//===- AArch64LegalizerInfo.cpp ----------------------------------*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This file implements the targeting of the Machinelegalizer class for /// AArch64. /// \todo This should be generated by TableGen. //===----------------------------------------------------------------------===// #include "AArch64LegalizerInfo.h" #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Type.h" #include "llvm/Target/TargetOpcodes.h" using namespace llvm; /// FIXME: The following static functions are SizeChangeStrategy functions /// that are meant to temporarily mimic the behaviour of the old legalization /// based on doubling/halving non-legal types as closely as possible. This is /// not entirly possible as only legalizing the types that are exactly a power /// of 2 times the size of the legal types would require specifying all those /// sizes explicitly. /// In practice, not specifying those isn't a problem, and the below functions /// should disappear quickly as we add support for legalizing non-power-of-2 /// sized types further. static void addAndInterleaveWithUnsupported(LegalizerInfo::SizeAndActionsVec &result, const LegalizerInfo::SizeAndActionsVec &v) { for (unsigned i = 0; i < v.size(); ++i) { result.push_back(v[i]); if (i + 1 < v[i].first && i + 1 < v.size() && v[i + 1].first != v[i].first + 1) result.push_back({v[i].first + 1, LegalizerInfo::Unsupported}); } } static LegalizerInfo::SizeAndActionsVec widen_1_narrow_128_ToLargest(const LegalizerInfo::SizeAndActionsVec &v) { assert(v.size() >= 1); assert(v[0].first > 2); LegalizerInfo::SizeAndActionsVec result = {{1, LegalizerInfo::WidenScalar}, {2, LegalizerInfo::Unsupported}}; addAndInterleaveWithUnsupported(result, v); auto Largest = result.back().first; assert(Largest + 1 < 128); result.push_back({Largest + 1, LegalizerInfo::Unsupported}); result.push_back({128, LegalizerInfo::NarrowScalar}); result.push_back({129, LegalizerInfo::Unsupported}); return result; } static LegalizerInfo::SizeAndActionsVec widen_16(const LegalizerInfo::SizeAndActionsVec &v) { assert(v.size() >= 1); assert(v[0].first > 17); LegalizerInfo::SizeAndActionsVec result = {{1, LegalizerInfo::Unsupported}, {16, LegalizerInfo::WidenScalar}, {17, LegalizerInfo::Unsupported}}; addAndInterleaveWithUnsupported(result, v); auto Largest = result.back().first; result.push_back({Largest + 1, LegalizerInfo::Unsupported}); return result; } static LegalizerInfo::SizeAndActionsVec widen_1_8(const LegalizerInfo::SizeAndActionsVec &v) { assert(v.size() >= 1); assert(v[0].first > 9); LegalizerInfo::SizeAndActionsVec result = { {1, LegalizerInfo::WidenScalar}, {2, LegalizerInfo::Unsupported}, {8, LegalizerInfo::WidenScalar}, {9, LegalizerInfo::Unsupported}}; addAndInterleaveWithUnsupported(result, v); auto Largest = result.back().first; result.push_back({Largest + 1, LegalizerInfo::Unsupported}); return result; } static LegalizerInfo::SizeAndActionsVec widen_1_8_16(const LegalizerInfo::SizeAndActionsVec &v) { assert(v.size() >= 1); assert(v[0].first > 17); LegalizerInfo::SizeAndActionsVec result = { {1, LegalizerInfo::WidenScalar}, {2, LegalizerInfo::Unsupported}, {8, LegalizerInfo::WidenScalar}, {9, LegalizerInfo::Unsupported}, {16, LegalizerInfo::WidenScalar}, {17, LegalizerInfo::Unsupported}}; addAndInterleaveWithUnsupported(result, v); auto