// SPDX-License-Identifier: GPL-2.0 /* * vgic init sequence tests * * Copyright (C) 2020, Red Hat, Inc. */ #define _GNU_SOURCE #include #include #include #include #include "test_util.h" #include "kvm_util.h" #include "processor.h" #include "vgic.h" #define NR_VCPUS 4 #define REG_OFFSET(vcpu, offset) (((uint64_t)vcpu << 32) | offset) #define GICR_TYPER 0x8 #define VGIC_DEV_IS_V2(_d) ((_d) == KVM_DEV_TYPE_ARM_VGIC_V2) #define VGIC_DEV_IS_V3(_d) ((_d) == KVM_DEV_TYPE_ARM_VGIC_V3) struct vm_gic { struct kvm_vm *vm; int gic_fd; uint32_t gic_dev_type; }; static uint64_t max_phys_size; /* * Helpers to access a redistributor register and verify the ioctl() failed or * succeeded as expected, and provided the correct value on success. */ static void v3_redist_reg_get_errno(int gicv3_fd, int vcpu, int offset, int want, const char *msg) { uint32_t ignored_val; int ret = __kvm_device_attr_get(gicv3_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS, REG_OFFSET(vcpu, offset), &ignored_val); TEST_ASSERT(ret && errno == want, "%s; want errno = %d", msg, want); } static void v3_redist_reg_get(int gicv3_fd, int vcpu, int offset, uint32_t want, const char *msg) { uint32_t val; kvm_device_attr_get(gicv3_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS, REG_OFFSET(vcpu, offset), &val); TEST_ASSERT(val == want, "%s; want '0x%x', got '0x%x'", msg, want, val); } /* dummy guest code */ static void guest_code(void) { GUEST_SYNC(0); GUEST_SYNC(1); GUEST_SYNC(2); GUEST_DONE(); } /* we don't want to assert on run execution, hence that helper */ static int run_vcpu(struct kvm_vcpu *vcpu) { ucall_init(vcpu->vm, NULL); return __vcpu_run(vcpu) ? -errno : 0; } static struct vm_gic vm_gic_create_with_vcpus(uint32_t gic_dev_type, uint32_t nr_vcpus, struct kvm_vcpu *vcpus[]) { struct vm_gic v; v.gic_dev_type = gic_dev_type; v.vm = vm_create_with_vcpus(nr_vcpus, guest_code, vcpus); v.gic_fd = kvm_create_device(v.vm, gic_dev_type); return v; } static void vm_gic_destroy(struct vm_gic *v) { close(v->gic_fd); kvm_vm_free(v->vm); } struct vgic_region_attr { uint64_t attr; uint64_t size; uint64_t alignment; }; struct vgic_region_attr gic_v3_dist_region = { .attr = KVM_VGIC_V3_ADDR_TYPE_DIST, .size = 0x10000, .alignment = 0x10000, }; struct vgic_region_attr gic_v3_redist_region = { .attr = KVM_VGIC_V3_ADDR_TYPE_REDIST, .size = NR_VCPUS * 0x20000, .alignment = 0x10000, }; struct vgic_region_attr gic_v2_dist_region = { .attr = KVM_VGIC_V2_ADDR_TYPE_DIST, .size = 0x1000, .alignment = 0x1000, }; struct vgic_region_attr gic_v2_cpu_region = { .attr = KVM_VGIC_V2_ADDR_TYPE_CPU, .size = 0x2000, .alignment = 0x1000, }; /** * Helper routine that performs KVM device tests in general. Eventually the * ARM_VGIC (GICv2 or GICv3) device gets created with an overlapping * DIST/REDIST (or DIST/CPUIF for GICv2). Assumption is 4 vcpus are going to be * used hence the overlap. In the case of GICv3, A RDIST region is set at @0x0 * and a DIST region is set @0x70000. The GICv2 case sets a CPUIF @0x0 and a * DIST region @0x1000. */ static void subtest_dist_rdist(struct vm_gic *v) { int ret; uint64_t addr; struct vgic_region_attr rdist; /* CPU interface in GICv2*/ struct vgic_region_attr dist; rdist = VGIC_DEV_IS_V3(v->gic_dev_type) ? gic_v3_redist_region : gic_v2_cpu_region; dist = VGIC_DEV_IS_V3(v->gic_dev_type) ? gic_v3_dist_region : gic_v2_dist_region; /* Check existing group/attributes */ kvm_has_device_attr(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, dist.attr); kvm_has_device_attr(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, rdist.attr); /* check non existing attribute */ ret = __kvm_has_device_attr(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, -1); TEST_ASSERT(ret && errno == ENXIO, "attribute not supported"); /* misaligned DIST and REDIST address settings */ addr = dist.alignment / 0x10; ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, dist.attr, &addr); TEST_ASSERT(ret && errno == EINVAL, "GIC dist base not aligned"); addr = rdist.alignment / 0x10; ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, rdist.attr, &addr); TEST_ASSERT(ret && errno == EINVAL, "GIC redist/cpu base not aligned"); /* out of range address */ addr = max_phys_size; ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, dist.attr, &addr); TEST_ASSERT(ret && errno == E2BIG, "dist address beyond IPA limit"); ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, rdist.attr, &addr); TEST_ASSERT(ret && errno == E2BIG, "redist address beyond IPA limit"); /* Space for half a rdist (a rdist is: 2 * rdist.alignment). */ addr = max_phys_size - dist.alignment; ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, rdist.attr, &addr); TEST_ASSERT(ret && errno == E2BIG, "half of the redist is beyond IPA limit"); /* set REDIST base address @0x0*/ addr = 0x00000; kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, rdist.attr, &addr); /* Attempt to create a second legacy redistributor region */ addr = 0xE0000; ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, rdist.attr, &addr); TEST_ASSERT(ret && errno == EEXIST, "GIC redist base set again"); ret = __kvm_has_device_attr(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST); if (!ret) { /* Attempt to mix legacy and new redistributor regions */ addr = REDIST_REGION_ATTR_ADDR(NR_VCPUS, 0x100000, 0, 0); ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); TEST_ASSERT(ret && errno == EINVAL, "attempt to mix GICv3 REDIST and REDIST_REGION"); } /* * Set overlapping DIST / REDIST, cannot be detected here. Will be detected * on first vcpu run instead. */ addr = rdist.size - rdist.alignment; kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, dist.attr, &addr); } /* Test the new REDIST region API */ static void subtest_v3_redist_regions(struct vm_gic *v) { uint64_t addr, expected_addr; int ret; ret = __kvm_has_device_attr(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST); TEST_ASSERT(!ret, "Multiple redist regions advertised"); addr = REDIST_REGION_ATTR_ADDR(NR_VCPUS, 0x100000, 2, 0); ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); TEST_ASSERT(ret && errno == EINVAL, "redist region attr value with flags != 0"); addr = REDIST_REGION_ATTR_ADDR(0, 0x100000, 0, 0); ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); TEST_ASSERT(ret && errno == EINVAL, "redist region attr value with count== 0"); addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 1); ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); TEST_ASSERT(ret && errno == EINVAL, "attempt to register the first rdist region with index != 0"); addr = REDIST_REGION_ATTR_ADDR(2, 0x201000, 0, 1); ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); TEST_ASSERT(ret && errno == EINVAL, "rdist region with misaligned address"); addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 0); kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 1); ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); TEST_ASSERT(ret && errno == EINVAL, "register an rdist region with already used index"); addr = REDIST_REGION_ATTR_ADDR(1, 0x210000, 0, 2); ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); TEST_ASSERT(ret && errno == EINVAL, "register an rdist region overlapping with another one"); addr = REDIST_REGION_ATTR_ADDR(1, 0x240000, 0, 2); ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); TEST_ASSERT(ret && errno == EINVAL, "register redist region with index not +1"); addr = REDIST_REGION_ATTR_ADDR(1, 0x240000, 0, 1); kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); addr = REDIST_REGION_ATTR_ADDR(1, max_phys_size, 0, 2); ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); TEST_ASSERT(ret && errno == E2BIG, "register redist region with base address beyond IPA range"); /* The last redist is above the pa range. */ addr = REDIST_REGION_ATTR_ADDR(2, max_phys_size - 0x30000, 0, 2); ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); TEST_ASSERT(ret && errno == E2BIG, "register redist region with top address beyond IPA range"); addr = 0x260000; ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST, &addr); TEST_ASSERT(ret && errno == EINVAL, "Mix KVM_VGIC_V3_ADDR_TYPE_REDIST and REDIST_REGION"); /* * Now there are 2 redist regions: * region 0 @ 0x200000 2 redists * region 1 @ 0x240000 1 redist * Attempt to read their characteristics */ addr = REDIST_REGION_ATTR_ADDR(0, 0, 0, 0); expected_addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 0); ret = __kvm_device_attr_get(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); TEST_ASSERT(!ret && addr == expected_addr, "read characteristics of region #0"); addr = REDIST_REGION_ATTR_ADDR(0, 0, 0, 1); expected_addr = REDIST_REGION_ATTR_ADDR(1, 0x240000, 0, 1); ret = __kvm_device_attr_get(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); TEST_ASSERT(!ret && addr == expected_addr, "read characteristics of region #1"); addr = REDIST_REGION_ATTR_ADDR(0, 0, 0, 2); ret = __kvm_device_attr_get(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); TEST_ASSERT(ret && errno == ENOENT, "read characteristics of non existing region"); addr = 0x260000; kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_DIST, &addr); addr = REDIST_REGION_ATTR_ADDR(1, 0x260000, 0, 2); ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); TEST_ASSERT(ret && errno == EINVAL, "register redist region colliding with dist"); } /* * VGIC KVM device is created and initialized before the secondary CPUs * get created */ static void test_vgic_then_vcpus(uint32_t gic_dev_type) { struct kvm_vcpu *vcpus[NR_VCPUS]; struct vm_gic v; int ret, i; v = vm_gic_create_with_vcpus(gic_dev_type, 1, vcpus); subtest_dist_rdist(&v); /* Add the rest of the VCPUs */ for (i = 1; i < NR_VCPUS; ++i) vcpus[i] = vm_vcpu_add(v.vm, i, guest_code); ret = run_vcpu(vcpus[3]); TEST_ASSERT(ret == -EINVAL, "dist/rdist overlap detected on 1st vcpu run"); vm_gic_destroy(&v); } /* All the VCPUs are created before the VGIC KVM device gets initialized */ static void test_vcpus_then_vgic(uint32_t