aboutsummaryrefslogtreecommitdiff
path: root/drivers/staging/wlags49_h2/hcf.c
blob: a73317ef935049b9e8b6c983d67d3fd83775bc00 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
//   vim:tw=110:ts=4:
/************************************************************************************************************
*
* FILE   :	HCF.C
*
* DATE    :	$Date: 2004/08/05 11:47:10 $   $Revision: 1.10 $
* Original:	2004/06/02 10:22:22    Revision: 1.85      Tag: hcf7_t20040602_01
* Original:	2004/04/15 09:24:41    Revision: 1.63      Tag: hcf7_t7_20040415_01
* Original:	2004/04/13 14:22:44    Revision: 1.62      Tag: t7_20040413_01
* Original:	2004/04/01 15:32:55    Revision: 1.59      Tag: t7_20040401_01
* Original:	2004/03/10 15:39:27    Revision: 1.55      Tag: t20040310_01
* Original:	2004/03/04 11:03:37    Revision: 1.53      Tag: t20040304_01
* Original:	2004/03/02 14:51:21    Revision: 1.50      Tag: t20040302_03
* Original:	2004/02/24 13:00:27    Revision: 1.43      Tag: t20040224_01
* Original:	2004/02/19 10:57:25    Revision: 1.39      Tag: t20040219_01
*
* AUTHOR :	Nico Valster
*
* SPECIFICATION: ........
*
* DESCRIPTION :	HCF Routines for Hermes-II (callable via the Wireless Connection I/F or WCI)
*				Local Support Routines for above procedures
*
*			Customizable via HCFCFG.H, which is included by HCF.H
*
*************************************************************************************************************
*
*
* SOFTWARE LICENSE
*
* This software is provided subject to the following terms and conditions,
* which you should read carefully before using the software.  Using this
* software indicates your acceptance of these terms and conditions.  If you do
* not agree with these terms and conditions, do not use the software.
*
* COPYRIGHT © 1994 - 1995	by AT&T.				All Rights Reserved
* COPYRIGHT © 1996 - 2000 by Lucent Technologies.	All Rights Reserved
* COPYRIGHT © 2001 - 2004	by Agere Systems Inc.	All Rights Reserved
* All rights reserved.
*
* Redistribution and use in source or binary forms, with or without
* modifications, are permitted provided that the following conditions are met:
*
* . Redistributions of source code must retain the above copyright notice, this
*    list of conditions and the following Disclaimer as comments in the code as
*    well as in the documentation and/or other materials provided with the
*    distribution.
*
* . Redistributions in binary form must reproduce the above copyright notice,
*    this list of conditions and the following Disclaimer in the documentation
*    and/or other materials provided with the distribution.
*
* . Neither the name of Agere Systems Inc. nor the names of the contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* Disclaimer
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
* USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
* RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
*
************************************************************************************************************/


/************************************************************************************************************
**
** Implementation Notes
**
* -	a leading marker of //! is used. The purpose of such a sequence is to help to understand the flow
*	An example is:	//!rc = HCF_SUCCESS;
*	if this is superfluous because rc is already guaranteed to be 0 but it shows to the (maintenance)
*	programmer it is an intentional omission at the place where someone could consider it most appropriate at
*	first glance
* -	using near pointers in a model where ss!=ds is an invitation for disaster, so be aware of how you specify
*	your model and how you define variables which are used at interrupt time
* -	remember that sign extension on 32 bit platforms may cause problems unless code is carefully constructed,
*	e.g. use "(hcf_16)~foo" rather than "~foo"
*
************************************************************************************************************/

#include "hcf.h"				// HCF and MSF common include file
#include "hcfdef.h"				// HCF specific include file
#include "mmd.h"				// MoreModularDriver common include file
#include <linux/kernel.h>

#if ! defined offsetof
#define offsetof(s,m)   ((unsigned int)&(((s *)0)->m))
#endif // offsetof


/***********************************************************************************************************/
/***************************************  PROTOTYPES  ******************************************************/
/***********************************************************************************************************/
HCF_STATIC int			cmd_exe( IFBP ifbp, hcf_16 cmd_code, hcf_16 par_0 );
HCF_STATIC int			init( IFBP ifbp );
HCF_STATIC int			put_info( IFBP ifbp, LTVP ltvp );
#if (HCF_EXT) & HCF_EXT_MB
HCF_STATIC int			put_info_mb( IFBP ifbp, CFG_MB_INFO_STRCT FAR * ltvp );
#endif // HCF_EXT_MB
#if (HCF_TYPE) & HCF_TYPE_WPA
HCF_STATIC void			calc_mic( hcf_32* p, hcf_32 M );
void 					calc_mic_rx_frag( IFBP ifbp, wci_bufp p, int len );
void 					calc_mic_tx_frag( IFBP ifbp, wci_bufp p, int len );
HCF_STATIC int			check_mic( IFBP ifbp );
#endif // HCF_TYPE_WPA

HCF_STATIC void			calibrate( IFBP ifbp );
HCF_STATIC int			cmd_cmpl( IFBP ifbp );
HCF_STATIC hcf_16		get_fid( IFBP ifbp );
HCF_STATIC void			isr_info( IFBP ifbp );
#if HCF_DMA
HCF_STATIC DESC_STRCT*	get_frame_lst(IFBP ifbp, int tx_rx_flag);
#endif // HCF_DMA
HCF_STATIC void			get_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) );	//char*, byte count (usually even)
#if HCF_DMA
HCF_STATIC void			put_frame_lst( IFBP ifbp, DESC_STRCT *descp, int tx_rx_flag );
#endif // HCF_DMA
HCF_STATIC void			put_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) );
HCF_STATIC void			put_frag_finalize( IFBP ifbp );
HCF_STATIC int			setup_bap( IFBP ifbp, hcf_16 fid, int offset, int type );
#if (HCF_ASSERT) & HCF_ASSERT_PRINTF
static int fw_printf(IFBP ifbp, CFG_FW_PRINTF_STRCT FAR *ltvp);
#endif // HCF_ASSERT_PRINTF

HCF_STATIC int			download( IFBP ifbp, CFG_PROG_STRCT FAR *ltvp );
#if (HCF_ENCAP) & HCF_ENC
HCF_STATIC hcf_8		hcf_encap( wci_bufp type );
#endif // HCF_ENCAP
HCF_STATIC hcf_8		null_addr[4] = { 0, 0, 0, 0 };
#if ! defined IN_PORT_WORD			//replace I/O Macros with logging facility
extern FILE *log_file;

#define IN_PORT_WORD(port)			in_port_word( (hcf_io)(port) )

static hcf_16 in_port_word( hcf_io port ) {
hcf_16 i = (hcf_16)_inpw( port );
	if ( log_file ) {
		fprintf( log_file, "\nR %2.2x %4.4x", (port)&0xFF, i);
	}
	return i;
} // in_port_word

#define OUT_PORT_WORD(port, value)	out_port_word( (hcf_io)(port), (hcf_16)(value) )

static void out_port_word( hcf_io port, hcf_16 value ) {
	_outpw( port, value );
	if ( log_file ) {
		fprintf( log_file, "\nW %2.02x %4.04x", (port)&0xFF, value );
	}
}

void IN_PORT_STRING_32( hcf_io prt, hcf_32 FAR * dst, int n)	{
	int i = 0;
	hcf_16 FAR * p;
	if ( log_file ) {
		fprintf( log_file, "\nread string_32 length %04x (%04d) at port %02.2x to addr %lp",
				 (hcf_16)n, (hcf_16)n, (hcf_16)(prt)&0xFF, dst);
	}
	while ( n-- ) {
		p = (hcf_16 FAR *)dst;
		*p++ = (hcf_16)_inpw( prt );
		*p   = (hcf_16)_inpw( prt );
		if ( log_file ) {
			fprintf( log_file, "%s%08lx ", i++ % 0x08 ? " " : "\n", *dst);
		}
		dst++;
	}
} // IN_PORT_STRING_32

void IN_PORT_STRING_8_16( hcf_io prt, hcf_8 FAR * dst, int n) {	//also handles byte alignment problems
	hcf_16 FAR * p = (hcf_16 FAR *)dst;							//this needs more elaborate code in non-x86 platforms
	int i = 0;
	if ( log_file ) {
		fprintf( log_file, "\nread string_16 length %04x (%04d) at port %02.2x to addr %lp",
				 (hcf_16)n, (hcf_16)n, (hcf_16)(prt)&0xFF, dst );
	}
	while ( n-- ) {
		*p =(hcf_16)_inpw( prt);
		if ( log_file ) {
			if ( i++ % 0x10 ) {
				fprintf( log_file, "%04x ", *p);
			} else {
				fprintf( log_file, "\n%04x ", *p);
			}
		}
		p++;
	}
} // IN_PORT_STRING_8_16

void OUT_PORT_STRING_32( hcf_io prt, hcf_32 FAR * src, int n)	{
	int i = 0;
	hcf_16 FAR * p;
	if ( log_file ) {
		fprintf( log_file, "\nwrite string_32 length %04x (%04d) at port %02.2x",
				 (hcf_16)n, (hcf_16)n, (hcf_16)(prt)&0xFF);
	}
	while ( n-- ) {
		p = (hcf_16 FAR *)src;
		_outpw( prt, *p++ );
		_outpw( prt, *p   );
		if ( log_file ) {
			fprintf( log_file, "%s%08lx ", i++ % 0x08 ? " " : "\n", *src);
		}
		src++;
	}
} // OUT_PORT_STRING_32

void OUT_PORT_STRING_8_16( hcf_io prt, hcf_8 FAR * src, int n)	{	//also handles byte alignment problems
	hcf_16 FAR * p = (hcf_16 FAR *)src;								//this needs more elaborate code in non-x86 platforms
	int i = 0;
	if ( log_file ) {
		fprintf( log_file, "\nwrite string_16 length %04x (%04d) at port %04x", n, n, (hcf_16)prt);
	}
	while ( n-- ) {
		(void)_outpw( prt, *p);
		if ( log_file ) {
			if ( i++ % 0x10 ) {
				fprintf( log_file, "%04x ", *p);
			} else {
				fprintf( log_file, "\n%04x ", *p);
			}
		}
		p++;
	}
} // OUT_PORT_STRING_8_16

#endif // IN_PORT_WORD

/************************************************************************************************************
******************************* D A T A    D E F I N I T I O N S ********************************************
************************************************************************************************************/

#if HCF_ASSERT
IFBP BASED assert_ifbp = NULL;			//to make asserts easily work under MMD and DHF
#endif // HCF_ASSERT

#if HCF_ENCAP
/* SNAP header to be inserted in Ethernet-II frames */
HCF_STATIC  hcf_8 BASED snap_header[] = { 0xAA, 0xAA, 0x03, 0x00, 0x00,	//5 bytes signature +
										  0 };							//1 byte protocol identifier
#endif // HCF_ENCAP

#if (HCF_TYPE) & HCF_TYPE_WPA
HCF_STATIC hcf_8 BASED mic_pad[8] = { 0x5A, 0, 0, 0, 0, 0, 0, 0 };		//MIC padding of message
#endif // HCF_TYPE_WPA

#if defined MSF_COMPONENT_ID
CFG_IDENTITY_STRCT BASED cfg_drv_identity = {
	sizeof(cfg_drv_identity)/sizeof(hcf_16) - 1,	//length of RID
	CFG_DRV_IDENTITY,			// (0x0826)
	MSF_COMPONENT_ID,
	MSF_COMPONENT_VAR,
	MSF_COMPONENT_MAJOR_VER,
	MSF_COMPONENT_MINOR_VER
} ;

CFG_RANGES_STRCT BASED cfg_drv_sup_range = {
	sizeof(cfg_drv_sup_range)/sizeof(hcf_16) - 1,	//length of RID
	CFG_DRV_SUP_RANGE,			// (0x0827)

	COMP_ROLE_SUPL,
	COMP_ID_DUI,
	{{	DUI_COMPAT_VAR,
		DUI_COMPAT_BOT,
		DUI_COMPAT_TOP
	}}
} ;

struct CFG_RANGE3_STRCT BASED cfg_drv_act_ranges_pri = {
	sizeof(cfg_drv_act_ranges_pri)/sizeof(hcf_16) - 1,	//length of RID
	CFG_DRV_ACT_RANGES_PRI,		// (0x0828)

	COMP_ROLE_ACT,
	COMP_ID_PRI,
	{
	 { 0, 0, 0 }, 							// HCF_PRI_VAR_1 not supported by HCF 7
	 { 0, 0, 0 }, 							// HCF_PRI_VAR_2 not supported by HCF 7
	 {	3,									//var_rec[2] - Variant number
		CFG_DRV_ACT_RANGES_PRI_3_BOTTOM,		//		 - Bottom Compatibility
		CFG_DRV_ACT_RANGES_PRI_3_TOP			//		 - Top Compatibility
	 }
	}
} ;


struct CFG_RANGE4_STRCT BASED cfg_drv_act_ranges_sta = {
	sizeof(cfg_drv_act_ranges_sta)/sizeof(hcf_16) - 1,	//length of RID
	CFG_DRV_ACT_RANGES_STA,		// (0x0829)

