/* * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved. * Copyright (c) 2001 Intel Corp. * Copyright (c) 2001 Tony Luck * Copyright (c) 2002 NEC Corp. * Copyright (c) 2002 Kimio Suganuma * Copyright (c) 2004 Silicon Graphics, Inc * Russ Anderson * Jesse Barnes * Jack Steiner */ /* * Platform initialization for Discontig Memory */ #include #include #include #include #include #include #include #include #include #include #include #include /* * Track per-node information needed to setup the boot memory allocator, the * per-node areas, and the real VM. */ struct early_node_data { struct ia64_node_data *node_data; pg_data_t *pgdat; unsigned long pernode_addr; unsigned long pernode_size; struct bootmem_data bootmem_data; unsigned long num_physpages; unsigned long num_dma_physpages; unsigned long min_pfn; unsigned long max_pfn; }; static struct early_node_data mem_data[MAX_NUMNODES] __initdata; /** * reassign_cpu_only_nodes - called from find_memory to move CPU-only nodes to a memory node * * This function will move nodes with only CPUs (no memory) * to a node with memory which is at the minimum numa_slit distance. * Any reassigments will result in the compression of the nodes * and renumbering the nid values where appropriate. * The static declarations below are to avoid large stack size which * makes the code not re-entrant. */ static void __init reassign_cpu_only_nodes(void) { struct node_memblk_s *p; int i, j, k, nnode, nid, cpu, cpunid, pxm; u8 cslit, slit; static DECLARE_BITMAP(nodes_with_mem, MAX_NUMNODES) __initdata; static u8 numa_slit_fix[MAX_NUMNODES * MAX_NUMNODES] __initdata; static int node_flip[MAX_NUMNODES] __initdata; static int old_nid_map[NR_CPUS] __initdata; for (nnode = 0, p = &node_memblk[0]; p < &node_memblk[num_node_memblks]; p++) if (!test_bit(p->nid, (void *) nodes_with_mem)) { set_bit(p->nid, (void *) nodes_with_mem); nnode++; } /* * All nids with memory. */ if (nnode == num_online_nodes()) return; /* * Change nids and attempt to migrate CPU-only nodes * to the best numa_slit (closest neighbor) possible. * For reassigned CPU nodes a nid can't be arrived at * until after this loop because the target nid's new * identity might not have been established yet. So * new nid values are fabricated above num_online_nodes() and * mapped back later to their true value. */ /* MCD - This code is a bit complicated, but may be unnecessary now. * We can now handle much more interesting node-numbering. * The old requirement that 0 <= nid <= numnodes <= MAX_NUMNODES * and that there be no holes in the numbering 0..numnodes * has become simply 0 <= nid <= MAX_NUMNODES. */ nid = 0; for_each_online_node(i) { if (test_bit(i, (void *) nodes_with_mem)) { /* * Save original nid value for numa_slit * fixup and node_cpuid reassignments. */ node_flip[nid] = i; if (i == nid) { nid++; continue; } for (p = &node_memblk[0]; p < &node_memblk[num_node_memblks]; p++) if (p->nid == i) p->nid = nid; cpunid = nid; nid++; } else cpunid = MAX_NUMNODES; for (cpu = 0; cpu < NR_CPUS; cpu++) if (node_cpuid[cpu].nid == i) { /* * For nodes not being reassigned just * fix the cpu's nid and reverse pxm map */ if (cpunid < MAX_NUMNODES) { pxm = nid_to_pxm_map[i]; pxm_to_nid_map[pxm] = node_cpuid[cpu].nid = cpunid; continue; } /* * For nodes being reassigned, find best node by * numa_slit information and then make a temporary * nid value based on current nid and num_online_nodes(). */ slit = 0xff; k = 2*num_online_nodes(); for_each_online_node(j) { if (i == j) continue; else if (test_bit(j, (void *) nodes_with_mem)) { cslit = numa_slit[i * num_online_nodes() + j]; if (cslit < slit) { k = num_online_nodes() + j; slit = cslit; } } } /* save old nid map so we can update the pxm */ old_nid_map[cpu] = node_cpuid[cpu].nid; node_cpuid[cpu].nid = k; } } /* * Fixup temporary nid values for CPU-only nodes. */ for (cpu = 0; cpu < NR_CPUS; cpu++) if (node_cpuid[cpu].nid == (2*num_online_nodes())) { pxm = nid_to_pxm_map[old_nid_map[cpu]]; pxm_to_nid_map[pxm] = node_cpuid[cpu].nid = nnode - 1; } else { for (i = 0; i < nnode; i++) { if (node_flip[i] != (node_cpuid[cpu].nid - num_online_nodes())) continue; pxm = nid_to_pxm_map[old_nid_map[cpu]]; pxm_to_nid_map[pxm] = node_cpuid[cpu].nid = i; break; } } /* * Fix numa_slit by compressing from larger * nid array to reduced nid array. */ for (i = 0; i < nnode; i++) for (j = 0; j < nnode; j++) numa_slit_fix[i * nnode + j] = numa_slit[node_flip[i] * num_online_nodes() + node_flip[j]]; memcpy(numa_slit, numa_slit_fix, sizeof (numa_slit)); nodes_clear(node_online_map); for (i = 0; i < nnode; i++) node_set_online(i); return; } /* * To prevent cache aliasing effects, align per-node structures so that they * start at addresses that are strided by node number. */ #define NODEDATA_ALIGN(addr, node) \ ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + (node)*PERCPU_PAGE_SIZE) /** * build_node_maps - callback to setup bootmem structs for each node * @start: physical start of range * @len: length of range * @node: node where this range resides * * We allocate a struct bootmem_data for each piece of memory that we wish to * treat as a virtually contiguous block (i.e. each node). Each such block * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down * if necessary. Any non-existent pages will simply be part of the virtual * memmap. We also update min_low_pfn and max_low_pfn here as we receive * memory ranges from the caller. */ static int __init build_node_maps(unsigned long start, unsigned long len, int node) { unsigned long cstart, epfn, end = start + len; struct bootmem_data *bdp = &mem_data[node].bootmem_data; epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT; cstart = GRANULEROUNDDOWN(start); if (!bdp->node_low_pfn) { bdp->node_boot_start = cstart; bdp->node_low_pfn = epfn; } else { bdp->node_boot_start = min(cstart, bdp->node_boot_start); bdp->node_low_pfn = max(epfn, bdp->node_low_pfn); } min_low_pfn = min(min_low_pfn, bdp->node_boot_start>>PAGE_SHIFT); max_low_pfn = max(max_low_pfn, bdp->node_low_pfn); return 0; } /** * early_nr_phys_cpus_node - return number of physical cpus on a given node * @node: node to check * * Count the number of physical cpus on @node. These are cpus that actually * exist. We can't use nr_cpus_node() yet because * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been * called yet. */ static int early_nr_phys_cpus_node(int node) { int cpu, n = 0; for (cpu = 0; cpu < NR_CPUS; cpu++) if (node == node_cpuid[cpu].nid) if ((cpu == 0) || node_cpuid[cpu].phys_id) n++; return n; } /** * early_nr_cpus_node - return number of cpus on a given node * @node: node to check * * Count the number of cpus on @node. We can't use nr_cpus_node() yet because * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been * called yet. Note that node 0 will also count all non-existent cpus. */ static int early_nr_cpus_node(int node) { int cpu, n = 0; for (cpu = 0; cpu < NR_CPUS; cpu++) if (node == node_cpuid[cpu].nid) n++; return n; } /** * find_pernode_space - allocate memory for memory map and per-node structures * @start: physical start of range * @len: length of range * @node: node where this range resides * * This routine reserves space for the per-cpu data struct, the list of * pg_data_ts and the per-node data struct. Each node will have something like * the following in the first chunk of addr. space large enough to hold it. * * ________________________ * | | * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first * | PERCPU_PAGE_SIZE * | start and length big enough * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus. * |------------------------| * | local pg_data_t * | * |------------------------| * | local ia64_node_data | * |------------------------| * | ??? | * |________________________| * * Once this space has been set aside, the bootmem maps are initialized. We * could probably move the allocation of the per-cpu and ia64_node_data space * outside of this function and use alloc_bootmem_node(), but doing it here * is straightforward and we get the alignments we want so... */ static int __init find_pernode_space(unsigned long start, unsigned long len, int node) { unsigned long epfn, cpu, cpus, phys_cpus; unsigned long pernodesize = 0, pernode, pages, mapsize; void *cpu_data; struct bootmem_data *bdp = &mem_data[node].bootmem_data; epfn = (start + len) >> PAGE_SHIFT; pages = bdp->node_low_pfn - (bdp->node_boot_start >> PAGE_SHIFT); mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT; /* * Make sure this memory falls within this node's usable memory * since we may have thrown some away in build_maps(). */ if (start < bdp->node_boot_start || epfn > bdp->node_low_pfn) return 0; /* Don't setup this node's local space twice... */ if (mem_data[node].pernode_addr) return 0; /* * Calculate total size needed, incl. what's necessary * for good alignment and alias prevention. */ cpus = early_nr_cpus_node(node); phys_cpus = early_nr_phys_cpus_node(node); pernodesize += PERCPU_PAGE_SIZE * cpus; pernodesize += node * L1_CACHE_BYTES; pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t)); pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); pernodesize = PAGE_ALIGN(pernodesize); pernode = NODEDATA_ALIGN(start, node); /* Is this range big enough for what we want to store here? */ if (start + len > (pernode + pernodesize + mapsize)) { mem_data[node].pernode_addr = pernode; mem_data[node].pernode_size = pernodesize; memset(__va(pernode), 0, pernodesize); cpu_data = (void *)pernode; pernode += PERCPU_PAGE_SIZE * cpus; pernode += node * L1_CACHE_BYTES; mem_data[node].pgdat = __va(pernode); pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); mem_data[node].node_data = __va(pernode); pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); mem_data[node].pgdat->bdata = bdp; pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); /* * Copy the static per-cpu data into the region we * just set aside and then setup __per_cpu_offset * for each CPU on this node. */ for (cpu = 0; cpu < NR_CPUS; cpu++) { if (node == node_cpuid[cpu].nid) { memcpy(__va(cpu_data), __phys_per_cpu_start, __per_cpu_end - __per_cpu_start); __per_cpu_offset[cpu] = (char*)__va(cpu_data) - __per_cpu_start; cpu_data += PERCPU_PAGE_SIZE; } } } return 0; } /** * free_node_bootmem - free bootmem allocator memory for use * @start: physical start of range * @len: length of range * @node: node where this range resides * * Simply calls the bootmem allocator to free the specified ranged from * the given pg_data_t's bdata struct. After this function has been called * for all the entries in the EFI memory map, the bootmem allocator will * be ready to service allocation requests. */ static int __init free_node_bootmem(unsigned long start, unsigned long len, int node) { free_bootmem_node(mem_data[node].pgdat, start, len); return 0; } /** * reserve_pernode_space - reserve memory for per-node space * * Reserve the space used by the bootmem maps & per-node space in the boot * allocator so that when we actually create the real mem maps we don't * use their memory. */ static void __init reserve_pernode_space(void) { unsigned long base, size, pages; struct bootmem_data *bdp; int node; for_each_online_node(node) { pg_data_t *pdp = mem_data[node].pgdat; bdp = pdp->bdata; /* First the bootmem_map itself */ pages = bdp->node_low_pfn - (bdp->node_boot_start>>PAGE_SHIFT); size = bootmem_bootmap_pages(pages) << PAGE_SHIFT; base = __pa(bdp->node_bootmem_map); reserve_bootmem_node(pdp, base, size); /* Now the per-node space */ size = mem_data[node].pernode_size; base = __pa(mem_data[node].pernode_addr); reserve_bootmem_node(pdp, base, size); } } /** * initialize_pernode_data - fixup per-cpu & per-node pointers * * Each node's per-node area has a copy of the global pg_data_t list, so * we copy that to each node here, as well as setting the per-cpu pointer * to the local node data structure. The active_cpus field of the per-node * structure gets setup by the platform_cpu_init() function later. */ static