; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -instcombine -S | FileCheck %s target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64" target triple = "x86_64-apple-darwin10.0.0" ; Bitcasts between vectors and scalars are valid. ; PR4487 define i32 @test1(i64 %a) { ; CHECK-LABEL: @test1( ; CHECK-NEXT: ret i32 0 ; %t1 = bitcast i64 %a to <2 x i32> %t2 = bitcast i64 %a to <2 x i32> %t3 = xor <2 x i32> %t1, %t2 %t4 = extractelement <2 x i32> %t3, i32 0 ret i32 %t4 } ; Perform the bitwise logic in the source type of the operands to eliminate bitcasts. define <2 x i32> @xor_two_vector_bitcasts(<1 x i64> %a, <1 x i64> %b) { ; CHECK-LABEL: @xor_two_vector_bitcasts( ; CHECK-NEXT: [[T31:%.*]] = xor <1 x i64> [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[T3:%.*]] = bitcast <1 x i64> [[T31]] to <2 x i32> ; CHECK-NEXT: ret <2 x i32> [[T3]] ; %t1 = bitcast <1 x i64> %a to <2 x i32> %t2 = bitcast <1 x i64> %b to <2 x i32> %t3 = xor <2 x i32> %t1, %t2 ret <2 x i32> %t3 } ; No change. Bitcasts are canonicalized above bitwise logic. define <2 x i32> @xor_bitcast_vec_to_vec(<1 x i64> %a) { ; CHECK-LABEL: @xor_bitcast_vec_to_vec( ; CHECK-NEXT: [[T1:%.*]] = bitcast <1 x i64> [[A:%.*]] to <2 x i32> ; CHECK-NEXT: [[T2:%.*]] = xor <2 x i32> [[T1]], ; CHECK-NEXT: ret <2 x i32> [[T2]] ; %t1 = bitcast <1 x i64> %a to <2 x i32> %t2 = xor <2 x i32> , %t1 ret <2 x i32> %t2 } ; No change. Bitcasts are canonicalized above bitwise logic. define i64 @and_bitcast_vec_to_int(<2 x i32> %a) { ; CHECK-LABEL: @and_bitcast_vec_to_int( ; CHECK-NEXT: [[T1:%.*]] = bitcast <2 x i32> [[A:%.*]] to i64 ; CHECK-NEXT: [[T2:%.*]] = and i64 [[T1]], 3 ; CHECK-NEXT: ret i64 [[T2]] ; %t1 = bitcast <2 x i32> %a to i64 %t2 = and i64 %t1, 3 ret i64 %t2 } ; No change. Bitcasts are canonicalized above bitwise logic. define <2 x i32> @or_bitcast_int_to_vec(i64 %a) { ; CHECK-LABEL: @or_bitcast_int_to_vec( ; CHECK-NEXT: [[T1:%.*]] = bitcast i64 [[A:%.*]] to <2 x i32> ; CHECK-NEXT: [[T2:%.*]] = or <2 x i32> [[T1]], ; CHECK-NEXT: ret <2 x i32> [[T2]] ; %t1 = bitcast i64 %a to <2 x i32> %t2 = or <2 x i32> %t1, ret <2 x i32> %t2 } ; PR26702 - https://bugs.llvm.org//show_bug.cgi?id=26702 ; Bitcast is canonicalized above logic, so we can see the not-not pattern. define <2 x i64> @is_negative(<4 x i32> %x) { ; CHECK-LABEL: @is_negative( ; CHECK-NEXT: [[LOBIT:%.*]] = ashr <4 x i32> %x, ; CHECK-NEXT: [[NOTNOT:%.*]] = bitcast <4 x i32> [[LOBIT]] to <2 x i64> ; CHECK-NEXT: ret <2 x i64> [[NOTNOT]] ; %lobit = ashr <4 x i32> %x, %not = xor <4 x i32> %lobit, %bc = bitcast <4 x i32> %not to <2 x i64> %notnot = xor <2 x i64> %bc, ret <2 x i64> %notnot } ; This variation has an extra bitcast at the end. This means that the 2nd xor ; can be done in <4 x i32> to eliminate a bitcast regardless of canonicalizaion. define <4 x i32> @is_negative_bonus_bitcast(<4 x i32> %x) { ; CHECK-LABEL: @is_negative_bonus_bitcast( ; CHECK-NEXT: [[LOBIT:%.