	COMP_ROLE_ACT,
	COMP_ID_STA,
	{
#if defined HCF_STA_VAR_1
	 {	1,									//var_rec[1] - Variant number
		CFG_DRV_ACT_RANGES_STA_1_BOTTOM,		//		 - Bottom Compatibility
		CFG_DRV_ACT_RANGES_STA_1_TOP			//		 - Top Compatibility
	 },
#else
	 { 0, 0, 0 },
#endif // HCF_STA_VAR_1
#if defined HCF_STA_VAR_2
	 {	2,									//var_rec[1] - Variant number
		CFG_DRV_ACT_RANGES_STA_2_BOTTOM,		//		 - Bottom Compatibility
		CFG_DRV_ACT_RANGES_STA_2_TOP			//		 - Top Compatibility
	 },
#else
	 { 0, 0, 0 },
#endif // HCF_STA_VAR_2
// For Native_USB (Not used!)
#if defined HCF_STA_VAR_3
	 {	3,									//var_rec[1] - Variant number
		CFG_DRV_ACT_RANGES_STA_3_BOTTOM,		//		 - Bottom Compatibility
		CFG_DRV_ACT_RANGES_STA_3_TOP			//		 - Top Compatibility
	 },
#else
	 { 0, 0, 0 },
#endif // HCF_STA_VAR_3
// Warp
#if defined HCF_STA_VAR_4
	 {	4,									//var_rec[1] - Variant number
		CFG_DRV_ACT_RANGES_STA_4_BOTTOM,		//           - Bottom Compatibility
		CFG_DRV_ACT_RANGES_STA_4_TOP			//           - Top Compatibility
	 }
#else
	 { 0, 0, 0 }
#endif // HCF_STA_VAR_4
	}
} ;


struct CFG_RANGE6_STRCT BASED cfg_drv_act_ranges_hsi = {
	sizeof(cfg_drv_act_ranges_hsi)/sizeof(hcf_16) - 1,	//length of RID
	CFG_DRV_ACT_RANGES_HSI,		// (0x082A)
	COMP_ROLE_ACT,
	COMP_ID_HSI,
	{
#if defined HCF_HSI_VAR_0					// Controlled deployment
	 {	0,									// var_rec[1] - Variant number
		CFG_DRV_ACT_RANGES_HSI_0_BOTTOM,		//           - Bottom Compatibility
		CFG_DRV_ACT_RANGES_HSI_0_TOP			//           - Top Compatibility
	 },
#else
	 { 0, 0, 0 },
#endif // HCF_HSI_VAR_0
	 { 0, 0, 0 }, 							// HCF_HSI_VAR_1 not supported by HCF 7
	 { 0, 0, 0 }, 							// HCF_HSI_VAR_2 not supported by HCF 7
	 { 0, 0, 0 }, 							// HCF_HSI_VAR_3 not supported by HCF 7
#if defined HCF_HSI_VAR_4					// Hermes-II all types
	 {	4,									// var_rec[1] - Variant number
		CFG_DRV_ACT_RANGES_HSI_4_BOTTOM,		//           - Bottom Compatibility
		CFG_DRV_ACT_RANGES_HSI_4_TOP			//           - Top Compatibility
	 },
#else
	 { 0, 0, 0 },
#endif // HCF_HSI_VAR_4
#if defined HCF_HSI_VAR_5					// WARP Hermes-2.5
	 {	5,									// var_rec[1] - Variant number
		CFG_DRV_ACT_RANGES_HSI_5_BOTTOM,		//           - Bottom Compatibility
		CFG_DRV_ACT_RANGES_HSI_5_TOP			//           - Top Compatibility
	 }
#else
	 { 0, 0, 0 }
#endif // HCF_HSI_VAR_5
	}
} ;


CFG_RANGE4_STRCT BASED cfg_drv_act_ranges_apf = {
	sizeof(cfg_drv_act_ranges_apf)/sizeof(hcf_16) - 1,	//length of RID
	CFG_DRV_ACT_RANGES_APF,		// (0x082B)

	COMP_ROLE_ACT,
	COMP_ID_APF,
	{
#if defined HCF_APF_VAR_1				//(Fake) Hermes-I
	 {	1,									//var_rec[1] - Variant number
		CFG_DRV_ACT_RANGES_APF_1_BOTTOM,		//           - Bottom Compatibility
		CFG_DRV_ACT_RANGES_APF_1_TOP			//           - Top Compatibility
	 },
#else
	 { 0, 0, 0 },
#endif // HCF_APF_VAR_1
#if defined HCF_APF_VAR_2				//Hermes-II
	 {	2,									// var_rec[1] - Variant number
		CFG_DRV_ACT_RANGES_APF_2_BOTTOM,		//           - Bottom Compatibility
		CFG_DRV_ACT_RANGES_APF_2_TOP			//           - Top Compatibility
	 },
#else
	 { 0, 0, 0 },
#endif // HCF_APF_VAR_2
#if defined HCF_APF_VAR_3						// Native_USB
	 {	3,										// var_rec[1] - Variant number
		CFG_DRV_ACT_RANGES_APF_3_BOTTOM,		//           - Bottom Compatibility	!!!!!see note below!!!!!!!
		CFG_DRV_ACT_RANGES_APF_3_TOP			//           - Top Compatibility
	 },
#else
	 { 0, 0, 0 },
#endif // HCF_APF_VAR_3
#if defined HCF_APF_VAR_4						// WARP Hermes 2.5
	 {	4,										// var_rec[1] - Variant number
		CFG_DRV_ACT_RANGES_APF_4_BOTTOM,		//           - Bottom Compatibility	!!!!!see note below!!!!!!!
		CFG_DRV_ACT_RANGES_APF_4_TOP			//           - Top Compatibility
	 }
#else
	 { 0, 0, 0 }
#endif // HCF_APF_VAR_4
	}
} ;
#define HCF_VERSION  TEXT( "HCF$Revision: 1.10 $" )

static struct /*CFG_HCF_OPT_STRCT*/ {
	hcf_16	len;					//length of cfg_hcf_opt struct
	hcf_16	typ;					//type 0x082C
	hcf_16	 v0;						//offset HCF_VERSION
	hcf_16	 v1;						// MSF_COMPONENT_ID
	hcf_16	 v2;						// HCF_ALIGN
	hcf_16	 v3;						// HCF_ASSERT
	hcf_16	 v4;						// HCF_BIG_ENDIAN
	hcf_16	 v5;						// /* HCF_DLV | HCF_DLNV */
	hcf_16	 v6;						// HCF_DMA
	hcf_16	 v7;						// HCF_ENCAP
	hcf_16	 v8;						// HCF_EXT
	hcf_16	 v9;						// HCF_INT_ON
	hcf_16	v10;						// HCF_IO
	hcf_16	v11;						// HCF_LEGACY
	hcf_16	v12;						// HCF_MAX_LTV
	hcf_16	v13;						// HCF_PROT_TIME
	hcf_16	v14;						// HCF_SLEEP
	hcf_16	v15;						// HCF_TALLIES
	hcf_16	v16;						// HCF_TYPE
	hcf_16	v17;						// HCF_NIC_TAL_CNT
	hcf_16	v18;						// HCF_HCF_TAL_CNT
	hcf_16	v19;						// offset tallies
	TCHAR	val[sizeof(HCF_VERSION)];
} BASED cfg_hcf_opt = {
	sizeof(cfg_hcf_opt)/sizeof(hcf_16) -1,
	CFG_HCF_OPT,				// (0x082C)
	( sizeof(cfg_hcf_opt) - sizeof(HCF_VERSION) - 4 )/sizeof(hcf_16),
#if defined MSF_COMPONENT_ID
	MSF_COMPONENT_ID,
#else
	0,
#endif // MSF_COMPONENT_ID
	HCF_ALIGN,
	HCF_ASSERT,
	HCF_BIG_ENDIAN,
	0,									// /* HCF_DLV | HCF_DLNV*/,
	HCF_DMA,
	HCF_ENCAP,
	HCF_EXT,
	HCF_INT_ON,
	HCF_IO,
	HCF_LEGACY,
	HCF_MAX_LTV,
	HCF_PROT_TIME,
	HCF_SLEEP,
	HCF_TALLIES,
	HCF_TYPE,
#if (HCF_TALLIES) & ( HCF_TALLIES_NIC | HCF_TALLIES_HCF )
	HCF_NIC_TAL_CNT,
	HCF_HCF_TAL_CNT,
	offsetof(IFB_STRCT, IFB_TallyLen ),
#else
	0, 0, 0,
#endif // HCF_TALLIES_NIC / HCF_TALLIES_HCF
	HCF_VERSION
}; // cfg_hcf_opt
#endif // MSF_COMPONENT_ID

#if defined HCF_TALLIES_EXTRA
	replaced by HCF_EXT_TALLIES_FW ;
#endif // HCF_TALLIES_EXTRA

#if defined MSF_COMPONENT_ID || (HCF_EXT) & HCF_EXT_MB
#if (HCF_EXT) & HCF_EXT_MB
HCF_STATIC LTV_STRCT BASED cfg_null = { 1, CFG_NULL, {0} };
#endif // HCF_EXT_MB
HCF_STATIC hcf_16* BASED xxxx[ ] = {
#if (HCF_EXT) & HCF_EXT_MB
	&cfg_null.len,							//CFG_NULL						0x0820
#endif // HCF_EXT_MB
#if defined MSF_COMPONENT_ID
	&cfg_drv_identity.len,					//CFG_DRV_IDENTITY              0x0826
	&cfg_drv_sup_range.len,					//CFG_DRV_SUP_RANGE             0x0827
	&cfg_drv_act_ranges_pri.len,			//CFG_DRV_ACT_RANGES_PRI        0x0828
	&cfg_drv_act_ranges_sta.len,			//CFG_DRV_ACT_RANGES_STA		0x0829
	&cfg_drv_act_ranges_hsi.len,			//CFG_DRV_ACT_RANGES_HSI		0x082A
	&cfg_drv_act_ranges_apf.len,			//CFG_DRV_ACT_RANGES_APF		0x082B
	&cfg_hcf_opt.len,						//CFG_HCF_OPT					0x082C
	NULL,									//IFB_PRIIdentity placeholder	0xFD02
	NULL,									//IFB_PRISup placeholder		0xFD03
#endif // MSF_COMPONENT_ID
	NULL									//endsentinel
  };
#define xxxx_PRI_IDENTITY_OFFSET	(ARRAY_SIZE(xxxx) - 3)

#endif // MSF_COMPONENT_ID / HCF_EXT_MB


/************************************************************************************************************
************************** T O P   L E V E L   H C F   R O U T I N E S **************************************
************************************************************************************************************/