void __init initialize_pernode_data(void) { int cpu, node; pg_data_t *pgdat_list[MAX_NUMNODES]; for_each_online_node(node) pgdat_list[node] = mem_data[node].pgdat; /* Copy the pg_data_t list to each node and init the node field */ for_each_online_node(node) { memcpy(mem_data[node].node_data->pg_data_ptrs, pgdat_list, sizeof(pgdat_list)); } /* Set the node_data pointer for each per-cpu struct */ for (cpu = 0; cpu < NR_CPUS; cpu++) { node = node_cpuid[cpu].nid; per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data; } } /** * find_memory - walk the EFI memory map and setup the bootmem allocator * * Called early in boot to setup the bootmem allocator, and to * allocate the per-cpu and per-node structures. */ void __init find_memory(void) { int node; reserve_memory(); if (num_online_nodes() == 0) { printk(KERN_ERR "node info missing!\n"); node_set_online(0); } min_low_pfn = -1; max_low_pfn = 0; if (num_online_nodes() > 1) reassign_cpu_only_nodes(); /* These actually end up getting called by call_pernode_memory() */ efi_memmap_walk(filter_rsvd_memory, build_node_maps); efi_memmap_walk(filter_rsvd_memory, find_pernode_space); /* * Initialize the boot memory maps in reverse order since that's * what the bootmem allocator expects */ for (node = MAX_NUMNODES - 1; node >= 0; node--) { unsigned long pernode, pernodesize, map; struct bootmem_data *bdp; if (!node_online(node)) continue; bdp = &mem_data[node].bootmem_data; pernode = mem_data[node].pernode_addr; pernodesize = mem_data[node].pernode_size; map = pernode + pernodesize; /* Sanity check... */ if (!pernode) panic("pernode space for node %d " "could not be allocated!", node); init_bootmem_node(mem_data[node].pgdat, map>>PAGE_SHIFT, bdp->node_boot_start>>PAGE_SHIFT, bdp->node_low_pfn); } efi_memmap_walk(filter_rsvd_memory, free_node_bootmem); reserve_pernode_space(); initialize_pernode_data(); max_pfn = max_low_pfn; find_initrd(); } /** * per_cpu_init - setup per-cpu variables * * find_pernode_space() does most of this already, we just need to set * local_per_cpu_offset */ void *per_cpu_init(void) { int cpu; if (smp_processor_id() == 0) { for (cpu = 0; cpu < NR_CPUS; cpu++) { per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu]; } } return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; } /** * show_mem - give short summary of memory stats * * Shows a simple page count of reserved and used pages in the system. * For discontig machines, it does this on a per-pgdat basis. */ void show_mem(void) { int i, total_reserved = 0; int total_shared = 0, total_cached = 0; unsigned long total_present = 0; pg_data_t *pgdat; printk("Mem-info:\n"); show_free_areas(); printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); for_each_pgdat(pgdat) { unsigned long present = pgdat->node_present_pages; int shared = 0, cached = 0, reserved = 0; printk("Node ID: %d\n", pgdat->node_id); for(i = 0; i < pgdat->node_spanned_pages; i++) { if (!ia64_pfn_valid(pgdat->node_start_pfn+i)) continue; if (PageReserved(pgdat->node_mem_map+i)) reserved++; else if (PageSwapCache(pgdat->node_mem_map+i)) cached++; else if (page_count(pgdat->node_mem_map+i)) shared += page_count(pgdat->node_mem_map+i)-1; } total_present += present; total_reserved += reserved; total_cached += cached; total_shared += shared; printk("\t%ld pages of RAM\n", present); printk("\t%d reserved pages\n", reserved); printk("\t%d pages shared\n", shared); printk("\t%d pages swap cached\n", cached); } printk("%ld pages of RAM\n", total_present); printk("%d reserved pages\n", total_reserved); printk("%d pages shared\n", total_shared); printk("%d pages swap cached\n", total_cached); printk("Total of %ld pages in page table cache\n", pgtable_cache_size); printk("%d free buffer pages\n", nr_free_buffer_pages()); } /** * call_pernode_memory - use SRAT to call callback functions with node info * @start: physical start of range * @len: length of range * @arg: function to call for each range * * efi_memmap_walk() knows nothing about layout