*]] = ashr <4 x i32> %x, ; CHECK-NEXT: ret <4 x i32> [[LOBIT]] ; %lobit = ashr <4 x i32> %x, %not = xor <4 x i32> %lobit, %bc = bitcast <4 x i32> %not to <2 x i64> %notnot = xor <2 x i64> %bc, %bc2 = bitcast <2 x i64> %notnot to <4 x i32> ret <4 x i32> %bc2 } ; Bitcasts are canonicalized above bitwise logic. define <2 x i8> @canonicalize_bitcast_logic_with_constant(<4 x i4> %x) { ; CHECK-LABEL: @canonicalize_bitcast_logic_with_constant( ; CHECK-NEXT: [[TMP1:%.*]] = bitcast <4 x i4> [[X:%.*]] to <2 x i8> ; CHECK-NEXT: [[B:%.*]] = and <2 x i8> [[TMP1]], ; CHECK-NEXT: ret <2 x i8> [[B]] ; %a = and <4 x i4> %x, %b = bitcast <4 x i4> %a to <2 x i8> ret <2 x i8> %b } ; PR27925 - https://llvm.org/bugs/show_bug.cgi?id=27925 define <4 x i32> @bitcasts_and_bitcast(<4 x i32> %a, <8 x i16> %b) { ; CHECK-LABEL: @bitcasts_and_bitcast( ; CHECK-NEXT: [[TMP1:%.*]] = bitcast <8 x i16> [[B:%.*]] to <4 x i32> ; CHECK-NEXT: [[BC3:%.*]] = and <4 x i32> [[TMP1]], [[A:%.*]] ; CHECK-NEXT: ret <4 x i32> [[BC3]] ; %bc1 = bitcast <4 x i32> %a to <2 x i64> %bc2 = bitcast <8 x i16> %b to <2 x i64> %and = and <2 x i64> %bc2, %bc1 %bc3 = bitcast <2 x i64> %and to <4 x i32> ret <4 x i32> %bc3 } ; The destination must have an integer element type. ; FIXME: We can still eliminate one bitcast in this test by doing the logic op ; in the type of the input that has an integer element type. define <4 x float> @bitcasts_and_bitcast_to_fp(<4 x float> %a, <8 x i16> %b) { ; CHECK-LABEL: @bitcasts_and_bitcast_to_fp( ; CHECK-NEXT: [[BC1:%.*]] = bitcast <4 x float> [[A:%.*]] to <2 x i64> ; CHECK-NEXT: [[BC2:%.*]] = bitcast <8 x i16> [[B:%.*]] to <2 x i64> ; CHECK-NEXT: [[AND:%.*]] = and <2 x i64> [[BC2]], [[BC1]] ; CHECK-NEXT: [[BC3:%.*]] = bitcast <2 x i64> [[AND]] to <4 x float> ; CHECK-NEXT: ret <4 x float> [[BC3]] ; %bc1 = bitcast <4 x float> %a to <2 x i64> %bc2 = bitcast <8 x i16> %b to <2 x i64> %and = and <2 x i64> %bc2, %bc1 %bc3 = bitcast <2 x i64> %and to <4 x float> ret <4 x float> %bc3 } ; FIXME: Transform limited from changing vector op to integer op to avoid codegen problems. define i128 @bitcast_or_bitcast(i128 %a, <2 x i64> %b) { ; CHECK-LABEL: @bitcast_or_bitcast( ; CHECK-NEXT: [[BC1:%.*]] = bitcast i128 [[A:%.*]] to <2 x i64> ; CHECK-NEXT: [[OR:%.*]] = or <2 x i64> [[BC1]], [[B:%.*]] ; CHECK-NEXT: [[BC2:%.*]] = bitcast <2 x i64> [[OR]] to i128 ; CHECK-NEXT: ret i128 [[BC2]] ; %bc1 = bitcast i128 %a to <2 x i64> %or = or <2 x i64> %b, %bc1 %bc2 = bitcast <2 x i64> %or to i128 ret i128 %bc2 } ; FIXME: Transform limited from changing integer op to vector op to avoid codegen problems. define <4 x i32> @bitcast_xor_bitcast(<4 x i32> %a, i128 %b) { ; CHECK-LABEL: @bitcast_xor_bitcast( ; CHECK-NEXT: [[BC1:%.*]] = bitcast <4 x i32> [[A:%.