#if (HCF_DL_ONLY) == 0
/************************************************************************************************************
*
*.MODULE		int hcf_action( IFBP ifbp, hcf_16 action )
*.PURPOSE		Changes the run-time Card behavior.
*				Performs Miscellanuous actions.
*
*.ARGUMENTS
*	ifbp					address of the Interface Block
*	action					number identifying the type of change
*	 - HCF_ACT_CCX_OFF		disable CKIP
*	 - HCF_ACT_CCX_ON		enable CKIP
*	 - HCF_ACT_INT_FORCE_ON	enable interrupt generation by WaveLAN NIC
*	 - HCF_ACT_INT_OFF		disable interrupt generation by WaveLAN NIC
*	 - HCF_ACT_INT_ON		compensate 1 HCF_ACT_INT_OFF, enable interrupt generation if balance reached
*	 - HCF_ACT_PRS_SCAN		Hermes Probe Respons Scan (F102) command
*	 - HCF_ACT_RX_ACK		acknowledge non-DMA receiver to Hermes
*	 - HCF_ACT_SCAN			Hermes Inquire Scan (F101) command (non-WARP only)
*	 - HCF_ACT_SLEEP		DDS Sleep request
*	 - HCF_ACT_TALLIES		Hermes Inquire Tallies (F100) command
*
*.RETURNS
*	HCF_SUCCESS				all (including invalid)
*	HCF_INT_PENDING			HCF_ACT_INT_OFF, interrupt pending
*	HCF_ERR_NO_NIC			HCF_ACT_INT_OFF, NIC presence check fails
*
*.CONDITIONS
* Except for hcf_action with HCF_ACT_INT_FORCE_ON or HCF_ACT_INT_OFF as parameter or hcf_connect with an I/O
* address (i.e. not HCF_DISCONNECT), all hcf-function calls MUST be preceded by a call of hcf_action with
* HCF_ACT_INT_OFF as parameter.
* Note that hcf_connect defaults to NIC interrupt disabled mode, i.e. as if hcf_action( HCF_ACT_INT_OFF )
* was called.
*
*.DESCRIPTION
* hcf_action supports the following mode changing action-code pairs that are antonyms
*	 - HCF_ACT_CCX_OFF / HCF_ACT_CCX_ON
*	 - HCF_ACT_INT_[FORCE_]ON / HCF_ACT_INT_OFF
*
* Additionally hcf_action can start the following actions in the NIC:
*	 - HCF_ACT_PRS_SCAN
*	 - HCF_ACT_RX_ACK
*	 - HCF_ACT_SCAN
*	 - HCF_ACT_SLEEP
*	 - HCF_ACT_TALLIES
*
* o HCF_ACT_INT_OFF: Sets NIC Interrupts mode Disabled.
* This command, and the associated [Force] Enable NIC interrupts command, are only available if the HCF_INT_ON
* compile time option is not set at 0x0000.
*
* o HCF_ACT_INT_ON: Sets NIC Interrupts mode Enabled.
* Enable NIC Interrupts, depending on the number of preceding Disable NIC Interrupt calls.
*
* o HCF_ACT_INT_FORCE_ON: Force NIC Interrupts mode Enabled.
* Sets NIC Interrupts mode Enabled, regardless off the number of preceding Disable NIC Interrupt calls.
*
* The disabling and enabling of interrupts are antonyms.
* These actions must be balanced.
* For each "disable interrupts" there must be a matching "enable interrupts".
* The disable interrupts may be executed multiple times in a row without intervening enable interrupts, in
* other words, the disable interrupts may be nested.
* The interrupt generation mechanism is disabled at the first call with HCF_ACT_INT_OFF.
* The interrupt generation mechanism is re-enabled when the number of calls with HCF_ACT_INT_ON matches the
* number of calls with INT_OFF.
*
* It is not allowed to have more Enable NIC Interrupts calls than Disable NIC Interrupts calls.
* The interrupt generation mechanism is initially (i.e. after hcf_connect) disabled.
* An MSF based on a interrupt strategy must call hcf_action with INT_ON in its initialization logic.
*
*!	The INT_OFF/INT_ON housekeeping is initialized at 0x0000 by hcf_connect, causing the interrupt generation
*	mechanism to be disabled at first. This suits MSF implementation based on a polling strategy.
*
* o HCF_ACT_CCX_OFF / HCF_ACT_CCX_ON
*!! This can use some more explanation;?
* Disables and Enables support in the HCF runtime code for the CCX feature. Each time one of these action
* codes is used, the effects of the preceding use cease.
*
* o HCF_ACT_SLEEP: Initiates the Disconnected DeepSleep process
* This command is only available if the HCF_DDS compile time option is set. It triggers the F/W to start the
* sleep handshaking. Regardless whether the Host initiates a Disconnected DeepSleep (DDS) or the F/W initiates
* a Connected DeepSleep (CDS), the Host-F/W sleep handshaking is completed when the NIC Interrupts mode is
* enabled (by means of the balancing HCF_ACT_INT_ON), i.e. at that moment the F/W really goes into sleep mode.
* The F/W is wokenup by the HCF when the NIC Interrupts mode are disabled, i.e. at the first HCF_ACT_INT_OFF
* after going into sleep.
*
* The following Miscellanuous actions are defined:
*
* o HCF_ACT_RX_ACK: Receiver Acknowledgement (non-DMA, non-USB mode only)
* Acking the receiver, frees the NIC memory used to hold the Rx frame and allows the F/W to
* report the existence of the next Rx frame.
* If the MSF does not need access (any longer) to the current frame, e.g. because it is rejected based on the
* look ahead or copied to another buffer, the receiver may be acked. Acking earlier is assumed to have the
* potential of improving the performance.
* If the MSF does not explitly ack te receiver, the acking is done implicitly if:
* - the received frame fits in the look ahead buffer, by the hcf_service_nic call that reported the Rx frame
* - if not in the above step, by hcf_rcv_msg (assuming hcf_rcv_msg is called)
* - if neither of the above implicit acks nor an explicit ack by the MSF, by the first hcf_service_nic after
*	the hcf_service_nic that reported the Rx frame.
* Note: If an Rx frame is already acked, an explicit ACK by the MSF acts as a NoOperation.
*
* o HCF_ACT_TALLIES: Inquire Tallies command
* This command is only operational if the F/W is enabled.
* The Inquire Tallies command requests the F/W to provide its current set of tallies.
* See also hcf_get_info with CFG_TALLIES as parameter.
*
* o HCF_ACT_PRS_SCAN: Inquire Probe Respons Scan command
* This command is only operational if the F/W is enabled.
* The Probe Respons Scan command starts a scan sequence.
* The HCF puts the result of this action in an MSF defined buffer (see CFG_RID_LOG_STRCT).
*
* o HCF_ACT_SCAN: Inquire Scan command
* This command is only supported for HII F/W (i.e. pre-WARP) and it is operational if the F/W is enabled.
* The Inquire Scan command starts a scan sequence.
* The HCF puts the result of this action in an MSF defined buffer (see CFG_RID_LOG_STRCT).
*
* Assert fails if
* - ifbp has a recognizable out-of-range value.
* - NIC interrupts are not disabled while required by parameter action.
* - an invalid code is specified in parameter action.
* - HCF_ACT_INT_ON commands outnumber the HCF_ACT_INT_OFF commands.
* - reentrancy, may be  caused by calling hcf_functions without adequate protection against NIC interrupts or
*	multi-threading
*
* - Since the HCF does not maintain status information relative to the F/W enabled state, it is not asserted
*	whether HCF_ACT_SCAN, HCF_ACT_PRS_SCAN or HCF_ACT_TALLIES are only used while F/W is enabled.
*
*.DIAGRAM
* 0: The assert embedded in HCFLOGENTRY checks against re-entrancy. Re-entrancy could be caused by a MSF logic
*	at task-level calling hcf_functions without shielding with HCF_ACT_ON/_OFF. However the HCF_ACT_INT_OFF
*	action itself can per definition not be protected this way. Based on code inspection, it can be concluded,
*	that there is no re-entrancy PROBLEM in this particular flow. It does not seem worth the trouble to
*	explicitly check for this condition (although there was a report of an MSF which ran into this assert.
* 2:IFB_IntOffCnt is used to balance the INT_OFF and INT_ON calls.  Disabling of the interrupts is achieved by
*	writing a zero to the Hermes IntEn register.  In a shared interrupt environment (e.g. the mini-PCI NDIS
*	driver) it is considered more correct to return the status HCF_INT_PENDING if and only if, the current
*	invocation of hcf_service_nic is (apparently) called in the ISR when the ISR was activated as result of a
*	change in HREG_EV_STAT matching a bit in HREG_INT_EN, i.e. not if invoked as result of another device
*	generating an interrupt on the shared interrupt line.
*	Note 1: it has been observed that under certain adverse conditions on certain platforms the writing of
*	HREG_INT_EN can apparently fail, therefor it is paramount that HREG_INT_EN is written again with 0 for
*	each and every call to HCF_ACT_INT_OFF.
*	Note 2: it has been observed that under certain H/W & S/W architectures this logic is called when there is
*	no NIC at all. To cater for this, the value of HREG_INT_EN is validated. If the unused bit 0x0100 is set,
*	it is assumed there is no NIC.
*	Note 3: During the download process, some versions of the F/W reset HREG_SW_0, hence checking this
*	register for HCF_MAGIC (the classical NIC presence test) when HCF_ACT_INT_OFF is called due to another
*	card interrupting via a shared IRQ during a download, fails.
*4:	The construction "if ( ifbp->IFB_IntOffCnt-- == 0 )" is optimal (in the sense of shortest/quickest
*	path in error free flows) but NOT fail safe in case of too many INT_ON invocations compared to INT_OFF).
*	Enabling of the interrupts is achieved by writing the Hermes IntEn register.
*	 - If the HCF is in Defunct mode, the interrupts stay disabled.
*	 - Under "normal" conditions, the HCF is only interested in Info Events, Rx Events and Notify Events.
*	 - When the HCF is out of Tx/Notify resources, the HCF is also interested in Alloc Events.
*	 - via HCF_EXT, the MSF programmer can also request HREG_EV_TICK and/or HREG_EV_TX_EXC interrupts.
*	For DMA operation, the DMA hardware handles the alloc events. The DMA engine will generate a 'TxDmaDone'
*	event as soon as it has pumped a frame from host ram into NIC-RAM (note that the frame does not have to be
*	transmitted then), and a 'RxDmaDone' event as soon as a received frame has been pumped from NIC-RAM into
*	host ram.  Note that the 'alloc' event has been removed from the event-mask, because the DMA engine will
*	react to and acknowledge this event.
*6:	ack the "old" Rx-event. See "Rx Buffer free strategy" in hcf_service_nic above for more explanation.
*	IFB_RxFID and IFB_RxLen must be cleared to bring both the internal HCF house keeping and the information
*	supplied to the MSF in the state "no frame received".
*8:	The HCF_ACT_SCAN, HCF_ACT_PRS_SCAN and HCF_ACT_TALLIES activity are merged by "clever" algebraic
*	manipulations of the RID-values and action codes, so foregoing robustness against migration problems for
*	ease of implementation. The assumptions about numerical relationships between CFG_TALLIES etc and
*	HCF_ACT_TALLIES etc are checked by the "#if" statements just prior to the body of this routine, resulting
*	in: err "maintenance" during compilation if the assumptions are no longer met. The writing of HREG_PARAM_1
*	with 0x3FFF in case of an PRS scan, is a kludge to get around lack of specification, hence different
*	implementation in F/W and Host.
*	When there is no NIC RAM available, some versions of the Hermes F/W do report 0x7F00 as error in the
*	Result field of the Status register and some F/W versions don't. To mask this difference to the MSF all
*	return codes of the Hermes are ignored ("best" and "most simple" solution to these types of analomies with
*	an acceptable loss due to ignoring all error situations as well).
*	The "No inquire space" is reported via the Hermes tallies.
*30: do not HCFASSERT( rc, rc ) since rc == HCF_INT_PENDING is no error
*
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/
#if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0
#if CFG_SCAN != CFG_TALLIES - HCF_ACT_TALLIES + HCF_ACT_SCAN
err: "maintenance" apparently inviolated the underlying assumption about the numerical values of these macros
#endif
#endif // HCF_TYPE_HII5
#if CFG_PRS_SCAN != CFG_TALLIES - HCF_ACT_TALLIES + HCF_ACT_PRS_SCAN
err: "maintenance" apparently inviolated the underlying assumption about the numerical values of these macros
#endif
int
hcf_action( IFBP ifbp, hcf_16 action )
{
int	rc = HCF_SUCCESS;

	HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic )
#if HCF_INT_ON
	HCFLOGENTRY( action == HCF_ACT_INT_FORCE_ON ? HCF_TRACE_ACTION_KLUDGE : HCF_TRACE_ACTION, action )														/* 0 */
#if (HCF_SLEEP)
	HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFE || action == HCF_ACT_INT_OFF,
			   MERGE_2( action, ifbp->IFB_IntOffCnt ) )
#else
	HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFE, action )
#endif // HCF_SLEEP
	HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFF ||
			   action == HCF_ACT_INT_OFF || action == HCF_ACT_INT_FORCE_ON,  action )
	HCFASSERT( ifbp->IFB_IntOffCnt <= 16 || ifbp->IFB_IntOffCnt >= 0xFFFE,
			   MERGE_2( action, ifbp->IFB_IntOffCnt ) )	//nesting more than 16 deep seems unreasonable
#endif // HCF_INT_ON

	switch (action) {
#if HCF_INT_ON
hcf_16	i;
	  case HCF_ACT_INT_OFF:						// Disable Interrupt generation
#if HCF_SLEEP
		if ( ifbp->IFB_IntOffCnt == 0xFFFE ) {	// WakeUp test	;?tie this to the "new" super-LinkStat
			ifbp->IFB_IntOffCnt++;						// restore conventional I/F
			OPW(HREG_IO, HREG_IO_WAKEUP_ASYNC );		// set wakeup bit
			OPW(HREG_IO, HREG_IO_WAKEUP_ASYNC );		// set wakeup bit to counteract the clearing by F/W
			// 800 us latency before FW switches to high power
			MSF_WAIT(800);								// MSF-defined function to wait n microseconds.
//OOR		if ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_DS_OOR ) { // OutOfRange
//				printk( "<5>ACT_INT_OFF: Deepsleep phase terminated, enable and go to AwaitConnection\n" );		//;?remove me 1 day
//				hcf_cntl( ifbp, HCF_CNTL_ENABLE );
//			}
//			ifbp->IFB_DSLinkStat &= ~( CFG_LINK_STAT_DS_IR | CFG_LINK_STAT_DS_OOR);	//clear IR/OOR state
		}
#endif // HCF_SLEEP
/*2*/	ifbp->IFB_IntOffCnt++;
//!     rc = 0;
		i = IPW( HREG_INT_EN );
		OPW( HREG_INT_EN, 0 );
		if ( i & 0x1000 ) {
			rc = HCF_ERR_NO_NIC;
		} else {
			if ( i & IPW( HREG_EV_STAT ) ) {
				rc = HCF_INT_PENDING;
			}
		}
		break;