of memory across nodes. Find * out to which node a block of memory belongs. Ignore memory that we cannot * identify, and split blocks that run across multiple nodes. * * Take this opportunity to round the start address up and the end address * down to page boundaries. */ void call_pernode_memory(unsigned long start, unsigned long len, void *arg) { unsigned long rs, re, end = start + len; void (*func)(unsigned long, unsigned long, int); int i; start = PAGE_ALIGN(start); end &= PAGE_MASK; if (start >= end) return; func = arg; if (!num_node_memblks) { /* No SRAT table, so assume one node (node 0) */ if (start < end) (*func)(start, end - start, 0); return; } for (i = 0; i < num_node_memblks; i++) { rs = max(start, node_memblk[i].start_paddr); re = min(end, node_memblk[i].start_paddr + node_memblk[i].size); if (rs < re) (*func)(rs, re - rs, node_memblk[i].nid); if (re == end) break; } } /** * count_node_pages - callback to build per-node memory info structures * @start: physical start of range * @len: length of range * @node: node where this range resides * * Each node has it's own number of physical pages, DMAable pages, start, and * end page frame number. This routine will be called by call_pernode_memory() * for each piece of usable memory and will setup these values for each node. * Very similar to build_maps(). */ static __init int count_node_pages(unsigned long start, unsigned long len, int node) { unsigned long end = start + len; mem_data[node].num_physpages += len >> PAGE_SHIFT; if (start <= __pa(MAX_DMA_ADDRESS)) mem_data[node].num_dma_physpages += (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT; start = GRANULEROUNDDOWN(start); start = ORDERROUNDDOWN(start); end = GRANULEROUNDUP(end); mem_data[node].max_pfn = max(mem_data[node].max_pfn, end >> PAGE_SHIFT); mem_data[node].min_pfn = min(mem_data[node].min_pfn, start >> PAGE_SHIFT); return 0; } /** * paging_init - setup page tables * * paging_init() sets up the page tables for each node of the system and frees * the bootmem allocator memory for general use. */ void __init paging_init(void) { unsigned long max_dma; unsigned long zones_size[MAX_NR_ZONES]; unsigned long zholes_size[MAX_NR_ZONES]; unsigned long pfn_offset = 0; int node; max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; /* so min() will work in count_node_pages */ for_each_online_node(node) mem_data[node].min_pfn = ~0UL; efi_memmap_walk(filter_rsvd_memory, count_node_pages); for_each_online_node(node) { memset(zones_size, 0, sizeof(zones_size)); memset(zholes_size, 0, sizeof(zholes_size)); num_physpages += mem_data[node].num_physpages; if (mem_data[node].min_pfn >= max_dma) { /* All of this node's memory is above ZONE_DMA */ zones_size[ZONE_NORMAL] = mem_data[node].max_pfn - mem_data[node].min_pfn; zholes_size[ZONE_NORMAL] = mem_data[node].max_pfn - mem_data[node].min_pfn - mem_data[node].num_physpages; } else if (mem_data[node].max_pfn < max_dma) { /* All of this node's memory is in ZONE_DMA */ zones_size[ZONE_DMA] = mem_data[node].max_pfn - mem_data[node].min_pfn; zholes_size[ZONE_DMA] = mem_data[node].max_pfn - mem_data[node].min_pfn - mem_data[node].num_dma_physpages; } else { /* This node has memory in both zones */ zones_size[ZONE_DMA] = max_dma - mem_data[node].min_pfn; zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - mem_data[node].num_dma_physpages; zones_size[ZONE_NORMAL] = mem_data[node].max_pfn - max_dma; zholes_size[ZONE_NORMAL] = zones_size[ZONE_NORMAL] - (mem_data[node].num_physpages - mem_data[node].num_dma_physpages); } if (node == 0) { vmalloc_end -= PAGE_ALIGN(max_low_pfn * sizeof(struct page)); vmem_map = (struct page *) vmalloc_end; efi_memmap_walk(create_mem_map_page_table, NULL); printk("Virtual mem_map starts at 0x%p\n", vmem_map); } pfn_offset = mem_data[node].min_pfn; NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset; free_area_init_node(node, NODE_DATA(node), zones_size, pfn_offset, zholes_size); } zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); }