gic_dev_type) { struct kvm_vcpu *vcpus[NR_VCPUS]; struct vm_gic v; int ret; v = vm_gic_create_with_vcpus(gic_dev_type, NR_VCPUS, vcpus); subtest_dist_rdist(&v); ret = run_vcpu(vcpus[3]); TEST_ASSERT(ret == -EINVAL, "dist/rdist overlap detected on 1st vcpu run"); vm_gic_destroy(&v); } static void test_v3_new_redist_regions(void) { struct kvm_vcpu *vcpus[NR_VCPUS]; void *dummy = NULL; struct vm_gic v; uint64_t addr; int ret; v = vm_gic_create_with_vcpus(KVM_DEV_TYPE_ARM_VGIC_V3, NR_VCPUS, vcpus); subtest_v3_redist_regions(&v); kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, KVM_DEV_ARM_VGIC_CTRL_INIT, NULL); ret = run_vcpu(vcpus[3]); TEST_ASSERT(ret == -ENXIO, "running without sufficient number of rdists"); vm_gic_destroy(&v); /* step2 */ v = vm_gic_create_with_vcpus(KVM_DEV_TYPE_ARM_VGIC_V3, NR_VCPUS, vcpus); subtest_v3_redist_regions(&v); addr = REDIST_REGION_ATTR_ADDR(1, 0x280000, 0, 2); kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); ret = run_vcpu(vcpus[3]); TEST_ASSERT(ret == -EBUSY, "running without vgic explicit init"); vm_gic_destroy(&v); /* step 3 */ v = vm_gic_create_with_vcpus(KVM_DEV_TYPE_ARM_VGIC_V3, NR_VCPUS, vcpus); subtest_v3_redist_regions(&v); ret = __kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, dummy); TEST_ASSERT(ret && errno == EFAULT, "register a third region allowing to cover the 4 vcpus"); addr = REDIST_REGION_ATTR_ADDR(1, 0x280000, 0, 2); kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, KVM_DEV_ARM_VGIC_CTRL_INIT, NULL); ret = run_vcpu(vcpus[3]); TEST_ASSERT(!ret, "vcpu run"); vm_gic_destroy(&v); } static void test_v3_typer_accesses(void) { struct vm_gic v; uint64_t addr; int ret, i; v.vm = vm_create(NR_VCPUS); (void)vm_vcpu_add(v.vm, 0, guest_code); v.gic_fd = kvm_create_device(v.vm, KVM_DEV_TYPE_ARM_VGIC_V3); (void)vm_vcpu_add(v.vm, 3, guest_code); v3_redist_reg_get_errno(v.gic_fd, 1, GICR_TYPER, EINVAL, "attempting to read GICR_TYPER of non created vcpu"); (void)vm_vcpu_add(v.vm, 1, guest_code); v3_redist_reg_get_errno(v.gic_fd, 1, GICR_TYPER, EBUSY, "read GICR_TYPER before GIC initialized"); (void)vm_vcpu_add(v.vm, 2, guest_code); kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, KVM_DEV_ARM_VGIC_CTRL_INIT, NULL); for (i = 0; i < NR_VCPUS ; i++) { v3_redist_reg_get(v.gic_fd, i, GICR_TYPER, i * 0x100, "read GICR_TYPER before rdist region setting"); } addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 0); kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); /* The 2 first rdists should be put there (vcpu 0 and 3) */ v3_redist_reg_get(v.gic_fd, 0, GICR_TYPER, 0x0, "read typer of rdist #0"); v3_redist_reg_get(v.gic_fd, 3, GICR_TYPER, 0x310, "read typer of rdist #1"); addr = REDIST_REGION_ATTR_ADDR(10, 0x100000, 0, 1); ret = __kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); TEST_ASSERT(ret && errno == EINVAL, "collision with previous rdist region"); v3_redist_reg_get(v.gic_fd, 1, GICR_TYPER, 0x100, "no redist region attached to vcpu #1 yet, last cannot be returned"); v3_redist_reg_get(v.gic_fd, 2, GICR_TYPER, 0x200, "no redist region attached to vcpu #2, last cannot be returned"); addr = REDIST_REGION_ATTR_ADDR(10, 0x20000, 0, 1); kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); v3_redist_reg_get(v.gic_fd, 1, GICR_TYPER, 0x100, "read typer of rdist #1"); v3_redist_reg_get(v.gic_fd, 