	  case HCF_ACT_INT_FORCE_ON:				// Enforce Enable Interrupt generation
		ifbp->IFB_IntOffCnt = 0;
		//Fall through in HCF_ACT_INT_ON

	  case HCF_ACT_INT_ON:						// Enable Interrupt generation
/*4*/	if ( ifbp->IFB_IntOffCnt-- == 0 && ifbp->IFB_CardStat == 0 ) {
												//determine Interrupt Event mask
#if HCF_DMA
			if ( ifbp->IFB_CntlOpt & USE_DMA ) {
				i = HREG_EV_INFO | HREG_EV_RDMAD | HREG_EV_TDMAD | HREG_EV_TX_EXT;	//mask when DMA active
			} else
#endif // HCF_DMA
			{
				i = HREG_EV_INFO | HREG_EV_RX | HREG_EV_TX_EXT;						//mask when DMA not active
				if ( ifbp->IFB_RscInd == 0 ) {
					i |= HREG_EV_ALLOC;												//mask when no TxFID available
				}
			}
#if HCF_SLEEP
			if ( ( IPW(HREG_EV_STAT) & ( i | HREG_EV_SLEEP_REQ ) ) == HREG_EV_SLEEP_REQ ) {
				// firmware indicates it would like to go into sleep modus
				// only acknowledge this request if no other events that can cause an interrupt are pending
				ifbp->IFB_IntOffCnt--;			//becomes 0xFFFE
            	OPW( HREG_INT_EN, i | HREG_EV_TICK );
				OPW( HREG_EV_ACK, HREG_EV_SLEEP_REQ | HREG_EV_TICK | HREG_EV_ACK_REG_READY );
			} else
#endif // HCF_SLEEP
			{
            	OPW( HREG_INT_EN, i | HREG_EV_SLEEP_REQ );
			}
		}
		break;
#endif // HCF_INT_ON

#if (HCF_SLEEP) & HCF_DDS
	  case HCF_ACT_SLEEP:						// DDS Sleep request
		hcf_cntl( ifbp, HCF_CNTL_DISABLE );
		cmd_exe( ifbp, HCMD_SLEEP, 0 );
		break;
// 	  case HCF_ACT_WAKEUP:						// DDS Wakeup request
// 		HCFASSERT( ifbp->IFB_IntOffCnt == 0xFFFE, ifbp->IFB_IntOffCnt )
// 		ifbp->IFB_IntOffCnt++;					// restore conventional I/F
// 		OPW( HREG_IO, HREG_IO_WAKEUP_ASYNC );
// 		MSF_WAIT(800);							// MSF-defined function to wait n microseconds.
// 		rc = hcf_action( ifbp, HCF_ACT_INT_OFF );	/*bogus, IFB_IntOffCnt == 0xFFFF, so if you carefully look
// 													 *at the #if HCF_DDS statements, HCF_ACT_INT_OFF is empty
// 													 *for DDS. "Much" better would be to merge the flows for
// 													 *DDS and DEEP_SLEEP
// 													 */
// 		break;
#endif // HCF_DDS

#if (HCF_TYPE) & HCF_TYPE_CCX
	  case HCF_ACT_CCX_ON:						// enable CKIP
	  case HCF_ACT_CCX_OFF:						// disable CKIP
		ifbp->IFB_CKIPStat = action;
		break;
#endif // HCF_TYPE_CCX

	  case HCF_ACT_RX_ACK:						//Receiver ACK
/*6*/	if ( ifbp->IFB_RxFID ) {
			DAWA_ACK( HREG_EV_RX );
		}
		ifbp->IFB_RxFID = ifbp->IFB_RxLen = 0;
		break;

/*8*/ case	HCF_ACT_PRS_SCAN:					// Hermes PRS Scan (F102)
		OPW( HREG_PARAM_1, 0x3FFF );
			//Fall through in HCF_ACT_TALLIES
	  case HCF_ACT_TALLIES:						// Hermes Inquire Tallies (F100)
#if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0
	  case HCF_ACT_SCAN:						// Hermes Inquire Scan (F101)
#endif // HCF_TYPE_HII5
		/*!! the assumptions about numerical relationships between CFG_TALLIES etc and HCF_ACT_TALLIES etc
		 *   are checked by #if statements just prior to this routine resulting in: err "maintenance"	*/
		cmd_exe( ifbp, HCMD_INQUIRE, action - HCF_ACT_TALLIES + CFG_TALLIES );
		break;

	  default:
		HCFASSERT( DO_ASSERT, action )
		break;
	}
	//! do not HCFASSERT( rc == HCF_SUCCESS, rc )														/* 30*/
	HCFLOGEXIT( HCF_TRACE_ACTION )
	return rc;
} // hcf_action
#endif // HCF_DL_ONLY


/************************************************************************************************************
*
*.MODULE		int hcf_cntl( IFBP ifbp, hcf_16 cmd )
*.PURPOSE		Connect or disconnect a specific port to a specific network.
*!!  ;???????????????? continue needs more explanation
*				recovers by means of "continue" when the connect process in CCX mode fails
*				Enables or disables data transmission and reception for the NIC.
*				Activates static NIC configuration for a specific port at connect.
*				Activates static configuration for all ports at enable.
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*	cmd			0x001F:	Hermes command (disable, enable, connect, disconnect, continue)
*					HCF_CNTL_ENABLE		Enable
*					HCF_CNTL_DISABLE    Disable
*					HCF_CNTL_CONTINUE	Continue
*					HCF_CNTL_CONNECT    Connect
*					HCF_CNTL_DISCONNECT Disconnect
*				0x0100: command qualifier (continue)
*					HCMD_RETRY			retry flag
*				0x0700:  port number (connect/disconnect)
*					HCF_PORT_0          MAC Port 0
*					HCF_PORT_1          MAC Port 1
*					HCF_PORT_2          MAC Port 2
*					HCF_PORT_3          MAC Port 3
*					HCF_PORT_4          MAC Port 4
*					HCF_PORT_5          MAC Port 5
*					HCF_PORT_6          MAC Port 6
*
*.RETURNS
*	HCF_SUCCESS
*!!	via cmd_exe
*	HCF_ERR_NO_NIC
*	HCF_ERR_DEFUNCT_...
*	HCF_ERR_TIME_OUT
*
*.DESCRIPTION
* The parameter cmd contains a number of subfields.
* The actual value for cmd is created by logical or-ing the appropriate mnemonics for the subfields.
* The field 0x001F contains the command code
*  - HCF_CNTL_ENABLE
*  - HCF_CNTL_DISABLE
*  - HCF_CNTL_CONNECT
*  - HCF_CNTL_DISCONNECT
*  - HCF_CNTL_CONTINUE
*
* For HCF_CNTL_CONTINUE, the field 0x0100 contains the retry flag HCMD_RETRY.
* For HCF_CNTL_CONNECT and HCF_CNTL_DISCONNECT, the field 0x0700 contains the port number as HCF_PORT_#.
* For Station as well as AccessPoint F/W, MAC Port 0 is the "normal" communication channel.
* For AccessPoint F/W, MAC Port 1 through 6 control the WDS links.
*
* Note that despite the names HCF_CNTL_DISABLE and HCF_CNTL_ENABLE, hcf_cntl does not influence the NIC
* Interrupts mode.
*
* The Connect is used by the MSF to bring a particular port in an inactive state as far as data transmission
* and reception are concerned.
* When a particular port is disconnected:
* - the F/W disables the receiver for that port.
* - the F/W ignores send commands for that port.
* - all frames (Receive as well as pending Transmit) for that port on the NIC are discarded.
*
* When the NIC is disabled, above list applies to all ports, i.e. the result is like all ports are
* disconnected.
*
* When a particular port is connected:
* - the F/W effectuates the static configuration for that port.
* - enables the receiver for that port.
* - accepts send commands for that port.
*
* Enabling has the following effects:
* - the F/W effectuates the static configuration for all ports.
*	The F/W only updates its static configuration at a transition from disabled to enabled or from
*	disconnected to connected.
*	In order to enforce the static configuration, the MSF must assure that such a transition takes place.
*	Due to such a disable/enable or disconnect/connect sequence, Rx/Tx frames may be lost, in other words,
*	configuration may impact communication.
* - The DMA Engine (if applicable) is enabled.
* Note that the Enable Function by itself only enables data transmission and reception, it
* does not enable the Interrupt Generation mechanism. This is done by hcf_action.
*
* Disabling has the following effects:
*!!  ;?????is the following statement really true
* - it acts as a disconnect on all ports.
* - The DMA Engine (if applicable) is disabled.
*
* For impact of the disable command on the behavior of hcf_dma_tx/rx_get see the appropriate sections.
*
* Although the Enable/Disable and Connect/Disconnect are antonyms, there is no restriction on their sequencing,
* in other words, they may be called multiple times in arbitrary sequence without being paired or balanced.
* Each time one of these functions is called, the effects of the preceding calls cease.
*
* Assert fails if
* - ifbp has a recognizable out-of-range value.
* - NIC interrupts are not disabled.
* - A command other than Continue, Enable, Disable, Connect or Disconnect is given.
* - An invalid combination of the subfields is given or a bit outside the subfields is given.
* - any return code besides HCF_SUCCESS.
* - reentrancy, may be  caused by calling a hcf_function without adequate protection against NIC interrupts or
*	multi-threading
*
*.DIAGRAM
*	hcf_cntl takes successively the following actions:
*2:	If the HCF is in Defunct mode or incompatible with the Primary or Station Supplier in the Hermes,
*	hcf_cntl() returns immediately with HCF_ERR_NO_NIC;? as status.
*8:	when the port is disabled, the DMA engine needs to be de-activated, so the host can safely reclaim tx
*	packets from the tx descriptor chain.
*
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/
int
hcf_cntl( IFBP ifbp, hcf_16 cmd )
{
int	rc = HCF_ERR_INCOMP_FW;
#if HCF_ASSERT
{	int x = cmd & HCMD_CMD_CODE;
	if ( x == HCF_CNTL_CONTINUE ) x &= ~HCMD_RETRY;
	else if ( (x == HCMD_DISABLE || x == HCMD_ENABLE) && ifbp->IFB_FWIdentity.comp_id == COMP_ID_FW_AP ) {
		x &= ~HFS_TX_CNTL_PORT;
	}
	HCFASSERT( x==HCF_CNTL_ENABLE  || x==HCF_CNTL_DISABLE    || HCF_CNTL_CONTINUE ||
			   x==HCF_CNTL_CONNECT || x==HCF_CNTL_DISCONNECT, cmd )
}
#endif // HCF_ASSERT
// #if (HCF_SLEEP) & HCF_DDS
// 	HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFE, cmd )
// #endif // HCF_DDS
	HCFLOGENTRY( HCF_TRACE_CNTL, cmd )
	if ( ifbp->IFB_CardStat == 0 ) {																 /*2*/
/*6*/	rc = cmd_exe( ifbp, cmd, 0 );
#if (HCF_SLEEP) & HCF_DDS
		ifbp->IFB_TickCnt = 0;				//start 2 second period (with 1 tick uncertanty)
#endif // HCF_DDS
	}
#if HCF_DMA
	//!rlav : note that this piece of code is always executed, regardless of the DEFUNCT bit in IFB_CardStat.
	// The reason behind this is that the MSF should be able to get all its DMA resources back from the HCF,
	// even if the hardware is disfunctional. Practical example under Windows : surprise removal.
	if ( ifbp->IFB_CntlOpt & USE_DMA ) {
		hcf_io io_port = ifbp->IFB_IOBase;
		DESC_STRCT *p;
		if ( cmd == HCF_CNTL_DISABLE || cmd == HCF_CNTL_ENABLE ) {
			OUT_PORT_DWORD( (io_port + HREG_DMA_CTRL), DMA_CTRLSTAT_RESET);						/*8*/
			ifbp->IFB_CntlOpt &= ~DMA_ENABLED;
		}
		if ( cmd == HCF_CNTL_ENABLE ) {
			OUT_PORT_DWORD( (io_port + HREG_DMA_CTRL), DMA_CTRLSTAT_GO);
			/* ;? by rewriting hcf_dma_rx_put you can probably just call hcf_dma_rx_put( ifbp->IFB_FirstDesc[DMA_RX] )
			 * as additional beneficiary side effect, the SOP and EOP bits will also be cleared
			 */
			ifbp->IFB_CntlOpt |= DMA_ENABLED;
			HCFASSERT( NT_ASSERT, NEVER_TESTED )
			// make the entire rx descriptor chain DMA-owned, so the DMA engine can (re-)use it.
			p = ifbp->IFB_FirstDesc[DMA_RX];
			if (p != NULL) {   //;? Think this over again in the light of the new chaining strategy
				if ( 1 ) 	{ //begin alternative
					HCFASSERT( NT_ASSERT, NEVER_TESTED )
					put_frame_lst( ifbp, ifbp->IFB_FirstDesc[DMA_RX], DMA_RX );
					if ( ifbp->IFB_FirstDesc[DMA_RX] ) {
						put_frame_lst( ifbp, ifbp->IFB_FirstDesc[DMA_RX]->next_desc_addr, DMA_RX );
					}
				} else {
					while ( p ) {
						//p->buf_cntl.cntl_stat |= DESC_DMA_OWNED;
						p->BUF_CNT |= DESC_DMA_OWNED;
						p = p->next_desc_addr;
					}
					// a rx chain is available so hand it over to the DMA engine
					p = ifbp->IFB_FirstDesc[DMA_RX];
					OUT_PORT_DWORD( (io_port + HREG_RXDMA_PTR32), p->desc_phys_addr);
				}  //end alternative
			}
		}
	}
#endif // HCF_DMA
	HCFASSERT( rc == HCF_SUCCESS, rc )
	HCFLOGEXIT( HCF_TRACE_CNTL )
	return rc;
} // hcf_cntl