*]] to i128 ; CHECK-NEXT: [[XOR:%.*]] = xor i128 [[BC1]], [[B:%.*]] ; CHECK-NEXT: [[BC2:%.*]] = bitcast i128 [[XOR]] to <4 x i32> ; CHECK-NEXT: ret <4 x i32> [[BC2]] ; %bc1 = bitcast <4 x i32> %a to i128 %xor = xor i128 %bc1, %b %bc2 = bitcast i128 %xor to <4 x i32> ret <4 x i32> %bc2 } ; https://llvm.org/bugs/show_bug.cgi?id=6137#c6 define <4 x float> @bitcast_vector_select(<4 x float> %x, <2 x i64> %y, <4 x i1> %cmp) { ; CHECK-LABEL: @bitcast_vector_select( ; CHECK-NEXT: [[TMP1:%.*]] = bitcast <2 x i64> [[Y:%.*]] to <4 x float> ; CHECK-NEXT: [[T7:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x float> [[X:%.*]], <4 x float> [[TMP1]] ; CHECK-NEXT: ret <4 x float> [[T7]] ; %t4 = bitcast <4 x float> %x to <4 x i32> %t5 = bitcast <2 x i64> %y to <4 x i32> %t6 = select <4 x i1> %cmp, <4 x i32> %t4, <4 x i32> %t5 %t7 = bitcast <4 x i32> %t6 to <4 x float> ret <4 x float> %t7 } define float @bitcast_scalar_select_of_scalars(float %x, i32 %y, i1 %cmp) { ; CHECK-LABEL: @bitcast_scalar_select_of_scalars( ; CHECK-NEXT: [[TMP1:%.*]] = bitcast i32 [[Y:%.*]] to float ; CHECK-NEXT: [[T7:%.*]] = select i1 [[CMP:%.*]], float [[X:%.*]], float [[TMP1]] ; CHECK-NEXT: ret float [[T7]] ; %t4 = bitcast float %x to i32 %t6 = select i1 %cmp, i32 %t4, i32 %y %t7 = bitcast i32 %t6 to float ret float %t7 } ; FIXME: We should change the select operand types to scalars, but we need to make ; sure the backend can reverse that transform if needed. define float @bitcast_scalar_select_type_mismatch1(float %x, <4 x i8> %y, i1 %cmp) { ; CHECK-LABEL: @bitcast_scalar_select_type_mismatch1( ; CHECK-NEXT: [[T4:%.*]] = bitcast float [[X:%.*]] to <4 x i8> ; CHECK-NEXT: [[T6:%.*]] = select i1 [[CMP:%.*]], <4 x i8> [[T4]], <4 x i8> [[Y:%.*]] ; CHECK-NEXT: [[T7:%.*]] = bitcast <4 x i8> [[T6]] to float ; CHECK-NEXT: ret float [[T7]] ; %t4 = bitcast float %x to <4 x i8> %t6 = select i1 %cmp, <4 x i8> %t4, <4 x i8> %y %t7 = bitcast <4 x i8> %t6 to float ret float %t7 } ; FIXME: We should change the select operand types to vectors, but we need to make ; sure the backend can reverse that transform if needed. define <4 x i8> @bitcast_scalar_select_type_mismatch2(<4 x i8> %x, float %y, i1 %cmp) { ; CHECK-LABEL: @bitcast_scalar_select_type_mismatch2( ; CHECK-NEXT: [[T4:%.*]] = bitcast <4 x i8> [[X:%.*]] to float ; CHECK-NEXT: [[T6:%.*]] = select i1 [[CMP:%.*]], float [[T4]], float [[Y:%.*]] ; CHECK-NEXT: [[T7:%.*]] = bitcast float [[T6]] to <4 x i8> ; CHECK-NEXT: ret <4 x i8> [[T7]] ; %t4 = bitcast <4 x i8> %x to float %t6 = select i1 %cmp, float %t4, float %y %t7 = bitcast float %t6 to <4 x i8> ret <4 x i8> %t7 } define <4 x float> @bitcast_scalar_select_of_vectors(<4 x float> %x, <2 x i64> %y, i1 %cmp) { ; CHECK-LABEL: @bitcast_scalar_select_of_vectors( ; CHECK-NEXT: [[TMP1:%.*]] = bitcast <2 x i64> [[Y:%.*]] to <4 x float> ; CHECK-NEXT: [[T7:%.