Largest = result.back().first; result.push_back({Largest + 1, LegalizerInfo::Unsupported}); return result; } static LegalizerInfo::SizeAndActionsVec widen_1_8_16_narrowToLargest(const LegalizerInfo::SizeAndActionsVec &v) { assert(v.size() >= 1); assert(v[0].first > 17); LegalizerInfo::SizeAndActionsVec result = { {1, LegalizerInfo::WidenScalar}, {2, LegalizerInfo::Unsupported}, {8, LegalizerInfo::WidenScalar}, {9, LegalizerInfo::Unsupported}, {16, LegalizerInfo::WidenScalar}, {17, LegalizerInfo::Unsupported}}; addAndInterleaveWithUnsupported(result, v); auto Largest = result.back().first; result.push_back({Largest + 1, LegalizerInfo::NarrowScalar}); return result; } static LegalizerInfo::SizeAndActionsVec widen_1_8_16_32(const LegalizerInfo::SizeAndActionsVec &v) { assert(v.size() >= 1); assert(v[0].first > 33); LegalizerInfo::SizeAndActionsVec result = { {1, LegalizerInfo::WidenScalar}, {2, LegalizerInfo::Unsupported}, {8, LegalizerInfo::WidenScalar}, {9, LegalizerInfo::Unsupported}, {16, LegalizerInfo::WidenScalar}, {17, LegalizerInfo::Unsupported}, {32, LegalizerInfo::WidenScalar}, {33, LegalizerInfo::Unsupported}}; addAndInterleaveWithUnsupported(result, v); auto Largest = result.back().first; result.push_back({Largest + 1, LegalizerInfo::Unsupported}); return result; } AArch64LegalizerInfo::AArch64LegalizerInfo() { using namespace TargetOpcode; const LLT p0 = LLT::pointer(0, 64); const LLT s1 = LLT::scalar(1); const LLT s8 = LLT::scalar(8); const LLT s16 = LLT::scalar(16); const LLT s32 = LLT::scalar(32); const LLT s64 = LLT::scalar(64); const LLT s128 = LLT::scalar(128); const LLT v2s32 = LLT::vector(2, 32); const LLT v4s32 = LLT::vector(4, 32); const LLT v2s64 = LLT::vector(2, 64); for (auto Ty : {p0, s1, s8, s16, s32, s64}) setAction({G_IMPLICIT_DEF, Ty}, Legal); for (auto Ty : {s16, s32, s64, p0}) setAction({G_PHI, Ty}, Legal); setLegalizeScalarToDifferentSizeStrategy(G_PHI, 0, widen_1_8); for (auto Ty : { s32, s64 }) setAction({G_BSWAP, Ty}, Legal); for (unsigned BinOp : {G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR, G_SHL}) { // These operations naturally get the right answer when used on // GPR32, even if the actual type is narrower. for (auto Ty : {s32, s64, v2s32, v4s32, v2s64}) setAction({BinOp, Ty}, Legal); if (BinOp != G_ADD) setLegalizeScalarToDifferentSizeStrategy(BinOp, 0, widen_1_8_16_narrowToLargest); } setAction({G_GEP, p0}, Legal); setAction({G_GEP, 1, s64}, Legal); setLegalizeScalarToDifferentSizeStrategy(G_GEP, 1, widen_1_8_16_32); setAction({G_PTR_MASK, p0}, Legal); for (unsigned BinOp : {G_LSHR, G_ASHR, G_SDIV, G_UDIV}) { for (auto Ty : {s32, s64}) setAction({BinOp, Ty}, Legal); setLegalizeScalarToDifferentSizeStrategy(BinOp, 0, widen_1_8_16); } for (unsigned BinOp : {G_SREM, G_UREM}) for (auto Ty : { s1, s8, s16, s32, s64 }) setAction({BinOp, Ty}, Lower); for (unsigned Op : {G_SMULO, G_UMULO}) { setAction({Op, 0, s64}, Lower); setAction({Op, 1, s1}, Legal); } for (unsigned Op : {G_UADDE, G_USUBE, G_SADDO, G_SSUBO, G_SMULH, G_UMULH}) { for (auto Ty : { s32, s64 }) setAction({Op, Ty}, Legal); setAction({Op, 1, s1}, Legal); } for (unsigned BinOp : {G_FADD, G_FSUB, G_FMA, G_FMUL, G_FDIV}) for (auto Ty : {s32, s64}) setAction({BinOp, Ty}, Legal); for (unsigned BinOp : {G_FREM, G_FPOW}) { setAction({BinOp, s32}, Libcall); setAction({BinOp, s64}, Libcall); } for (auto Ty : {s32, s64, p0}) { setAction({G_INSERT, Ty}, Legal); setAction({G_INSERT, 1, Ty}, Legal); } setLegalizeScalarToDifferentSizeStrategy(G_INSERT, 0, widen_1_8_16_narrowToLargest); for (auto Ty : {s1, s8, s16}) { setAction({G_INSERT, 1, Ty}, Legal); // FIXME: Can't widen the sources because that violates the constraints on // G_INSERT (It seems entirely reasonable that inputs shouldn't overlap). } for (auto Ty : {s1, s8, s16, s32, s64, p0}) setAction({G_EXTRACT, Ty}, Legal); for (auto Ty : {s32, s64}) setAction({G_EXTRACT, 1, Ty}, Legal); for (unsigned MemOp : {G_LOAD, G_STORE}) { for (auto Ty : {s8, s16, s32, s64, p0, v2s32}) setAction({MemOp, Ty}, Legal); setLegalizeScalarToDifferentSizeStrategy(MemOp, 0, widen_1_narrow_128_ToLargest); // And everything's fine in addrspace 0. setAction({MemOp, 1, p0}, Legal); } // Constants for (auto Ty : {s32, s64}) { setAction({TargetOpcode::G_CONSTANT, Ty}, Legal); setAction({TargetOpcode::G_FCONSTANT, Ty}, Legal); } setAction({G_CONSTANT, p0}, Legal); setLegalizeScalarToDifferentSizeStrategy(G_CONSTANT, 0, widen_1_8_16); setLegalizeScalarToDifferentSizeStrategy(G_FCONSTANT, 0, widen_16); setAction({G_ICMP, 1, s32}, Legal); setAction({G_ICMP, 1, s64}, Legal); setAction({G_ICMP, 1, p0}, Legal); setLegalizeScalarToDifferentSizeStrategy(G_ICMP, 0, widen_1_8_16); setLegalizeScalarToDifferentSizeStrategy(G_FCMP, 0, widen_1_8_16); setLegalizeScalarToDifferentSizeStrategy(G_ICMP, 1, widen_1_8_16); setAction({G_ICMP, s32}, Legal); setAction({G_FCMP, s32}, Legal); setAction({G_FCMP, 1, s32}, Legal); setAction({G_FCMP, 1, s64}, Legal); // Extensions for (auto Ty : { s1, s8, s16, s32, s64 }) { setAction({G_ZEXT, Ty}, Legal); setAction({G_SEXT, Ty}, Legal); setAction({G_ANYEXT, Ty}, Legal); } // FP conversions for (auto Ty : { s16, s32 }) { setAction({G_FPTRUNC, Ty}, Legal); setAction({G_FPEXT, 1, Ty}, Legal); } for (auto Ty : { s32, s64 }) { setAction({G_FPTRUNC, 1, Ty}, Legal); setAction({G_FPEXT, Ty}, Legal); } // Conversions for (auto Ty : { s32, s64 }) { setAction({G_FPTOSI, 0, Ty}, Legal); setAction({G_FPTOUI, 0, Ty}, Legal); setAction({G_SITOFP, 1, Ty}, Legal); setAction({G_UITOFP, 1, Ty}, Legal); } setLegalizeScalarToDifferentSizeStrategy(G_FPTOSI, 0, widen_1_8_16); setLegalizeScalarToDifferentSizeStrategy(G_FPTOUI, 0, widen_1_8_16); setLegalizeScalarToDifferentSizeStrategy(G_SITOFP, 1, widen_1_8_16); setLegalizeScalarToDifferentSizeStrategy(G_UITOFP, 1, widen_1_8_16); for (auto Ty : { s32, s64 }) { setAction({G_FPTOSI, 1, Ty}, Legal); setAction({G_FPTOUI, 1, Ty}, Legal); setAction({G_SITOFP, 0, Ty}, Legal); setAction({G_UITOFP, 0, Ty}, Legal); } // Control-flow for (auto Ty : {s1, s8, s16, s32}) setAction({G_BRCOND, Ty}, Legal); setAction({G_BRINDIRECT, p0}, Legal); // Select setLegalizeScalarToDifferentSizeStrategy(G_SELECT, 0, widen_1_8_16); for (auto Ty : {s32, s64, p0}) setAction({G_SELECT, Ty}, Legal); setAction({G_SELECT, 1, s1}, Legal); // Pointer-handling setAction({G_FRAME_INDEX, p0}, Legal); setAction({G_GLOBAL_VALUE, p0}, Legal); for (auto Ty : {s1, s8, s16, s32, s64}) setAction({G_PTRTOINT, 0, Ty}, Legal); setAction({G_PTRTOINT, 1, p0}, Legal); setAction({G_INTTOPTR, 0, p0}, Legal); setAction({G_INTTOPTR, 1, s64}, Legal); // Casts for 32 and 64-bit width type are just copies. // Same for 128-bit width type, except they are on the FPR bank. for (auto Ty : {s1, s8, s16, s32, s64, s128}) { setAction({G_BITCAST, 0, Ty}, Legal); setAction({G_BITCAST, 1, Ty}, Legal); } // For the sake of copying bits around, the type does not really // matter as long as it fits a register. for (int EltSize = 8; EltSize <= 64; EltSize *= 2) { setAction({G_BITCAST, 0, LLT::vector(128/EltSize, EltSize)}, Legal); setAction({G_BITCAST, 1, LLT::vector(128/EltSize, EltSize)}, Legal); if (EltSize >= 64) continue; setAction({G_BITCAST, 0, LLT::vector(64/EltSize, EltSize)}, Legal); setAction({G_BITCAST, 1, LLT::vector(64/EltSize, EltSize)}, Legal); if (EltSize >= 32) continue; setAction({G_BITCAST, 0, LLT::vector(32/EltSize, EltSize)}, Legal); setAction({G_BITCAST, 1, LLT::vector(32/EltSize, EltSize)}, Legal); } setAction({G_VASTART, p0}, Legal); // va_list must be a pointer, but most sized types are pretty easy to handle // as the destination. setAction({G_VAARG, 1, p0}, Legal); for (auto Ty : {s8, s16, s32, s64, p0}) setAction({G_VAARG, Ty}, Custom); computeTables(); } bool AArch64LegalizerInfo::legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder) const { switch (MI.getOpcode()) { default: // No idea what to do. return false; case TargetOpcode::G_VAARG: return legalizeVaArg(MI, MRI, MIRBuilder); } llvm_unreachable("expected switch to return"); } bool AArch64LegalizerInfo::legalizeVaArg(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder) const { MIRBuilder.setInstr(MI); MachineFunction &MF = MIRBuilder.getMF(); unsigned Align = MI.getOperand(2).getImm(); unsigned Dst = MI.getOperand(0).getReg(); unsigned ListPtr = MI.getOperand(1).getReg(); LLT PtrTy = MRI.getType(ListPtr); LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); const unsigned PtrSize = PtrTy.getSizeInBits() / 8; unsigned List = MRI.createGenericVirtualRegister(PtrTy); MIRBuilder.buildLoad( List, ListPtr, *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad, PtrSize, /* Align = */ PtrSize)); unsigned DstPtr; if (Align > PtrSize) { // Realign the list to the actual required alignment. auto AlignMinus1 = MIRBuilder.buildConstant(IntPtrTy, Align - 1); unsigned ListTmp = MRI.createGenericVirtualRegister(PtrTy); MIRBuilder.buildGEP(ListTmp, List, AlignMinus1->getOperand(0).getReg()); DstPtr = MRI.createGenericVirtualRegister(PtrTy); MIRBuilder.buildPtrMask(DstPtr, ListTmp, Log2_64(Align)); } else DstPtr = List; uint64_t ValSize = MRI.getType(Dst).getSizeInBits() / 8; MIRBuilder.buildLoad( Dst, DstPtr, *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad, ValSize, std::max(Align, PtrSize))); unsigned SizeReg = MRI.createGenericVirtualRegister(IntPtrTy); MIRBuilder.buildConstant(SizeReg, alignTo(ValSize, PtrSize)); unsigned NewList = MRI.createGenericVirtualRegister(PtrTy); MIRBuilder.buildGEP(NewList, DstPtr, SizeReg); MIRBuilder.buildStore( NewList, ListPtr, *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOStore, PtrSize, /* Align = */ PtrSize)); MI.eraseFromParent(); return true; }