/************************************************************************************************************
*
*.MODULE		int hcf_connect( IFBP ifbp, hcf_io io_base )
*.PURPOSE		Grants access right for the HCF to the IFB.
*				Initializes Card and HCF housekeeping.
*
*.ARGUMENTS
*	ifbp		(near) address of the Interface Block
*	io_base		non-USB: I/O Base address of the NIC (connect)
*				non-USB: HCF_DISCONNECT
*				USB:	 HCF_CONNECT, HCF_DISCONNECT
*
*.RETURNS
*	HCF_SUCCESS
*	HCF_ERR_INCOMP_PRI
*	HCF_ERR_INCOMP_FW
*	HCF_ERR_DEFUNCT_CMD_SEQ
*!!	HCF_ERR_NO_NIC really returned ;?
*	HCF_ERR_NO_NIC
*	HCF_ERR_TIME_OUT
*
*	MSF-accessible fields of Result Block:
*	IFB_IOBase				entry parameter io_base
*	IFB_IORange				HREG_IO_RANGE (0x40/0x80)
*	IFB_Version				version of the IFB layout
*	IFB_FWIdentity			CFG_FW_IDENTITY_STRCT, specifies the identity of the
*							"running" F/W, i.e. tertiary F/W under normal conditions
*	IFB_FWSup				CFG_SUP_RANGE_STRCT, specifies the supplier range of
*							the "running" F/W, i.e. tertiary F/W under normal conditions
*	IFB_HSISup				CFG_SUP_RANGE_STRCT, specifies the HW/SW I/F range of the NIC
*	IFB_PRIIdentity			CFG_PRI_IDENTITY_STRCT, specifies the Identity of the Primary F/W
*	IFB_PRISup				CFG_SUP_RANGE_STRCT, specifies the supplier range of the Primary F/W
*	all other				all MSF accessible fields, which are not specified above, are zero-filled
*
*.CONDITIONS
* It is the responsibility of the MSF to assure the correctness of the I/O Base address.
*
* Note: hcf_connect defaults to NIC interrupt disabled mode, i.e. as if hcf_action( HCF_ACT_INT_OFF )
* was called.
*
*.DESCRIPTION
* hcf_connect passes the MSF-defined location of the IFB to the HCF and grants or revokes access right for the
* HCF to the IFB. Revoking is done by specifying HCF_DISCONNECT rather than an I/O address for the parameter
* io_base.  Every call of hcf_connect in "connect" mode, must eventually be followed by a call of hcf_connect
* in "disconnect" mode. Clalling hcf_connect in "connect"/"disconnect" mode can not be nested.
* The IFB address must be used as a handle with all subsequent HCF-function calls and the HCF uses the IFB
* address as a handle when it performs a call(back) of an MSF-function (i.e. msf_assert).
*
* Note that not only the MSF accessible fields are cleared, but also all internal housekeeping
* information is re-initialized.
* This implies that all settings which are done via hcf_action and hcf_put_info (e.g. CFG_MB_ASSERT, CFG_REG_MB,
* CFG_REG_INFO_LOG) must be done again. The only field which is not cleared, is IFB_MSFSup.
*
* If HCF_INT_ON is selected as compile option, NIC interrupts are disabled.
*
* Assert fails if
* - ifbp is not properly aligned ( ref chapter HCF_ALIGN in 4.1.1)
* - I/O Base Address is not a multiple of 0x40 (note: 0x0000 is explicitly allowed).
*
*.DIAGRAM
*
*0:	Throughout hcf_connect you need to distinguish the connect from the disconnect case, which requires
*	some attention about what to use as "I/O" address when for which purpose.
*2:
*2a: Reset H-II by toggling reset bit in IO-register on and off.
*	The HCF_TYPE_PRELOADED caters for the DOS environment where H-II is loaded by a separate program to
*	overcome the 64k size limit posed on DOS drivers.
*	The macro OPW is not yet useable because the IFB_IOBase field is not set.
*	Note 1: hopefully the clearing and initializing of the IFB (see below) acts as a delay which meets the
*	specification for S/W reset
*	Note 2: it turns out that on some H/W constellations, the clock to access the EEProm is not lowered
*	to an appropriate frequency by HREG_IO_SRESET. By giving an HCMD_INI first, this problem is worked around.
*2b: Experimentally it is determined over a wide range of F/W versions that waiting for the for Cmd bit in
*	Ev register gives a workable strategy. The available documentation does not give much clues.
*4:	clear and initialize the IFB
*	The HCF house keeping info is designed such that zero is the appropriate initial value for as much as
*	feasible IFB-items.
*	The readable fields mentioned in the description section and some HCF specific fields are given their
*	actual value.
*	IFB_TickIni is initialized at best guess before calibration
*	Hcf_connect defaults to "no interrupt generation" (implicitly achieved by the zero-filling).
*6:	Register compile-time linked MSF Routine and set default filter level
*	cast needed to get around the "near" problem in DOS COM model
*	er C2446: no conversion from void (__near __cdecl *)(unsigned char __far *,unsigned int,unsigned short,int)
*							to   void (__far  __cdecl *)(unsigned char __far *,unsigned int,unsigned short,int)
*8:	If a command is apparently still active (as indicated by the Busy bit in Cmd register) this may indicate a
*	blocked cmd pipe line.  To unblock the following actions are done:
*	 - Ack everything
*	 - Wait for Busy bit drop  in Cmd register
*	 - Wait for Cmd  bit raise in Ev  register
*	The two waits are combined in a single HCF_WAIT_WHILE to optimize memory size. If either of these waits
*	fail (prot_cnt becomes 0), then something is serious wrong. Rather than PANICK, the assumption is that the
*	next cmd_exe will fail, causing the HCF to go into DEFUNCT mode
*10:	Ack everything to unblock a (possibly blocked) cmd pipe line
*	Note 1: it is very likely that an Alloc event is pending and very well possible that a (Send) Cmd event is
*	pending on non-initial calls
*	Note 2: it is assumed that this strategy takes away the need to ack every conceivable event after an
*	Hermes Initialize
*12:	Only H-II NEEDS the Hermes Initialize command. Due to the different semantics for H-I and H-II
*	Initialize command, init() does not (and can not, since it is called e.g. after a download) execute the
*	Hermes Initialize command. Executing the Hermes Initialize command for H-I would not harm but not do
*	anything useful either, so it is skipped.
*	The return status of cmd_exe is ignored. It is assumed that if cmd_exe fails, init fails too
*14:	use io_base as a flag to merge hcf_connect and hcf_disconnect into 1 routine
*	the call to init and its subsequent call of cmd_exe will return HCF_ERR_NO_NIC if appropriate. This status
*	is (badly) needed by some legacy combination of NT4 and card services which do not yield an I/O address in
*	time.
*
*.NOTICE
*	On platforms where the NULL-pointer is not a bit-pattern of all zeros, the zero-filling of the IFB results
*	in an incorrect initialization of pointers.
*	The implementation of the MailBox manipulation in put_mb_info protects against the absence of a MailBox
*	based on IFB_MBSize, IFB_MBWp and ifbp->IFB_MBRp. This has ramifications on the initialization of the
*	MailBox via hcf_put_info with the CFG_REG_MB type, but it prevents dependency on the "NULL-"ness of
*	IFB_MBp.
*
*.NOTICE
*	There are a number of problems when asserting and logging hcf_connect, e.g.
*	 - Asserting on re-entrancy of hcf_connect by means of
*	 "HCFASSERT( (ifbp->IFB_AssertTrace & HCF_ASSERT_CONNECT) == 0, 0 )" is not useful because IFB contents
*	 are undefined
*	 - Asserting before the IFB is cleared will cause mdd_assert() to interpret the garbage in IFB_AssertRtn
*	 as a routine address
*	Therefore HCFTRACE nor HCFLOGENTRY is called by hcf_connect.
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/
int
hcf_connect( IFBP ifbp, hcf_io io_base )
{
int			rc = HCF_SUCCESS;
hcf_io		io_addr;
hcf_32		prot_cnt;
hcf_8		*q;
LTV_STRCT	x;
#if HCF_ASSERT
	hcf_16 xa = ifbp->IFB_FWIdentity.typ;
	/* is assumed to cause an assert later on if hcf_connect is called without intervening hcf_disconnect.
	 * xa == CFG_FW_IDENTITY in subsequent calls without preceding hcf_disconnect,
	 * xa == 0 in subsequent calls with preceding hcf_disconnect,
	 * xa == "garbage" (any value except CFG_FW_IDENTITY is acceptable) in the initial call
	 */
#endif // HCF_ASSERT

	if ( io_base == HCF_DISCONNECT ) {					//disconnect
		io_addr = ifbp->IFB_IOBase;
		OPW( HREG_INT_EN, 0 );		//;?workaround against dying F/W on subsequent hcf_connect calls
	} else {											//connect								/* 0 */
		io_addr = io_base;
	}

#if 0 //;? if a subsequent hcf_connect is preceded by an hcf_disconnect the wakeup is not needed !!
#if HCF_SLEEP
    OUT_PORT_WORD( .....+HREG_IO, HREG_IO_WAKEUP_ASYNC ); 	    //OPW not yet useable
	MSF_WAIT(800);								// MSF-defined function to wait n microseconds.
	note that MSF_WAIT uses not yet defined!!!! IFB_IOBase and IFB_TickIni (via PROT_CNT_INI)
	so be careful if this code is restored
#endif // HCF_SLEEP
#endif // 0