*]] = select i1 [[CMP:%.*]], <4 x float> [[X:%.*]], <4 x float> [[TMP1]] ; CHECK-NEXT: ret <4 x float> [[T7]] ; %t4 = bitcast <4 x float> %x to <4 x i32> %t5 = bitcast <2 x i64> %y to <4 x i32> %t6 = select i1 %cmp, <4 x i32> %t4, <4 x i32> %t5 %t7 = bitcast <4 x i32> %t6 to <4 x float> ret <4 x float> %t7 } ; Can't change the type of the vector select if the dest type is scalar. define float @bitcast_vector_select_no_fold1(float %x, <2 x i16> %y, <4 x i1> %cmp) { ; CHECK-LABEL: @bitcast_vector_select_no_fold1( ; CHECK-NEXT: [[T4:%.*]] = bitcast float [[X:%.*]] to <4 x i8> ; CHECK-NEXT: [[T5:%.*]] = bitcast <2 x i16> [[Y:%.*]] to <4 x i8> ; CHECK-NEXT: [[T6:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i8> [[T4]], <4 x i8> [[T5]] ; CHECK-NEXT: [[T7:%.*]] = bitcast <4 x i8> [[T6]] to float ; CHECK-NEXT: ret float [[T7]] ; %t4 = bitcast float %x to <4 x i8> %t5 = bitcast <2 x i16> %y to <4 x i8> %t6 = select <4 x i1> %cmp, <4 x i8> %t4, <4 x i8> %t5 %t7 = bitcast <4 x i8> %t6 to float ret float %t7 } ; Can't change the type of the vector select if the number of elements in the dest type is not the same. define <2 x float> @bitcast_vector_select_no_fold2(<2 x float> %x, <4 x i16> %y, <8 x i1> %cmp) { ; CHECK-LABEL: @bitcast_vector_select_no_fold2( ; CHECK-NEXT: [[T4:%.*]] = bitcast <2 x float> [[X:%.*]] to <8 x i8> ; CHECK-NEXT: [[T5:%.*]] = bitcast <4 x i16> [[Y:%.*]] to <8 x i8> ; CHECK-NEXT: [[T6:%.*]] = select <8 x i1> [[CMP:%.*]], <8 x i8> [[T4]], <8 x i8> [[T5]] ; CHECK-NEXT: [[T7:%.*]] = bitcast <8 x i8> [[T6]] to <2 x float> ; CHECK-NEXT: ret <2 x float> [[T7]] ; %t4 = bitcast <2 x float> %x to <8 x i8> %t5 = bitcast <4 x i16> %y to <8 x i8> %t6 = select <8 x i1> %cmp, <8 x i8> %t4, <8 x i8> %t5 %t7 = bitcast <8 x i8> %t6 to <2 x float> ret <2 x float> %t7 } ; Optimize bitcasts that are extracting low element of vector. This happens because of SRoA. ; rdar://7892780 define float @test2(<2 x float> %A, <2 x i32> %B) { ; CHECK-LABEL: @test2( ; CHECK-NEXT: [[TMP24:%.*]] = extractelement <2 x float> [[A:%.*]], i32 0 ; CHECK-NEXT: [[BC:%.*]] = bitcast <2 x i32> [[B:%.*]] to <2 x float> ; CHECK-NEXT: [[TMP4:%.*]] = extractelement <2 x float> [[BC]], i32 0 ; CHECK-NEXT: [[ADD:%.*]] = fadd float [[TMP24]], [[TMP4]] ; CHECK-NEXT: ret float [[ADD]] ; %tmp28 = bitcast <2 x float> %A to i64 ; [#uses=2] %tmp23 = trunc i64 %tmp28 to i32 ; [#uses=1] %tmp24 = bitcast i32 %tmp23 to float ; [#uses=1] %tmp = bitcast <2 x i32> %B to i64 %tmp2 = trunc i64 %tmp to i32 ; [#uses=1] %tmp4 = bitcast i32 %tmp2 to float ; [#uses=1] %add = fadd float %tmp24, %tmp4 ret float %add } ; Optimize bitcasts that are extracting other elements of a vector. This happens because of SRoA. ; rdar://7892780 define float @test3(<2 x float> %A, <2 x i64> %B) { ; CHECK-LABEL: @test3( ; CHECK-NEXT: [[TMP24:%.