//===- ARMLegalizerInfo.cpp --------------------------------------*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This file implements the targeting of the Machinelegalizer class for ARM. /// \todo This should be generated by TableGen. //===----------------------------------------------------------------------===// #include "ARMLegalizerInfo.h" #include "ARMCallLowering.h" #include "ARMSubtarget.h" #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" #include "llvm/CodeGen/LowLevelType.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Type.h" #include "llvm/Target/TargetOpcodes.h" using namespace llvm; /// FIXME: The following static functions are SizeChangeStrategy functions /// that are meant to temporarily mimic the behaviour of the old legalization /// based on doubling/halving non-legal types as closely as possible. This is /// not entirly possible as only legalizing the types that are exactly a power /// of 2 times the size of the legal types would require specifying all those /// sizes explicitly. /// In practice, not specifying those isn't a problem, and the below functions /// should disappear quickly as we add support for legalizing non-power-of-2 /// sized types further. static void addAndInterleaveWithUnsupported(LegalizerInfo::SizeAndActionsVec &result, const LegalizerInfo::SizeAndActionsVec &v) { for (unsigned i = 0; i < v.size(); ++i) { result.push_back(v[i]); if (i + 1 < v[i].first && i + 1 < v.size() && v[i + 1].first != v[i].first + 1) result.push_back({v[i].first + 1, LegalizerInfo::Unsupported}); } } static LegalizerInfo::SizeAndActionsVec widen_8_16(const LegalizerInfo::SizeAndActionsVec &v) { assert(v.size() >= 1); assert(v[0].first > 17); LegalizerInfo::SizeAndActionsVec result = { {1, LegalizerInfo::Unsupported}, {8, LegalizerInfo::WidenScalar}, {9, LegalizerInfo::Unsupported}, {16, LegalizerInfo::WidenScalar}, {17, LegalizerInfo::Unsupported}}; addAndInterleaveWithUnsupported(result, v); auto Largest = result.back().first; result.push_back({Largest + 1, LegalizerInfo::Unsupported}); return result; } static LegalizerInfo::SizeAndActionsVec widen_1_8_16(const LegalizerInfo::SizeAndActionsVec &v) { assert(v.size() >= 1); assert(v[0].first > 17); LegalizerInfo::SizeAndActionsVec result = { {1, LegalizerInfo::WidenScalar}, {2, LegalizerInfo::Unsupported}, {8, LegalizerInfo::WidenScalar}, {9, LegalizerInfo::Unsupported}, {16, LegalizerInfo::WidenScalar}, {17, LegalizerInfo::Unsupported}}; addAndInterleaveWithUnsupported(result, v); auto Largest = result.back().first; result.push_back({Largest + 1, LegalizerInfo::Unsupported}); return result; } static bool AEABI(const ARMSubtarget &ST) { return ST.isTargetAEABI() || ST.isTargetGNUAEABI() || ST.isTargetMuslAEABI(); } ARMLegalizerInfo::ARMLegalizerInfo(const ARMSubtarget &ST) { using namespace TargetOpcode; const LLT p0 = LLT::pointer(0, 32); const LLT s1 = LLT::scalar(1); const LLT s8 = LLT::scalar(8); const LLT s16 = LLT::scalar(16); const LLT s32 = LLT::scalar(32); const LLT s64 = LLT::scalar(64); setAction({G_GLOBAL_VALUE, p0}, Legal); setAction({G_FRAME_INDEX, p0}, Legal); for (unsigned Op : {G_LOAD, G_STORE}) { for (auto Ty : {s1, s8, s16, s32, p0}) setAction({Op, Ty}, Legal); setAction({Op, 1, p0}, Legal); } for (unsigned Op : {G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR}) { if (Op != G_ADD) setLegalizeScalarToDifferentSizeStrategy( Op, 0, widenToLargerTypesUnsupportedOtherwise); setAction({Op, s32}, Legal); } for (unsigned Op : {G_SDIV, G_UDIV}) { setLegalizeScalarToDifferentSizeStrategy(Op, 0, widenToLargerTypesUnsupportedOtherwise); if (ST.hasDivideInARMMode()) setAction({Op, s32}, Legal); else setAction({Op, s32}, Libcall); } for (unsigned Op : {G_SREM, G_UREM}) { setLegalizeScalarToDifferentSizeStrategy(Op, 0, widen_8_16); if (ST.hasDivideInARMMode()) setAction({Op, s32}, Lower); else if (AEABI(ST)) setAction({Op, s32}, Custom); else setAction({Op, s32}, Libcall); } for (unsigned Op : {G_SEXT, G_ZEXT, G_ANYEXT}) { setAction({Op, s32}, Legal); } for (unsigned Op : {G_ASHR, G_LSHR, G_SHL}) setAction({Op, s32}, Legal); setAction({G_GEP, p0}, Legal); setAction({G_GEP, 1, s32}, Legal); setAction({G_SELECT, s32}, Legal); setAction({G_SELECT, p0}, Legal); setAction({G_SELECT, 1, s1}, Legal); setAction({G_BRCOND, s1}, Legal); setAction({G_CONSTANT, s32}, Legal); setLegalizeScalarToDifferentSizeStrategy(G_CONSTANT, 0, widen_1_8_16); setAction({G_ICMP, s1}, Legal); setLegalizeScalarToDifferentSizeStrategy(G_ICMP, 1, widenToLargerTypesUnsupportedOtherwise); for (auto Ty : {s32, p0}) setAction({G_ICMP, 1, Ty}, Legal); if (!ST.useSoftFloat() && ST.hasVFP2()) { for (unsigned BinOp : {G_FADD, G_FSUB}) for (auto Ty : {s32, s64}) setAction({BinOp, Ty}, Legal); setAction({G_LOAD, s64}, Legal); setAction({G_STORE, s64}, Legal); setAction({G_FCMP, s1}, Legal); setAction({G_FCMP, 