#if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0	//switch clock back for SEEPROM access  !!!
	OUT_PORT_WORD( io_addr + HREG_CMD, HCMD_INI );  	    //OPW not yet useable
	prot_cnt = INI_TICK_INI;
	HCF_WAIT_WHILE( (IN_PORT_WORD( io_addr +  HREG_EV_STAT) & HREG_EV_CMD) == 0 );
	OUT_PORT_WORD( (io_addr + HREG_IO), HREG_IO_SRESET );	//OPW not yet useable					/* 2a*/
#endif // HCF_TYPE_PRELOADED
	for ( q = (hcf_8*)(&ifbp->IFB_Magic); q > (hcf_8*)ifbp; *--q = 0 ) /*NOP*/;						/* 4 */
	ifbp->IFB_Magic		= HCF_MAGIC;
	ifbp->IFB_Version	= IFB_VERSION;
#if defined MSF_COMPONENT_ID //a new IFB demonstrates how dirty the solution is
	xxxx[xxxx_PRI_IDENTITY_OFFSET] = NULL;		//IFB_PRIIdentity placeholder	0xFD02
	xxxx[xxxx_PRI_IDENTITY_OFFSET+1] = NULL;	//IFB_PRISup placeholder		0xFD03
#endif // MSF_COMPONENT_ID
#if (HCF_TALLIES) & ( HCF_TALLIES_NIC | HCF_TALLIES_HCF )
	ifbp->IFB_TallyLen = 1 + 2 * (HCF_NIC_TAL_CNT + HCF_HCF_TAL_CNT);	//convert # of Tallies to L value for LTV
	ifbp->IFB_TallyTyp = CFG_TALLIES;			//IFB_TallyTyp: set T value
#endif // HCF_TALLIES_NIC / HCF_TALLIES_HCF
	ifbp->IFB_IOBase	= io_addr;				//set IO_Base asap, so asserts via HREG_SW_2 don't harm
	ifbp->IFB_IORange	= HREG_IO_RANGE;
	ifbp->IFB_CntlOpt	= USE_16BIT;
#if HCF_ASSERT
	assert_ifbp = ifbp;
	ifbp->IFB_AssertLvl = 1;
#if (HCF_ASSERT) & HCF_ASSERT_LNK_MSF_RTN
	if ( io_base != HCF_DISCONNECT ) {
		ifbp->IFB_AssertRtn = (MSF_ASSERT_RTNP)msf_assert;											/* 6 */
	}
#endif // HCF_ASSERT_LNK_MSF_RTN
#if (HCF_ASSERT) & HCF_ASSERT_MB				//build the structure to pass the assert info to hcf_put_info
	ifbp->IFB_AssertStrct.len = sizeof(ifbp->IFB_AssertStrct)/sizeof(hcf_16) - 1;
	ifbp->IFB_AssertStrct.typ = CFG_MB_INFO;
	ifbp->IFB_AssertStrct.base_typ = CFG_MB_ASSERT;
	ifbp->IFB_AssertStrct.frag_cnt = 1;
	ifbp->IFB_AssertStrct.frag_buf[0].frag_len =
		( offsetof(IFB_STRCT, IFB_AssertLvl) - offsetof(IFB_STRCT, IFB_AssertLine) ) / sizeof(hcf_16);
	ifbp->IFB_AssertStrct.frag_buf[0].frag_addr = &ifbp->IFB_AssertLine;
#endif // HCF_ASSERT_MB
#endif // HCF_ASSERT
	IF_PROT_TIME( prot_cnt = ifbp->IFB_TickIni = INI_TICK_INI; )
#if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0
	//!! No asserts before Reset-bit in HREG_IO is cleared
	OPW( HREG_IO, 0x0000 );						//OPW useable										/* 2b*/
	HCF_WAIT_WHILE( (IPW( HREG_EV_STAT) & HREG_EV_CMD) == 0 );
	IF_PROT_TIME( HCFASSERT( prot_cnt, IPW( HREG_EV_STAT) ) )
	IF_PROT_TIME( if ( prot_cnt ) prot_cnt = ifbp->IFB_TickIni; )
#endif // HCF_TYPE_PRELOADED
	//!! No asserts before Reset-bit in HREG_IO is cleared
	HCFASSERT( DO_ASSERT, MERGE_2( HCF_ASSERT, 0xCAF0 )	) //just to proof that the complete assert machinery is working
	HCFASSERT( xa != CFG_FW_IDENTITY, 0 )		// assert if hcf_connect is called without intervening hcf_disconnect.
	HCFASSERT( ((hcf_32)(void*)ifbp & (HCF_ALIGN-1) ) == 0, (hcf_32)(void*)ifbp )
	HCFASSERT( (io_addr & 0x003F) == 0, io_addr )
												//if Busy bit in Cmd register
	if (IPW( HREG_CMD ) & HCMD_BUSY ) {																/* 8 */
												//.  Ack all to unblock a (possibly) blocked cmd pipe line
		OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ );
												//.  Wait for Busy bit drop  in Cmd register
												//.  Wait for Cmd  bit raise in Ev  register
		HCF_WAIT_WHILE( ( IPW( HREG_CMD ) & HCMD_BUSY ) && (IPW( HREG_EV_STAT) & HREG_EV_CMD) == 0 );
		IF_PROT_TIME( HCFASSERT( prot_cnt, IPW( HREG_EV_STAT) ) ) /* if prot_cnt == 0, cmd_exe will fail, causing DEFUNCT */
	}
	OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ );
#if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0														/*12*/
	(void)cmd_exe( ifbp, HCMD_INI, 0 );
#endif // HCF_TYPE_PRELOADED
if ( io_base != HCF_DISCONNECT ) {
		rc = init( ifbp );																			/*14*/
		if ( rc == HCF_SUCCESS ) {
			x.len = 2;
			x.typ = CFG_NIC_BUS_TYPE;
			(void)hcf_get_info( ifbp, &x );
			ifbp->IFB_BusType = x.val[0];
			//CFG_NIC_BUS_TYPE not supported -> default 32 bits/DMA, MSF has to overrule via CFG_CNTL_OPT
			if ( x.len == 0 || x.val[0] == 0x0002 || x.val[0] == 0x0003 ) {
#if (HCF_IO) & HCF_IO_32BITS
				ifbp->IFB_CntlOpt &= ~USE_16BIT;			//reset USE_16BIT
#endif // HCF_IO_32BITS
#if HCF_DMA
				ifbp->IFB_CntlOpt |= USE_DMA;				//SET DMA
#else
				ifbp->IFB_IORange = 0x40 /*i.s.o. HREG_IO_RANGE*/;
#endif // HCF_DMA
			}
		}
	} else HCFASSERT(  ( ifbp->IFB_Magic ^= HCF_MAGIC ) == 0, ifbp->IFB_Magic ) /*NOP*/;
	/* of above HCFASSERT only the side effect is needed, NOP in case HCFASSERT is dummy */
	ifbp->IFB_IOBase = io_base;																		/* 0*/
	return rc;
} // hcf_connect

#if HCF_DMA
/************************************************************************************************************
* Function get_frame_lst
*  - resolve the "last host-owned descriptor" problems when a descriptor list is reclaimed by the MSF.
*
* The FrameList to be reclaimed as well as the DescriptorList always start in IFB_FirstDesc[tx_rx_flag]
* and this is always the "current" DELWA Descriptor.
*
* If a FrameList is available, the last descriptor of the FrameList to turned into a new DELWA Descriptor:
*  - a copy is made from the information in the last descriptor of the FrameList into the current
*	 DELWA Descriptor
*  - the remainder of the DescriptorList is detached from the copy by setting the next_desc_addr at NULL
*  - the DMA control bits of the copy are cleared to do not confuse the MSF
*  - the copy of the last descriptor (i.e. the "old" DELWA Descriptor) is chained to the prev Descriptor
*	 of the FrameList, thus replacing the original last Descriptor of the FrameList.
*  - IFB_FirstDesc is changed to the address of that replaced (original) last descriptor of the FrameList,
*	 i.e. the "new" DELWA Descriptor.
*
* This function makes a copy of that last host-owned descriptor, so the MSF will get a copy of the descriptor.
* On top of that, it adjusts DMA related fields in the IFB structure.
	// perform a copying-scheme to circumvent the 'last host owned descriptor cannot be reclaimed' limitation imposed by H2.5's DMA hardware design
	// a 'reclaim descriptor' should be available in the HCF:
*
* Returns: address of the first descriptor of the FrameList
*
 8: Be careful once you start re-ordering the steps in the copy process, that it still works for cases
* 	of FrameLists of 1, 2 and more than 2 descriptors
*
* Input parameters:
* tx_rx_flag      : specifies 'transmit' or 'receive' descriptor.
*
************************************************************************************************************/
HCF_STATIC DESC_STRCT*
get_frame_lst( IFBP ifbp, int tx_rx_flag )
{

DESC_STRCT *head = ifbp->IFB_FirstDesc[tx_rx_flag];
DESC_STRCT *copy, *p, *prev;

	HCFASSERT( tx_rx_flag == DMA_RX || tx_rx_flag == DMA_TX, tx_rx_flag )
								//if FrameList
	if ( head ) {
								//.  search for last descriptor of first FrameList
		p = prev = head;
		while ( ( p->BUF_SIZE & DESC_EOP ) == 0 && p->next_desc_addr ) {
			if ( ( ifbp->IFB_CntlOpt & DMA_ENABLED ) == 0 ) {	//clear control bits when disabled
				p->BUF_CNT &= DESC_CNT_MASK;
			}
			prev = p;
			p = p->next_desc_addr;
		}
								//.  if DMA enabled
		if ( ifbp->IFB_CntlOpt & DMA_ENABLED ) {
								//.  .  if last descriptor of FrameList is DMA owned
								//.  .  or if FrameList is single (DELWA) Descriptor
			if ( p->BUF_CNT & DESC_DMA_OWNED || head->next_desc_addr == NULL ) {
								//.  .  .  refuse to return FrameList to caller
				head = NULL;
			}
		}
	}
								//if returnable FrameList found
	if ( head ) {
								//.  if FrameList is single (DELWA) Descriptor (implies DMA disabled)
 		if ( head->next_desc_addr == NULL ) {
								//.  .  clear DescriptorList
			/*;?ifbp->IFB_LastDesc[tx_rx_flag] =*/ ifbp->IFB_FirstDesc[tx_rx_flag] = NULL;
								//.  else
		} else {
								//.  .  strip hardware-related bits from last descriptor
								//.  .  remove DELWA Descriptor from head of DescriptorList
			copy = head;
	 		head = head->next_desc_addr;
								//.   .  exchange first (Confined) and last (possibly imprisoned) Descriptor
			copy->buf_phys_addr = p->buf_phys_addr;
			copy->buf_addr = p->buf_addr;
			copy->BUF_SIZE = p->BUF_SIZE &= DESC_CNT_MASK;	//get rid of DESC_EOP and possibly DESC_SOP
			copy->BUF_CNT = p->BUF_CNT &= DESC_CNT_MASK;	//get rid of DESC_DMA_OWNED
#if (HCF_EXT) & HCF_DESC_STRCT_EXT
			copy->DESC_MSFSup = p->DESC_MSFSup;
#endif // HCF_DESC_STRCT_EXT
								//.  .  turn into a DELWA Descriptor
			p->buf_addr = NULL;
								//.  .  chain copy to prev											/* 8*/
			prev->next_desc_addr = copy;
								//.  .  detach remainder of the DescriptorList from FrameList
			copy->next_desc_addr = NULL;
			copy->next_desc_phys_addr = 0xDEAD0000; //! just to be nice, not really needed
								//.  .  save the new start (i.e. DELWA Descriptor) in IFB_FirstDesc
			ifbp->IFB_FirstDesc[tx_rx_flag] = p;
		}
								//.  strip DESC_SOP from first descriptor
		head->BUF_SIZE &= DESC_CNT_MASK;
		//head->BUF_CNT &= DESC_CNT_MASK;  get rid of DESC_DMA_OWNED
		head->next_desc_phys_addr = 0xDEAD0000; //! just to be nice, not really needed
	}
								//return the just detached FrameList (if any)
	return head;
} // get_frame_lst


/************************************************************************************************************
* Function put_frame_lst
*
* This function
*
* Returns: address of the first descriptor of the FrameList
*
* Input parameters:
* tx_rx_flag      : specifies 'transmit' or 'receive' descriptor.
*
* The following list should be kept in sync with hcf_dma_tx/rx_put, in order to get them in the WCI-spec !!!!
* Assert fails if
* -	DMA is not enabled
* -	descriptor list is NULL
* -	a descriptor in the descriptor list is not double word aligned
* -	a count of size field of a descriptor contains control bits, i.e. bits in the high order nibble.
* -	the DELWA descriptor is not a "singleton" DescriptorList.
* -	the DELWA descriptor is not the first Descriptor supplied
* -	a non_DMA descriptor is supplied before the DELWA Descriptor is supplied
* -	Possibly more checks could be added !!!!!!!!!!!!!

*.NOTICE
* The asserts marked with *sc* are really sanity checks for the HCF, they can (supposedly) not be influenced
* by incorrect MSF behavior

		// The MSF is required to supply the HCF with a single descriptor for MSF tx reclaim purposes.
		// This 'reclaim descriptor' can be recognized by the fact that its buf_addr field is zero.
	*********************************************************************************************
	* Although not required from a hardware perspective:
	* - make each descriptor in this rx-chain DMA-owned.
	* - Also set the count to zero. EOP and SOP bits are also cleared.
	*********************************************************************************************/
HCF_STATIC void
put_frame_lst( IFBP ifbp, DESC_STRCT *descp, int tx_rx_flag )
{
	DESC_STRCT	*p = descp;
	hcf_16 port;