*]] = extractelement <2 x float> [[A:%.*]], i32 1 ; CHECK-NEXT: [[BC2:%.*]] = bitcast <2 x i64> [[B:%.*]] to <4 x float> ; CHECK-NEXT: [[TMP4:%.*]] = extractelement <4 x float> [[BC2]], i32 2 ; CHECK-NEXT: [[ADD:%.*]] = fadd float [[TMP24]], [[TMP4]] ; CHECK-NEXT: ret float [[ADD]] ; %tmp28 = bitcast <2 x float> %A to i64 %tmp29 = lshr i64 %tmp28, 32 %tmp23 = trunc i64 %tmp29 to i32 %tmp24 = bitcast i32 %tmp23 to float %tmp = bitcast <2 x i64> %B to i128 %tmp1 = lshr i128 %tmp, 64 %tmp2 = trunc i128 %tmp1 to i32 %tmp4 = bitcast i32 %tmp2 to float %add = fadd float %tmp24, %tmp4 ret float %add } ; Both bitcasts are unnecessary; change the extractelement. define float @bitcast_extelt1(<2 x float> %A) { ; CHECK-LABEL: @bitcast_extelt1( ; CHECK-NEXT: [[BC2:%.*]] = extractelement <2 x float> [[A:%.*]], i32 0 ; CHECK-NEXT: ret float [[BC2]] ; %bc1 = bitcast <2 x float> %A to <2 x i32> %ext = extractelement <2 x i32> %bc1, i32 0 %bc2 = bitcast i32 %ext to float ret float %bc2 } ; Second bitcast can be folded into the first. define i64 @bitcast_extelt2(<4 x float> %A) { ; CHECK-LABEL: @bitcast_extelt2( ; CHECK-NEXT: [[BC:%.*]] = bitcast <4 x float> [[A:%.*]] to <2 x i64> ; CHECK-NEXT: [[BC2:%.*]] = extractelement <2 x i64> [[BC]], i32 1 ; CHECK-NEXT: ret i64 [[BC2]] ; %bc1 = bitcast <4 x float> %A to <2 x double> %ext = extractelement <2 x double> %bc1, i32 1 %bc2 = bitcast double %ext to i64 ret i64 %bc2 } ; TODO: This should return %A. define <2 x i32> @bitcast_extelt3(<2 x i32> %A) { ; CHECK-LABEL: @bitcast_extelt3( ; CHECK-NEXT: [[BC1:%.*]] = bitcast <2 x i32> [[A:%.*]] to <1 x i64> ; CHECK-NEXT: [[EXT:%.*]] = extractelement <1 x i64> [[BC1]], i32 0 ; CHECK-NEXT: [[BC2:%.*]] = bitcast i64 [[EXT]] to <2 x i32> ; CHECK-NEXT: ret <2 x i32> [[BC2]] ; %bc1 = bitcast <2 x i32> %A to <1 x i64> %ext = extractelement <1 x i64> %bc1, i32 0 %bc2 = bitcast i64 %ext to <2 x i32> ret <2 x i32> %bc2 } ; Handle the case where the input is not a vector. define double @bitcast_extelt4(i128 %A) { ; CHECK-LABEL: @bitcast_extelt4( ; CHECK-NEXT: [[BC:%.*]] = bitcast i128 [[A:%.*]] to <2 x double> ; CHECK-NEXT: [[BC2:%.*]] = extractelement <2 x double> [[BC]], i32 0 ; CHECK-NEXT: ret double [[BC2]] ; %bc1 = bitcast i128 %A to <2 x i64> %ext = extractelement <2 x i64> %bc1, i32 0 %bc2 = bitcast i64 %ext to double ret double %bc2 } define <2 x i32> @test4(i32 %A, i32 %B){ ; CHECK-LABEL: @test4( ; CHECK-NEXT: [[TMP1:%.*]] = insertelement <2 x i32> undef, i32 [[A:%.*]], i32 0 ; CHECK-NEXT: [[TMP2:%.*]] = insertelement <2 x i32> [[TMP1]], i32 [[B:%.*]], i32 1 ; CHECK-NEXT: ret <2 x i32> [[TMP2]] ; %tmp38 = zext i32 %A to i64 %tmp32 = zext i32 %B to i64 %tmp33 = shl i64 %tmp32, 32 %ins35 = or i64 %tmp33, %tmp38 %tmp43 = bitcast i64 %ins35 to <2 x i32> ret <2 x i32> %tmp43 } ; rdar://8360454 define <2 x float> @test5(float %A, float %B) { ; CHECK-LABEL: @test5( ; CHECK-NEXT: [[TMP1:%.