1, s32}, Legal); setAction({G_FCMP, 1, s64}, Legal); } else { for (unsigned BinOp : {G_FADD, G_FSUB}) for (auto Ty : {s32, s64}) setAction({BinOp, Ty}, Libcall); setAction({G_FCMP, s1}, Legal); setAction({G_FCMP, 1, s32}, Custom); setAction({G_FCMP, 1, s64}, Custom); if (AEABI(ST)) setFCmpLibcallsAEABI(); else setFCmpLibcallsGNU(); } for (unsigned Op : {G_FREM, G_FPOW}) for (auto Ty : {s32, s64}) setAction({Op, Ty}, Libcall); computeTables(); } void ARMLegalizerInfo::setFCmpLibcallsAEABI() { // FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be // default-initialized. FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1); FCmp32Libcalls[CmpInst::FCMP_OEQ] = { {RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE}}; FCmp32Libcalls[CmpInst::FCMP_OGE] = { {RTLIB::OGE_F32, CmpInst::BAD_ICMP_PREDICATE}}; FCmp32Libcalls[CmpInst::FCMP_OGT] = { {RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE}}; FCmp32Libcalls[CmpInst::FCMP_OLE] = { {RTLIB::OLE_F32, CmpInst::BAD_ICMP_PREDICATE}}; FCmp32Libcalls[CmpInst::FCMP_OLT] = { {RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}}; FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F32, CmpInst::ICMP_EQ}}; FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_EQ}}; FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_EQ}}; FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_EQ}}; FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_EQ}}; FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_EQ}}; FCmp32Libcalls[CmpInst::FCMP_UNO] = { {RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}}; FCmp32Libcalls[CmpInst::FCMP_ONE] = { {RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE}, {RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}}; FCmp32Libcalls[CmpInst::FCMP_UEQ] = { {RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE}, {RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}}; FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1); FCmp64Libcalls[CmpInst::FCMP_OEQ] = { {RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE}}; FCmp64Libcalls[CmpInst::FCMP_OGE] = { {RTLIB::OGE_F64, CmpInst::BAD_ICMP_PREDICATE}}; FCmp64Libcalls[CmpInst::FCMP_OGT] = { {RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE}}; FCmp64Libcalls[CmpInst::FCMP_OLE] = { {RTLIB::OLE_F64, CmpInst::BAD_ICMP_PREDICATE}}; FCmp64Libcalls[CmpInst::FCMP_OLT] = { {RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}}; FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F64, CmpInst::ICMP_EQ}}; FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_EQ}}; FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_EQ}}; FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_EQ}}; FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_EQ}}; FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_EQ}}; FCmp64Libcalls[CmpInst::FCMP_UNO] = { {RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}}; FCmp64Libcalls[CmpInst::FCMP_ONE] = { {RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE}, {RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}}; FCmp64Libcalls[CmpInst::FCMP_UEQ] = { {RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE}, {RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}}; } void ARMLegalizerInfo::setFCmpLibcallsGNU() { // FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be // default-initialized. FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1); FCmp32Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ}}; FCmp32Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F32, CmpInst::ICMP_SGE}}; FCmp32Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT}}; FCmp32Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F32, CmpInst::ICMP_SLE}}; FCmp32Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F32, CmpInst::ICMP_SLT}}; FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F32, CmpInst::ICMP_EQ}}; FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_SGE}}; FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_SGT}}; FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SLE}}; FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_SLT}}; FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_NE}}; FCmp32Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F32, CmpInst::ICMP_NE}}; FCmp32Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT}, {RTLIB::OLT_F32, CmpInst::ICMP_SLT}}; FCmp32Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ}, {RTLIB::UO_F32, CmpInst::ICMP_NE}}; FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1); FCmp64Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ}}; FCmp64Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F64, CmpInst::ICMP_SGE}}; FCmp64Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT}}; FCmp64Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F64, CmpInst::ICMP_SLE}}; FCmp64Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F64, CmpInst::ICMP_SLT}}; FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F64, CmpInst::ICMP_EQ}}; FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_SGE}}; FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_SGT}}; FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SLE}}; FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_SLT}}; FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_NE}}; FCmp64Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F64, CmpInst::ICMP_NE}}; FCmp64Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT}, {RTLIB::OLT_F64, CmpInst::ICMP_SLT}}; FCmp64Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ}, {RTLIB::UO_F64, CmpInst::ICMP_NE}}; } ARMLegalizerInfo::FCmpLibcallsList ARMLegalizerInfo::getFCmpLibcalls(CmpInst::Predicate Predicate, unsigned Size) const { assert(CmpInst::isFPPredicate(Predicate) && "Unsupported FCmp predicate"); if (Size == 32) return FCmp32Libcalls[Predicate]; if (Size == 64) return FCmp64Libcalls[Predicate]; llvm_unreachable("Unsupported size for FCmp predicate"); } bool ARMLegalizerInfo::legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder) const { using namespace TargetOpcode; MIRBuilder.setInstr(MI); switch (MI.getOpcode()) { default: return false; case G_SREM: case G_UREM: { unsigned OriginalResult = MI.getOperand(0).getReg(); auto Size = MRI.getType(OriginalResult).getSizeInBits(); if (Size != 32) return false; auto Libcall = MI.getOpcode() == G_SREM ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; // Our divmod libcalls return a struct containing the quotient and the // remainder. We need to create a virtual register for it. auto &Ctx = MIRBuilder.getMF().getFunction()->getContext(); Type *ArgTy = Type::getInt32Ty(Ctx); StructType *RetTy = StructType::get(Ctx, {ArgTy, ArgTy}, /* Packed */ true); auto RetVal = MRI.createGenericVirtualRegister( getLLTForType(*RetTy, MIRBuilder.getMF().getDataLayout())); auto Status = createLibcall(MIRBuilder, Libcall, {RetVal, RetTy}, {{MI.getOperand(1).getReg(), ArgTy}, {MI.getOperand(2).getReg(), ArgTy}}); if (Status != LegalizerHelper::Legalized) return false; // The remainder is the second result of divmod. Split the return value into // a new, unused register for the quotient and the destination of the // original instruction for the remainder. MIRBuilder.buildUnmerge( {MRI.createGenericVirtualRegister(LLT::scalar(32)), OriginalResult}, RetVal); break; } case G_FCMP: { assert(MRI.getType(MI.getOperand(2).getReg()) == MRI.getType(MI.getOperand(3).getReg()) && "Mismatched operands for G_FCMP"); auto OpSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); auto OriginalResult = MI.getOperand(0).getReg(); auto Predicate = static_cast(MI.getOperand(1).getPredicate()); auto Libcalls = getFCmpLibcalls(Predicate, OpSize); if (Libcalls.empty()) { assert((Predicate == CmpInst::FCMP_TRUE || Predicate == CmpInst::FCMP_FALSE) && "Predicate needs libcalls, but none specified"); MIRBuilder.buildConstant(OriginalResult, Predicate == CmpInst::FCMP_TRUE ? 1 : 0); MI.eraseFromParent(); return true; } auto &Ctx = MIRBuilder.getMF().getFunction()->getContext(); assert((OpSize == 32 || OpSize == 64) && "Unsupported operand size"); auto *ArgTy = OpSize == 32 ? Type::getFloatTy(Ctx) : Type::getDoubleTy(Ctx); auto *RetTy = Type::getInt32Ty(Ctx); SmallVector Results; for (auto Libcall : Libcalls) { auto LibcallResult = MRI.createGenericVirtualRegister(LLT::scalar(32)); auto Status = createLibcall(MIRBuilder, Libcall.LibcallID, {LibcallResult, RetTy}, {{MI.getOperand(2).getReg(), ArgTy}, {MI.getOperand(3).getReg(), ArgTy}}); if (Status != LegalizerHelper::Legalized) return false; auto ProcessedResult = Libcalls.size() == 1 ? OriginalResult : MRI.createGenericVirtualRegister(MRI.getType(OriginalResult)); // We have a result, but we need to transform it into a proper 1-bit 0 or // 1, taking into account the different peculiarities of the values // returned by the comparison functions. CmpInst::Predicate ResultPred = Libcall.Predicate; if (ResultPred == CmpInst::BAD_ICMP_PREDICATE) { // We have a nice 0 or 1, and we just need to truncate it back to 1 bit // to keep the types consistent. MIRBuilder.buildTrunc(ProcessedResult, LibcallResult); } else { // We need to compare against 0. assert(CmpInst::isIntPredicate(ResultPred) && "Unsupported predicate"); auto Zero = MRI.createGenericVirtualRegister(LLT::scalar(32)); MIRBuilder.buildConstant(Zero, 0); MIRBuilder.buildICmp(ResultPred, ProcessedResult, LibcallResult, Zero); } Results.push_back(ProcessedResult); } if (Results.size() != 1) { assert(Results.size() == 2 && "Unexpected number of results"); MIRBuilder.buildOr(OriginalResult, Results[0], Results[1]); } break; } } MI.eraseFromParent(); return true; }