	HCFASSERT( ifbp->IFB_CntlOpt & USE_DMA, ifbp->IFB_CntlOpt) //only hcf_dma_tx_put must also be DMA_ENABLED
	HCFASSERT( tx_rx_flag == DMA_RX || tx_rx_flag == DMA_TX, tx_rx_flag )
	HCFASSERT( p , 0 )

	while ( p ) {
		HCFASSERT( ((hcf_32)p & 3 ) == 0, (hcf_32)p )
		HCFASSERT( (p->BUF_CNT & ~DESC_CNT_MASK) == 0, p->BUF_CNT )
		HCFASSERT( (p->BUF_SIZE & ~DESC_CNT_MASK) == 0, p->BUF_SIZE )
		p->BUF_SIZE &= DESC_CNT_MASK;					//!!this SHOULD be superfluous in case of correct MSF
		p->BUF_CNT &= tx_rx_flag == DMA_RX ? 0 : DESC_CNT_MASK;	//!!this SHOULD be superfluous in case of correct MSF
		p->BUF_CNT |= DESC_DMA_OWNED;
		if ( p->next_desc_addr ) {
//			HCFASSERT( p->buf_addr && p->buf_phys_addr  && p->BUF_SIZE && +/- p->BUF_SIZE, ... )
			HCFASSERT( p->next_desc_addr->desc_phys_addr, (hcf_32)p->next_desc_addr )
			p->next_desc_phys_addr = p->next_desc_addr->desc_phys_addr;
		} else {									//
			p->next_desc_phys_addr = 0;
			if ( p->buf_addr == NULL ) {			// DELWA Descriptor
				HCFASSERT( descp == p, (hcf_32)descp )	//singleton DescriptorList
				HCFASSERT( ifbp->IFB_FirstDesc[tx_rx_flag] == NULL, (hcf_32)ifbp->IFB_FirstDesc[tx_rx_flag])
				HCFASSERT( ifbp->IFB_LastDesc[tx_rx_flag] == NULL, (hcf_32)ifbp->IFB_LastDesc[tx_rx_flag])
				descp->BUF_CNT = 0; //&= ~DESC_DMA_OWNED;
				ifbp->IFB_FirstDesc[tx_rx_flag] = descp;
// part of alternative ifbp->IFB_LastDesc[tx_rx_flag] = ifbp->IFB_FirstDesc[tx_rx_flag] = descp;
													// if "recycling" a FrameList
													// (e.g. called from hcf_cntl( HCF_CNTL_ENABLE )
													// .  prepare for activation DMA controller
// part of alternative descp = descp->next_desc_addr;
			} else {								//a "real" FrameList, hand it over to the DMA engine
				HCFASSERT( ifbp->IFB_FirstDesc[tx_rx_flag], (hcf_32)descp )
				HCFASSERT( ifbp->IFB_LastDesc[tx_rx_flag], (hcf_32)descp )
				HCFASSERT( ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_addr == NULL,
						   (hcf_32)ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_addr)
//				p->buf_cntl.cntl_stat |= DESC_DMA_OWNED;
				ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_addr = descp;
				ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_phys_addr = descp->desc_phys_addr;
				port = HREG_RXDMA_PTR32;
				if ( tx_rx_flag ) {
					p->BUF_SIZE |= DESC_EOP;	// p points at the last descriptor in the caller-supplied descriptor chain
					descp->BUF_SIZE |= DESC_SOP;
					port = HREG_TXDMA_PTR32;
				}
				OUT_PORT_DWORD( (ifbp->IFB_IOBase + port), descp->desc_phys_addr );
			}
			ifbp->IFB_LastDesc[tx_rx_flag] = p;
		}
		p = p->next_desc_addr;
	}
} // put_frame_lst


/************************************************************************************************************
*
*.MODULE		DESC_STRCT* hcf_dma_rx_get( IFBP ifbp )
*.PURPOSE		decapsulate a message and provides that message to the MSF.
*				reclaim all descriptors in the rx descriptor chain.
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*
*.RETURNS
*	pointer to a FrameList
*
*.DESCRIPTION
* hcf_dma_rx_get is intended to  return a received frame when such a frame is deposited in Host memory by the
* DMA engine. In addition hcf_dma_rx_get can be used to reclaim all descriptors in the rx descriptor chain
* when the DMA Engine is disabled, e.g. as part of a driver unloading strategy.
* hcf_dma_rx_get must be called repeatedly by the MSF when hcf_service_nic signals availability of a rx frame
* through the HREG_EV_RDMAD flag of IFB_DmaPackets. The calling must stop when a NULL pointer is returned, at
* which time the HREG_EV_RDMAD flag is also cleared by the HCF to arm the mechanism for the next frame
* reception.
* Regardless whether the DMA Engine is currently enabled (as controlled via hcf_cntl), if the DMA controller
* deposited an Rx-frame in the Rx-DescriptorList, this frame is detached from the Rx-DescriptorList,
* transformed into a FrameList (i.e.  updating the housekeeping fields in the descriptors) and returned to the
* caller.
* If no such Rx-frame is available in the Rx-DescriptorList, the behavior of hcf_dma_rx_get depends on the
* status of the DMA Engine.
* If the DMA Engine is enabled, a NULL pointer is returned.
* If the DMA Engine is disabled, the following strategy is used:
* - the complete Rx-DescriptorList is returned. The DELWA Descriptor is not part of the Rx-DescriptorList.
* - If there is no Rx-DescriptorList, the DELWA Descriptor is returned.
* - If there is no DELWA Descriptor, a NULL pointer is returned.
*
* If the MSF performs an disable/enable sequence without exhausting the Rx-DescriptorList as described above,
* the enable command will reset all house keeping information, i.e. already received but not yet by the MSF
* retrieved frames are lost and the next frame will be received starting with the oldest descriptor.
*
* The HCF can be used in 2 fashions: with and without decapsulation for data transfer.
* This is controlled at compile time by the HCF_ENC bit of the HCF_ENCAP system constant.
* If appropriate, decapsulation is done by moving some data inside the buffers and updating the descriptors
* accordingly.
*!! ;?????where did I describe why a simple manipulation with the count values does not suffice?
*
*.DIAGRAM
*
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/

DESC_STRCT*
hcf_dma_rx_get (IFBP ifbp)
{
DESC_STRCT *descp;	// pointer to start of FrameList

	descp = get_frame_lst( ifbp, DMA_RX );
	if ( descp && descp->buf_addr )  //!be aware of the missing curly bracket

											//skip decapsulation at confined descriptor
#if (HCF_ENCAP) == HCF_ENC
#if (HCF_TYPE) & HCF_TYPE_CCX
	if ( ifbp->IFB_CKIPStat == HCF_ACT_CCX_OFF )
#endif // HCF_TYPE_CCX
    {
int i;
DESC_STRCT *p = descp->next_desc_addr;	//pointer to 2nd descriptor of frame
		HCFASSERT(p, 0)
		// The 2nd descriptor contains (maybe) a SNAP header plus part or whole of the payload.
		//determine decapsulation sub-flag in RxFS
		i = *(wci_recordp)&descp->buf_addr[HFS_STAT] & ( HFS_STAT_MSG_TYPE | HFS_STAT_ERR );
		if ( i == HFS_STAT_TUNNEL ||
			 ( i == HFS_STAT_1042 && hcf_encap( (wci_bufp)&p->buf_addr[HCF_DASA_SIZE] ) != ENC_TUNNEL )) {
			// The 2nd descriptor contains a SNAP header plus part or whole of the payload.
			HCFASSERT( p->BUF_CNT == (p->buf_addr[5] + (p->buf_addr[4]<<8) + 2*6 + 2 - 8), p->BUF_CNT )
			// perform decapsulation
			HCFASSERT(p->BUF_SIZE >=8, p->BUF_SIZE)
			// move SA[2:5] in the second buffer to replace part of the SNAP header
			for ( i=3; i >= 0; i--) p->buf_addr[i+8] = p->buf_addr[i];
			// copy DA[0:5], SA[0:1] from first buffer to second buffer
			for ( i=0; i<8; i++) p->buf_addr[i] = descp->buf_addr[HFS_ADDR_DEST + i];
			// make first buffer shorter in count
			descp->BUF_CNT = HFS_ADDR_DEST;
		}
	}
#endif // HCF_ENC
	if ( descp == NULL ) ifbp->IFB_DmaPackets &= (hcf_16)~HREG_EV_RDMAD;  //;?could be integrated into get_frame_lst
	HCFLOGEXIT( HCF_TRACE_DMA_RX_GET )
	return descp;
} // hcf_dma_rx_get


/************************************************************************************************************
*
*.MODULE		void hcf_dma_rx_put( IFBP ifbp, DESC_STRCT *descp )
*.PURPOSE		supply buffers for receive purposes.
*				supply the Rx-DELWA descriptor.
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*	descp		address of a DescriptorList
*
*.RETURNS		N.A.
*
*.DESCRIPTION
* This function is called by the MSF to supply the HCF with new/more buffers for receive purposes.
* The HCF can be used in 2 fashions: with and without encapsulation for data transfer.
* This is controlled at compile time by the HCF_ENC bit of the HCF_ENCAP system constant.
* As a consequence, some additional constraints apply to the number of descriptor and the buffers associated
* with the first 2 descriptors. Independent of the encapsulation feature, the COUNT fields are ignored.
* A special case is the supplying of the DELWA descriptor, which must be supplied as the first descriptor.
*
* Assert fails if
* - ifbp has a recognizable out-of-range value.
* - NIC interrupts are not disabled while required by parameter action.
* - in case decapsulation by the HCF is selected:
*	  -	The first databuffer does not have the exact size corresponding with the RxFS up to the 802.3 DestAddr
*		field (== 29 words).
*	  -	The FrameList does not consists of at least 2 Descriptors.
*	  -	The second databuffer does not have the minimum size of 8 bytes.
*!! The 2nd part of the list of asserts should be kept in sync with put_frame_lst, in order to get
*!! them in the WCI-spec !!!!
* - DMA is not enabled
* - descriptor list is NULL
* - a descriptor in the descriptor list is not double word aligned
* - a count of size field of a descriptor contains control bits, i.e. bits in the high order nibble.
* - the DELWA descriptor is not a "singleton" DescriptorList.
* - the DELWA descriptor is not the first Descriptor supplied
* - a non_DMA descriptor is supplied before the DELWA Descriptor is supplied
*!! - Possibly more checks could be added !!!!!!!!!!!!!
*
*.DIAGRAM
*
*
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/
void
hcf_dma_rx_put( IFBP ifbp, DESC_STRCT *descp )
{

	HCFLOGENTRY( HCF_TRACE_DMA_RX_PUT, 0xDA01 )
	HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic )
	HCFASSERT_INT

	put_frame_lst( ifbp, descp, DMA_RX );
#if HCF_ASSERT && (HCF_ENCAP) == HCF_ENC
	if ( descp->buf_addr ) {
		HCFASSERT( descp->BUF_SIZE == HCF_DMA_RX_BUF1_SIZE, descp->BUF_SIZE )
		HCFASSERT( descp->next_desc_addr, 0 ) // first descriptor should be followed by another descriptor
		// The second DB is for SNAP and payload purposes. It should be a minimum of 12 bytes in size.
		HCFASSERT( descp->next_desc_addr->BUF_SIZE >= 12, descp->next_desc_addr->BUF_SIZE )
	}
#endif // HCFASSERT / HCF_ENC
	HCFLOGEXIT( HCF_TRACE_DMA_RX_PUT )
} // hcf_dma_rx_put


/************************************************************************************************************
*
*.MODULE		DESC_STRCT* hcf_dma_tx_get( IFBP ifbp )
*.PURPOSE		DMA mode: reclaims and decapsulates packets in the tx descriptor chain if:
*				 - A Tx packet has been copied from host-RAM into NIC-RAM by the DMA engine
*				 - The Hermes/DMAengine have been disabled
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*
*.RETURNS
*	pointer to a reclaimed Tx packet.
*
*.DESCRIPTION
* impact of the disable command:
* When a non-empty pool of Tx descriptors exists (created by means of hcf_dma_put_tx), the MSF
* is supposed to empty that pool by means of hcf_dma_tx_get calls after the disable in an
* disable/enable sequence.
*
*.DIAGRAM
*
*.NOTICE
*
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/
DESC_STRCT*
hcf_dma_tx_get( IFBP ifbp )
{
DESC_STRCT *descp;	// pointer to start of FrameList

	descp = get_frame_lst( ifbp, DMA_TX );
	if ( descp && descp->buf_addr )  //!be aware of the missing curly bracket
											//skip decapsulation at confined descriptor
#if (HCF_ENCAP) == HCF_ENC
		if ( ( descp->BUF_CNT == HFS_TYPE )
#if (HCF_TYPE) & HCF_TYPE_CCX
			 || ( descp->BUF_CNT == HFS_DAT )
#endif // HCF_TYPE_CCX
		) { // perform decapsulation if needed
			descp->next_desc_addr->buf_phys_addr -= HCF_DASA_SIZE;
			descp->next_desc_addr->BUF_CNT 		 += HCF_DASA_SIZE;
		}
#endif // HCF_ENC
	if ( descp == NULL ) {  //;?could be integrated into get_frame_lst
		ifbp->IFB_DmaPackets &= (hcf_16)~HREG_EV_TDMAD;
	}
	HCFLOGEXIT( HCF_TRACE_DMA_TX_GET )
	return descp;
} // hcf_dma_tx_get