*]] = insertelement <2 x float> undef, float [[A:%.*]], i32 0 ; CHECK-NEXT: [[TMP2:%.*]] = insertelement <2 x float> [[TMP1]], float [[B:%.*]], i32 1 ; CHECK-NEXT: ret <2 x float> [[TMP2]] ; %tmp37 = bitcast float %A to i32 %tmp38 = zext i32 %tmp37 to i64 %tmp31 = bitcast float %B to i32 %tmp32 = zext i32 %tmp31 to i64 %tmp33 = shl i64 %tmp32, 32 %ins35 = or i64 %tmp33, %tmp38 %tmp43 = bitcast i64 %ins35 to <2 x float> ret <2 x float> %tmp43 } define <2 x float> @test6(float %A){ ; CHECK-LABEL: @test6( ; CHECK-NEXT: [[TMP1:%.*]] = insertelement <2 x float> , float [[A:%.*]], i32 1 ; CHECK-NEXT: ret <2 x float> [[TMP1]] ; %tmp23 = bitcast float %A to i32 %tmp24 = zext i32 %tmp23 to i64 %tmp25 = shl i64 %tmp24, 32 %mask20 = or i64 %tmp25, 1109917696 %tmp35 = bitcast i64 %mask20 to <2 x float> ret <2 x float> %tmp35 } define i64 @ISPC0(i64 %in) { ; CHECK-LABEL: @ISPC0( ; CHECK-NEXT: ret i64 0 ; %out = and i64 %in, xor (i64 bitcast (<4 x i16> to i64), i64 -1) ret i64 %out } define i64 @Vec2(i64 %in) { ; CHECK-LABEL: @Vec2( ; CHECK-NEXT: ret i64 0 ; %out = and i64 %in, xor (i64 bitcast (<4 x i16> to i64), i64 0) ret i64 %out } define i64 @All11(i64 %in) { ; CHECK-LABEL: @All11( ; CHECK-NEXT: ret i64 0 ; %out = and i64 %in, xor (i64 bitcast (<2 x float> bitcast (i64 -1 to <2 x float>) to i64), i64 -1) ret i64 %out } define i32 @All111(i32 %in) { ; CHECK-LABEL: @All111( ; CHECK-NEXT: ret i32 0 ; %out = and i32 %in, xor (i32 bitcast (<1 x float> bitcast (i32 -1 to <1 x float>) to i32), i32 -1) ret i32 %out } define <2 x i16> @BitcastInsert(i32 %a) { ; CHECK-LABEL: @BitcastInsert( ; CHECK-NEXT: [[R:%.*]] = bitcast i32 [[A:%.*]] to <2 x i16> ; CHECK-NEXT: ret <2 x i16> [[R]] ; %v = insertelement <1 x i32> undef, i32 %a, i32 0 %r = bitcast <1 x i32> %v to <2 x i16> ret <2 x i16> %r } ; PR17293 define <2 x i64> @test7(<2 x i8*>* %arg) nounwind { ; CHECK-LABEL: @test7( ; CHECK-NEXT: [[CAST:%.*]] = bitcast <2 x i8*>* [[ARG:%.*]] to <2 x i64>* ; CHECK-NEXT: [[LOAD:%.*]] = load <2 x i64>, <2 x i64>* [[CAST]], align 16 ; CHECK-NEXT: ret <2 x i64> [[LOAD]] ; %cast = bitcast <2 x i8*>* %arg to <2 x i64>* %load = load <2 x i64>, <2 x i64>* %cast, align 16 ret <2 x i64> %load } define i8 @test8() { ; CHECK-LABEL: @test8( ; CHECK-NEXT: ret i8 -85 ; %res = bitcast <8 x i1> to i8 ret i8 %res } @g = internal unnamed_addr global i32 undef define void @constant_fold_vector_to_double() { ; CHECK-LABEL: @constant_fold_vector_to_double( ; CHECK-NEXT: store volatile double 1.000000e+00, double* undef, align 8 ; CHECK-NEXT: store volatile double 1.000000e+00, double* undef, align 8 ; CHECK-NEXT: store volatile double 1.000000e+00, double* undef, align 8 ; CHECK-NEXT: store volatile double 1.000000e+00, double* undef, align 8 ; CHECK-NEXT: store volatile double 