/* * Written by Pat Gaughen (gone@us.ibm.com) Mar 2002 * */ #ifndef _ASM_X86_MMZONE_32_H #define _ASM_X86_MMZONE_32_H #include #ifdef CONFIG_NUMA extern struct pglist_data *node_data[]; #define NODE_DATA(nid) (node_data[nid]) #include /* summit or generic arch */ #include extern int get_memcfg_numa_flat(void); /* * This allows any one NUMA architecture to be compiled * for, and still fall back to the flat function if it * fails. */ static inline void get_memcfg_numa(void) { if (get_memcfg_numaq()) return; if (get_memcfg_from_srat()) return; get_memcfg_numa_flat(); } extern int early_pfn_to_nid(unsigned long pfn); extern void resume_map_numa_kva(pgd_t *pgd); #else /* !CONFIG_NUMA */ #define get_memcfg_numa get_memcfg_numa_flat static inline void resume_map_numa_kva(pgd_t *pgd) {} #endif /* CONFIG_NUMA */ #ifdef CONFIG_DISCONTIGMEM /* * generic node memory support, the following assumptions apply: * * 1) memory comes in 64Mb contigious chunks which are either present or not * 2) we will not have more than 64Gb in total * * for now assume that 64Gb is max amount of RAM for whole system * 64Gb / 4096bytes/page = 16777216 pages */ #define MAX_NR_PAGES 16777216 #define MAX_ELEMENTS 1024 #define PAGES_PER_ELEMENT (MAX_NR_PAGES/MAX_ELEMENTS) extern s8 physnode_map[]; static inline int pfn_to_nid(unsigned long pfn) { #ifdef CONFIG_NUMA return((int) physnode_map[(pfn) / PAGES_PER_ELEMENT]); #else return 0; #endif } /* * Following are macros that each numa implmentation must define. */ #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) #define node_end_pfn(nid) \ ({ \ pg_data_t *__pgdat = NODE_DATA(nid); \ __pgdat->node_start_pfn + __pgdat->node_spanned_pages; \ }) static inline int pfn_valid(int pfn) { int nid = pfn_to_nid(pfn); if (nid >= 0) return (pfn < node_end_pfn(nid)); return 0; } #endif /* CONFIG_DISCONTIGMEM */ #ifdef CONFIG_NEED_MULTIPLE_NODES /* * Following are macros that are specific to this numa platform. */ #define reserve_bootmem(addr, size, flags) \ reserve_bootmem_node(NODE_DATA(0), (addr), (size), (flags)) #define alloc_bootmem(x) \ __alloc_bootmem_node(NODE_DATA(0), (x), SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS)) #define alloc_bootmem_nopanic(x) \ __alloc_bootmem_node_nopanic(NODE_DATA(0), (x), SMP_CACHE_BYTES, \ __pa(MAX_DMA_ADDRESS)) #define alloc_bootmem_low(x) \ __alloc_bootmem_node(NODE_DATA(0), (x), SMP_CACHE_BYTES, 0) #define alloc_bootmem_pages(x) \ __alloc_bootmem_node(NODE_DATA(0), (x), PAGE_SIZE, __pa(MAX_DMA_ADDRESS)) #define alloc_bootmem_pages_nopanic(x) \ __alloc_bootmem_node_nopanic(NODE_DATA(0), (x), PAGE_SIZE, \ __pa(MAX_DMA_ADDRESS)) #define alloc_bootmem_low_pages(x) \ __alloc_bootmem_node(NODE_DATA(0), (x), PAGE_SIZE, 0) #define alloc_bootmem_node(pgdat, x) \ ({ \ struct pglist_data __maybe_unused \ *__alloc_bootmem_node__pgdat = (pgdat); \ __alloc_bootmem_node(NODE_DATA(0), (x), SMP_CACHE_BYTES, \ __pa(MAX_DMA_ADDRESS)); \ }) #define alloc_bootmem_pages_node(pgdat, x) \ ({ \ struct pglist_data __maybe_unused \ *__alloc_bootmem_node__pgdat = (pgdat); \ __alloc_bootmem_node(NODE_DATA(0), (x), PAGE_SIZE, \ __pa(MAX_DMA_ADDRESS)); \ }) #define alloc_bootmem_low_pages_node(pgdat, x) \ ({ \ struct pglist_data __maybe_unused \ *__alloc_bootmem_node__pgdat = (pgdat); \ __alloc_bootmem_node(NODE_DATA(0), (x), PAGE_SIZE, 0); \ }) #endif /* CONFIG_NEED_MULTIPLE_NODES */ #endif /* _ASM_X86_MMZONE_32_H */