2, GICR_TYPER, 0x210, "read typer of rdist #1, last properly returned"); vm_gic_destroy(&v); } static struct vm_gic vm_gic_v3_create_with_vcpuids(int nr_vcpus, uint32_t vcpuids[]) { struct vm_gic v; int i; v.vm = vm_create(nr_vcpus); for (i = 0; i < nr_vcpus; i++) vm_vcpu_add(v.vm, vcpuids[i], guest_code); v.gic_fd = kvm_create_device(v.vm, KVM_DEV_TYPE_ARM_VGIC_V3); return v; } /** * Test GICR_TYPER last bit with new redist regions * rdist regions #1 and #2 are contiguous * rdist region #0 @0x100000 2 rdist capacity * rdists: 0, 3 (Last) * rdist region #1 @0x240000 2 rdist capacity * rdists: 5, 4 (Last) * rdist region #2 @0x200000 2 rdist capacity * rdists: 1, 2 */ static void test_v3_last_bit_redist_regions(void) { uint32_t vcpuids[] = { 0, 3, 5, 4, 1, 2 }; struct vm_gic v; uint64_t addr; v = vm_gic_v3_create_with_vcpuids(ARRAY_SIZE(vcpuids), vcpuids); kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, KVM_DEV_ARM_VGIC_CTRL_INIT, NULL); addr = REDIST_REGION_ATTR_ADDR(2, 0x100000, 0, 0); kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); addr = REDIST_REGION_ATTR_ADDR(2, 0x240000, 0, 1); kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 2); kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); v3_redist_reg_get(v.gic_fd, 0, GICR_TYPER, 0x000, "read typer of rdist #0"); v3_redist_reg_get(v.gic_fd, 1, GICR_TYPER, 0x100, "read typer of rdist #1"); v3_redist_reg_get(v.gic_fd, 2, GICR_TYPER, 0x200, "read typer of rdist #2"); v3_redist_reg_get(v.gic_fd, 3, GICR_TYPER, 0x310, "read typer of rdist #3"); v3_redist_reg_get(v.gic_fd, 5, GICR_TYPER, 0x500, "read typer of rdist #5"); v3_redist_reg_get(v.gic_fd, 4, GICR_TYPER, 0x410, "read typer of rdist #4"); vm_gic_destroy(&v); } /* Test last bit with legacy region */ static void test_v3_last_bit_single_rdist(void) { uint32_t vcpuids[] = { 0, 3, 5, 4, 1, 2 }; struct vm_gic v; uint64_t addr; v = vm_gic_v3_create_with_vcpuids(ARRAY_SIZE(vcpuids), vcpuids); kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, KVM_DEV_ARM_VGIC_CTRL_INIT, NULL); addr = 0x10000; kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST, &addr); v3_redist_reg_get(v.gic_fd, 0, GICR_TYPER, 0x000, "read typer of rdist #0"); v3_redist_reg_get(v.gic_fd, 3, GICR_TYPER, 0x300, "read typer of rdist #1"); v3_redist_reg_get(v.gic_fd, 5, GICR_TYPER, 0x500, "read typer of rdist #2"); v3_redist_reg_get(v.gic_fd, 1, GICR_TYPER, 0x100, "read typer of rdist #3"); v3_redist_reg_get(v.gic_fd, 2, GICR_TYPER, 0x210, "read typer of rdist #3"); vm_gic_destroy(&v); } /* Uses the legacy REDIST region API. */ static void test_v3_redist_ipa_range_check_at_vcpu_run(void) { struct kvm_vcpu *vcpus[NR_VCPUS]; struct vm_gic v; int ret, i; uint64_t addr; v = vm_gic_create_with_vcpus(KVM_DEV_TYPE_ARM_VGIC_V3, 1, vcpus); /* Set space for 3 redists, we have 1 vcpu, so this succeeds. */ addr = max_phys_size - (3 * 2 * 0x10000); kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST, &addr); addr = 0x00000; kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_DIST, &addr); /* Add the rest of the VCPUs */ for (i = 1; i < NR_VCPUS; ++i) vcpus[i] = vm_vcpu_add(v.vm, i, guest_code); kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, KVM_DEV_ARM_VGIC_CTRL_INIT, NULL); /* Attempt to run a vcpu without enough redist space. */ ret = run_vcpu(vcpus[2]); TEST_ASSERT(ret && errno == EINVAL, "redist base+size above PA range detected on 1st vcpu run"); vm_gic_destroy(&v); } static void test_v3_its_region(void) { struct kvm_vcpu *vcpus[NR_VCPUS]; struct vm_gic v; uint64_t addr; int its_fd, ret; v = vm_gic_create_with_vcpus(KVM_DEV_TYPE_ARM_VGIC_V3, NR_VCPUS, vcpus); its_fd = kvm_create_device(v.vm, KVM_DEV_TYPE_ARM_VGIC_ITS); addr = 0x401000; ret = __kvm_device_attr_set(its_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_ITS_ADDR_TYPE, &addr); TEST_ASSERT(ret && errno == EINVAL, "ITS region with misaligned address"); addr = max_phys_size; ret = __kvm_device_attr_set(its_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_ITS_ADDR_TYPE, &addr); TEST_ASSERT(ret && errno == E2BIG, "register ITS region with base address beyond IPA range"); addr = max_phys_size - 0x10000; ret = __kvm_device_attr_set(its_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_ITS_ADDR_TYPE, &addr); TEST_ASSERT(ret && errno == E2BIG, "Half of ITS region is beyond IPA range"); /* This one succeeds setting the ITS base */ addr = 0x400000; kvm_device_attr_set(its_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_ITS_ADDR_TYPE, &addr); addr = 0x300000; ret = __kvm_device_attr_set(its_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_ITS_ADDR_TYPE, &addr); TEST_ASSERT(ret && errno == EEXIST, "ITS base set again"); close(its_fd); vm_gic_destroy(&v); } /* * Returns 0 if it's possible to create GIC device of a given type (V2 or V3). */ int test_kvm_device(uint32_t gic_dev_type) { struct kvm_vcpu *vcpus[NR_VCPUS]; struct vm_gic v; uint32_t other; int ret; v.vm = vm_create_with_vcpus(NR_VCPUS, guest_code, vcpus); /* try to create a non existing KVM device */ ret = __kvm_test_create_device(v.vm, 0); TEST_ASSERT(ret && errno == ENODEV, "unsupported device"); /* trial mode */ ret = __kvm_test_create_device(v.vm, gic_dev_type); if (ret) return ret; v.gic_fd = kvm_create_device(v.vm, gic_dev_type); ret = __kvm_create_device(v.vm, gic_dev_type); TEST_ASSERT(ret < 0 && errno == EEXIST, "create GIC device twice"); /* try to create the other gic_dev_type */ other = VGIC_DEV_IS_V2(gic_dev_type) ? KVM_DEV_TYPE_ARM_VGIC_V3 : KVM_DEV_TYPE_ARM_VGIC_V2; if (!__kvm_test_create_device(v.vm, other)) { ret = __kvm_test_create_device(v.vm, other); TEST_ASSERT(ret && (errno == EINVAL || errno == EEXIST), "create GIC device while other version exists"); } vm_gic_destroy(&v); return 0; } void run_tests(uint32_t gic_dev_type) { test_vcpus_then_vgic(gic_dev_type); test_vgic_then_vcpus(gic_dev_type); if (VGIC_DEV_IS_V3(gic_dev_type)) { test_v3_new_redist_regions(); test_v3_typer_accesses(); test_v3_last_bit_redist_regions(); test_v3_last_bit_single_rdist(); test_v3_redist_ipa_range_check_at_vcpu_run(); test_v3_its_region(); } } int main(int ac, char **av) { int ret; int pa_bits; int cnt_impl = 0; pa_bits = vm_guest_mode_params[VM_MODE_DEFAULT].pa_bits; max_phys_size = 1ULL << pa_bits; ret = test_kvm_device(KVM_DEV_TYPE_ARM_VGIC_V3); if (!ret) { pr_info("Running GIC_v3 tests.\n"); run_tests(KVM_DEV_TYPE_ARM_VGIC_V3); cnt_impl++; } ret = test_kvm_device(KVM_DEV_TYPE_ARM_VGIC_V2); if (!ret) { pr_info("Running GIC_v2 tests.\n"); run_tests(KVM_DEV_TYPE_ARM_VGIC_V2); cnt_impl++; } if (!cnt_impl) { print_skip("No GICv2 nor GICv3 support"); exit(KSFT_SKIP); } return 0; }