0xFFFFFFFFFFFFFFFF, double* undef, align 8 ; CHECK-NEXT: store volatile double 0x162E000004D2, double* undef, align 8 ; CHECK-NEXT: store volatile double bitcast (<2 x i32> to double), double* undef, align 8 ; CHECK-NEXT: store volatile double 0x400000003F800000, double* undef, align 8 ; CHECK-NEXT: store volatile double 0.000000e+00, double* undef, align 8 ; CHECK-NEXT: store volatile double 0.000000e+00, double* undef, align 8 ; CHECK-NEXT: store volatile double 0.000000e+00, double* undef, align 8 ; CHECK-NEXT: store volatile double 0.000000e+00, double* undef, align 8 ; CHECK-NEXT: store volatile double 0.000000e+00, double* undef, align 8 ; CHECK-NEXT: store volatile double 0.000000e+00, double* undef, align 8 ; CHECK-NEXT: ret void ; store volatile double bitcast (<1 x i64> to double), double* undef store volatile double bitcast (<2 x i32> to double), double* undef store volatile double bitcast (<4 x i16> to double), double* undef store volatile double bitcast (<8 x i8> to double), double* undef store volatile double bitcast (<2 x i32> to double), double* undef store volatile double bitcast (<2 x i32> to double), double* undef store volatile double bitcast (<2 x i32> to double), double* undef store volatile double bitcast (<2 x float> to double), double* undef store volatile double bitcast (<2 x i32> zeroinitializer to double), double* undef store volatile double bitcast (<4 x i16> zeroinitializer to double), double* undef store volatile double bitcast (<8 x i8> zeroinitializer to double), double* undef store volatile double bitcast (<16 x i4> zeroinitializer to double), double* undef store volatile double bitcast (<32 x i2> zeroinitializer to double), double* undef store volatile double bitcast (<64 x i1> zeroinitializer to double), double* undef ret void } define void @constant_fold_vector_to_float() { ; CHECK-LABEL: @constant_fold_vector_to_float( ; CHECK-NEXT: store volatile float 1.000000e+00, float* undef, align 4 ; CHECK-NEXT: store volatile float 1.000000e+00, float* undef, align 4 ; CHECK-NEXT: store volatile float 1.000000e+00, float* undef, align 4 ; CHECK-NEXT: store volatile float 1.000000e+00, float* undef, align 4 ; CHECK-NEXT: ret void ; store volatile float bitcast (<1 x i32> to float), float* undef store volatile float bitcast (<2 x i16> to float), float* undef store volatile float bitcast (<4 x i8> to float), float* undef store volatile float bitcast (<32 x i1> to float), float* undef ret void } define void @constant_fold_vector_to_half() { ; CHECK-LABEL: @constant_fold_vector_to_half( ; CHECK-NEXT: store volatile half 0xH4000, half* undef, align 2 ; CHECK-NEXT: store volatile half 0xH4000, half* undef, align 2 ; CHECK-NEXT: ret void ; store volatile half bitcast (<2 x i8> to half), half* undef store volatile half bitcast (<4 x i4> to half), half* undef ret void }