILD_ARG(void *itt))
+ : kmp_flag_native<kmp_uint64>(p, flag_oncore), checker(c),
+ num_waiting_threads(0), offset(idx), flag_switch(false), bt(bar_t),
+ this_thr(thr) USE_ITT_BUILD_ARG(itt_sync_obj(itt)) {}
+ kmp_info_t *get_waiter(kmp_uint32 i) {
+ KMP_DEBUG_ASSERT(i < num_waiting_threads);
+ return waiting_threads[i];
+ }
+ kmp_uint32 get_num_waiters() { return num_waiting_threads; }
+ void set_waiter(kmp_info_t *thr) {
+ waiting_threads[0] = thr;
+ num_waiting_threads = 1;
+ }
+ bool done_check_val(kmp_uint64 old_loc) {
+ return byteref(&old_loc, offset) == checker;
+ }
+ bool done_check() { return done_check_val(*get()); }
+ bool notdone_check() {
+ // Calculate flag_switch
+ if (this_thr->th.th_bar[bt].bb.wait_flag == KMP_BARRIER_SWITCH_TO_OWN_FLAG)
+ flag_switch = true;
+ if (byteref(get(), offset) != 1 && !flag_switch)
+ return true;
+ else if (flag_switch) {
+ this_thr->th.th_bar[bt].bb.wait_flag = KMP_BARRIER_SWITCHING;
+ kmp_flag_64 flag(&this_thr->th.th_bar[bt].bb.b_go,
+ (kmp_uint64)KMP_BARRIER_STATE_BUMP);
+ __kmp_wait_64(this_thr, &flag, TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
+ }
+ return false;
+ }
+ void internal_release() {
+ // Other threads can write their own bytes simultaneously.
+ if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
+ byteref(get(), offset) = 1;
+ } else {
+ kmp_uint64 mask = 0;
+ byteref(&mask, offset) = 1;
+ KMP_TEST_THEN_OR64(get(), mask);
+ }
+ }
+ kmp_uint64 set_sleeping() {
+ return KMP_TEST_THEN_OR64(get(), KMP_BARRIER_SLEEP_STATE);
+ }
+ kmp_uint64 unset_sleeping() {
+ return KMP_TEST_THEN_AND64(get(), ~KMP_BARRIER_SLEEP_STATE);
+ }
+ bool is_sleeping_val(kmp_uint64 old_loc) {
+ return old_loc & KMP_BARRIER_SLEEP_STATE;
+ }
+ bool is_sleeping() { return is_sleeping_val(*get()); }
+ bool is_any_sleeping() { return is_sleeping_val(*get()); }
+ void wait(kmp_info_t *this_thr, int final_spin) {
+ if (final_spin)
+ __kmp_wait_template<kmp_flag_oncore, TRUE>(
+ this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
+ else
+ __kmp_wait_template<kmp_flag_oncore, FALSE>(
+ this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
+ }
+ void release() { __kmp_release_template(this); }
+ void suspend(int th_gtid) { __kmp_suspend_oncore(th_gtid, this); }
+ void resume(int th_gtid) { __kmp_resume_oncore(th_gtid, this); }
+ int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin,
+ int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
+ kmp_int32 is_constrained) {
+ return __kmp_execute_tasks_oncore(
+ this_thr, gtid, this, final_spin,
+ thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
+ }
+ kmp_uint8 *get_stolen() { return NULL; }
+ enum barrier_type get_bt() { return bt; }
+ flag_type get_ptr_type() { return flag_oncore; }
+};
+
+// Used to wake up threads, volatile void* flag is usually the th_sleep_loc
+// associated with int gtid.
+static inline void __kmp_null_resume_wrapper(int gtid, volatile void *flag) {
+ if (!flag)
+ return;
+
+ switch (RCAST(kmp_flag_64 *, CCAST(void *, flag))->get_type()) {
+ case flag32:
+ __kmp_resume_32(gtid, NULL);
+ break;
+ case flag64:
+ __kmp_resume_64(gtid, NULL);
+ break;
+ case flag_oncore:
+ __kmp_resume_oncore(gtid, NULL);
+ break;
+ }
+}
+
+/*!
+@}
+*/
+
+#endif // KMP_WAIT_RELEASE_H