/************************************************************************************************************
*
*.MODULE		void hcf_dma_tx_put( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl )
*.PURPOSE		puts a packet in the Tx DMA queue in host ram and kicks off the TxDma engine.
*				supply the Tx-DELWA descriptor.
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*	descp		address of Tx Descriptor Chain (i.e. a single Tx frame)
*	tx_cntl		indicates MAC-port and (Hermes) options
*
*.RETURNS		N.A.
*
*.DESCRIPTION
* The HCF can be used in 2 fashions: with and without encapsulation for data transfer.
* This is controlled at compile time by the HCF_ENC bit of the HCF_ENCAP system constant.
*
* Regardless of the HCF_ENCAP system constant, the descriptor list created to describe the frame to be
* transmitted, must supply space to contain the 802.11 header, preceding the actual frame to be transmitted.
* Basically, this only supplies working storage to the HCF which passes this on to the DMA engine.
* As a consequence the contents of this space do not matter.
* Nevertheless BUF_CNT must take in account this storage.
* This working space to contain the 802.11 header may not be fragmented, the first buffer must be
* sufficiently large to contain at least the 802.11 header, i.e. HFS_ADDR_DEST (29 words or 0x3A bytes).
* This way, the HCF can simply, regardless whether or not the HCF encapsulates the frame, write the parameter
* tx_cntl at offset 0x36 (HFS_TX_CNTL) in the first buffer.
* Note that it is allowed to have part or all of the actual frame represented by the first descriptor as long
* as the requirement for storage for the 802.11 header is met, i.e. the 802.3 frame starts at offset
* HFS_ADDR_DEST.
* Except for the Assert on the 1st buffer in case of Encapsualtion, the SIZE fields are ignored.
*
* In case the encapsulation feature is compiled in, there are the following additional requirements.
* o The BUF_CNT of the first buffer changes from a minimum of 0x3A bytes to exactly 0x3A, i.e. the workspace
*	to store the 802.11 header
* o The BUF_SIZE of the first buffer is at least the space needed to store the
*	- 802.11 header (29 words)
*	- 802.3 header, i.e. 12 bytes addressing information and 2 bytes length field
*	- 6 bytes SNAP-header
*   This results in 39 words or 0x4E bytes or HFS_TYPE.
*   Note that if the BUF_SIZE is larger than 0x4E, this surplus is not used.
* o The actual frame begins in the 2nd descriptor (which is already implied by the BUF_CNT == 0x3A requirement) and the associated buffer contains at least the 802.3 header, i.e. the 14 bytes representing addressing information and length/type field
*
*   When the HCF does not encapsulates (i.e. length/type field <= 1500),  no changes are made to descriptors
*   or buffers.
*
*   When the HCF actually encapsulates (i.e. length/type field > 1500), it successively writes, starting at
*   offset HFS_ADDR_DEST (0x3A) in the first buffer:
*     - the 802.3 addressing information, copied from the begin of the second buffer
*     - the frame length, derived from the total length of the individual fragments, corrected for the SNAP
*   	header length and Type field and ignoring the Destination Address, Source Address and Length field
* 	  - the appropriate snap header (Tunnel or 1042, depending on the value of the type field).
*
* 	 The information in the first two descriptors is adjusted accordingly:
* 	  - the first descriptor count is changed from 0x3A to 0x4E (HFS_TYPE), which matches 0x3A + 12 + 2 + 6
* 	  - the second descriptor count is decreased by 12, being the moved addressing information
* 	  - the second descriptor (physical) buffer address is increased by 12.
*
* When the descriptors are returned by hcf_dma_tx_get, the transformation of the first two descriptors is
* undone.
*
* Under any of the above scenarios, the assert BUF_CNT <= BUF_SIZE must be true for all descriptors
* In case of encapsulation, BUF_SIZE of the 1st descriptor is asserted to be at least HFS_TYPE (0x4E), so it is NOT tested.
*
* Assert fails if
* - ifbp has a recognizable out-of-range value.
* - tx_cntl has a recognizable out-of-range value.
* - NIC interrupts are not disabled while required by parameter action.
* - in case encapsulation by the HCF is selected:
*	  -	The FrameList does not consists of at least 2 Descriptors.
*	  -	The first databuffer does not contain exactly the (space for) the 802.11 header (== 28 words)
*	  -	The first databuffer does not have a size to additionally accommodate the 802.3 header and the
*		SNAP header of the frame after encapsulation (== 39 words).
*	  -	The second databuffer does not contain at least DA, SA and 'type/length' (==14 bytes or 7 words)
*!! The 2nd part of the list of asserts should be kept in sync with put_frame_lst, in order to get
*!! them in the WCI-spec !!!!
* - DMA is not enabled
* - descriptor list is NULL
* - a descriptor in the descriptor list is not double word aligned
* - a count of size field of a descriptor contains control bits, i.e. bits in the high order nibble.
* - the DELWA descriptor is not a "singleton" DescriptorList.
* - the DELWA descriptor is not the first Descriptor supplied
* - a non_DMA descriptor is supplied before the DELWA Descriptor is supplied
*!! - Possibly more checks could be added !!!!!!!!!!!!!
*.DIAGRAM
*
*.NOTICE
*
*.ENDDOC				END DOCUMENTATION
*
*
*1:	Write tx_cntl parameter to HFS_TX_CNTL field into the Hermes-specific header in buffer 1
*4:	determine whether encapsulation is needed and write the type (tunnel or 1042) already at the appropriate
*	offset in the 1st buffer
*6:	Build the encapsualtion enveloppe in the free space at the end of the 1st buffer
*	- Copy DA/SA fields from the 2nd buffer
*   - Calculate total length of the message (snap-header + type-field + the length of all buffer fragments
*     associated with the 802.3 frame (i.e all descriptors except the first), but not the DestinationAddress,
*     SourceAddress and length-field)
*     Assert the message length
*	  Write length. Note that the message is in BE format, hence on LE platforms the length must be converted
*	  ;? THIS IS NOT WHAT CURRENTLY IS IMPLEMENTED
*	- Write snap header. Note that the last byte of the snap header is NOT copied, that byte is already in
*	  place as result of the call to hcf_encap.
*	Note that there are many ways to skin a cat. To express the offsets in the 1st buffer while writing
*	the snap header, HFS_TYPE is chosen as a reference point to make it easier to grasp that the snap header
*	and encapsualtion type are at least relative in the right.
*8:	modify 1st descriptor to reflect moved part of the 802.3 header + Snap-header
*	modify 2nd descriptor to skip the moved part of the 802.3 header (DA/SA
*10: set each descriptor to 'DMA owned',  clear all other control bits.
*	Set SOP bit on first descriptor. Set EOP bit on last descriptor.
*12: Either append the current frame to an existing descriptor list or
*14: create a list beginning with the current frame
*16: remember the new end of the list
*20: hand the frame over to the DMA engine
************************************************************************************************************/
void
hcf_dma_tx_put( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl )
{
DESC_STRCT	*p = descp->next_desc_addr;
int			i;

#if HCF_ASSERT
	int x = ifbp->IFB_FWIdentity.comp_id == COMP_ID_FW_AP ? tx_cntl & ~HFS_TX_CNTL_PORT : tx_cntl;
	HCFASSERT( (x & ~HCF_TX_CNTL_MASK ) == 0, tx_cntl )
#endif // HCF_ASSERT
	HCFLOGENTRY( HCF_TRACE_DMA_TX_PUT, 0xDA03 )
	HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic )
	HCFASSERT_INT
	HCFASSERT( ( ifbp->IFB_CntlOpt & (USE_DMA|DMA_ENABLED) ) == (USE_DMA|DMA_ENABLED), ifbp->IFB_CntlOpt)

	if ( descp->buf_addr ) {
		*(hcf_16*)(descp->buf_addr + HFS_TX_CNTL) = tx_cntl;											/*1*/
#if (HCF_ENCAP) == HCF_ENC
		HCFASSERT( descp->next_desc_addr, 0 )									//at least 2 descripors
		HCFASSERT( descp->BUF_CNT == HFS_ADDR_DEST, descp->BUF_CNT )	//exact length required for 1st buffer
		HCFASSERT( descp->BUF_SIZE >= HCF_DMA_TX_BUF1_SIZE, descp->BUF_SIZE )	//minimal storage for encapsulation
		HCFASSERT( p->BUF_CNT >= 14, p->BUF_CNT );					//at least DA, SA and 'type' in 2nd buffer

#if (HCF_TYPE) & HCF_TYPE_CCX
		/* if we are doing PPK +/- CMIC, or we are sending a DDP frame */
		if ( ( ifbp->IFB_CKIPStat == HCF_ACT_CCX_ON ) ||
			 ( ( p->BUF_CNT >= 20 )		 && ( ifbp->IFB_CKIPStat == HCF_ACT_CCX_OFF ) &&
			 ( p->buf_addr[12] == 0xAA ) && ( p->buf_addr[13] == 0xAA ) &&
			 ( p->buf_addr[14] == 0x03 ) && ( p->buf_addr[15] == 0x00 ) &&
			 ( p->buf_addr[16] == 0x40 ) && ( p->buf_addr[17] == 0x96 ) &&
			 ( p->buf_addr[18] == 0x00 ) && ( p->buf_addr[19] == 0x00 )))
		{
			/* copy the DA/SA to the first buffer */
			for ( i = 0; i < HCF_DASA_SIZE; i++ ) {
				descp->buf_addr[i + HFS_ADDR_DEST] = p->buf_addr[i];
			}
			/* calculate the length of the second fragment only */
			i = 0;
			do { i += p->BUF_CNT; } while( p = p->next_desc_addr );
			i -= HCF_DASA_SIZE ;
			/* convert the length field to big endian, using the endian friendly macros */
			i = CNV_SHORT_TO_BIG(i);		//!! this converts ONLY on LE platforms, how does that relate to the non-CCX code
			*(hcf_16*)(&descp->buf_addr[HFS_LEN]) = (hcf_16)i;
			descp->BUF_CNT = HFS_DAT;
			// modify 2nd descriptor to skip the 'Da/Sa' fields
			descp->next_desc_addr->buf_phys_addr += HCF_DASA_SIZE;
			descp->next_desc_addr->BUF_CNT		 -= HCF_DASA_SIZE;
		}
		else
#endif // HCF_TYPE_CCX
		{
			descp->buf_addr[HFS_TYPE-1] = hcf_encap(&descp->next_desc_addr->buf_addr[HCF_DASA_SIZE]);		/*4*/
			if ( descp->buf_addr[HFS_TYPE-1] != ENC_NONE ) {
				for ( i=0; i < HCF_DASA_SIZE; i++ ) {														/*6*/
					descp->buf_addr[i + HFS_ADDR_DEST] = descp->next_desc_addr->buf_addr[i];
				}
				i = sizeof(snap_header) + 2 - ( 2*6 + 2 );
				do { i += p->BUF_CNT; } while ( ( p = p->next_desc_addr ) != NULL );
				*(hcf_16*)(&descp->buf_addr[HFS_LEN]) = CNV_END_SHORT(i);	//!! this converts on ALL platforms, how does that relate to the CCX code
				for ( i=0; i < sizeof(snap_header) - 1; i++) {
					descp->buf_addr[HFS_TYPE - sizeof(snap_header) + i] = snap_header[i];
				}
				descp->BUF_CNT = HFS_TYPE;																	/*8*/
				descp->next_desc_addr->buf_phys_addr	+= HCF_DASA_SIZE;
				descp->next_desc_addr->BUF_CNT			-= HCF_DASA_SIZE;
			}
		}
#endif // HCF_ENC
    }
	put_frame_lst( ifbp, descp, DMA_TX );
	HCFLOGEXIT( HCF_TRACE_DMA_TX_PUT )
} // hcf_dma_tx_put

#endif // HCF_DMA

#if (HCF_DL_ONLY) == 0
/************************************************************************************************************
*
*.MODULE		hcf_8 hcf_encap( wci_bufp type )
*.PURPOSE		test whether RFC1042 or Bridge-Tunnel encapsulation is needed.
*
*.ARGUMENTS
*	type		(Far) pointer to the (Big Endian) Type/Length field in the message
*
*.RETURNS
*	ENC_NONE		len/type is "len" ( (BIG_ENDIAN)type <= 1500 )
*	ENC_TUNNEL		len/type is "type" and 0x80F3 or 0x8137
*	ENC_1042		len/type is "type" but not 0x80F3 or 0x8137
*
*.CONDITIONS
*	NIC Interrupts	d.c
*
*.DESCRIPTION
* Type must point to the Len/Type field of the message, this is the 2-byte field immediately after the 6 byte
* Destination Address and 6 byte Source Address.  The 2 successive bytes addressed by type are interpreted as
* a Big Endian value.  If that value is less than or equal to 1500, the message is assumed to be in 802.3
* format.  Otherwise the message is assumed to be in Ethernet-II format.  Depending on the value of Len/Typ,
* Bridge Tunnel or RFC1042 encapsulation is needed.
*
*.DIAGRAM
*
*  1:	presume 802.3, hence preset return value at ENC_NONE
*  2:	convert type from "network" Endian format to native Endian
*  4:	the litmus test to distinguish type and len.
*	The hard code "magic" value of 1500 is intentional and should NOT be replaced by a mnemonic because it is
*	not related at all to the maximum frame size supported  by the Hermes.
*  6:	check type against:
*		0x80F3	//AppleTalk Address Resolution Protocol (AARP)
*		0x8137	//IPX
*	to determine the type of encapsulation
*
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/
#if HCF_ENCAP	//i.e HCF_ENC or HCF_ENC_SUP
#if ! ( (HCF_ENCAP) & HCF_ENC_SUP )
HCF_STATIC
#endif // HCF_ENCAP
hcf_8
hcf_encap( wci_bufp type )
{

hcf_8	rc = ENC_NONE;																					/* 1 */
hcf_16	t = (hcf_16)(*type<<8) + *(type+1);																/* 2 */

	if ( t > 1500 ) {																					/* 4 */
		if ( t == 0x8137 || t == 0x80F3 ) {
			rc = ENC_TUNNEL;																			/* 6 */
		} else {
			rc = ENC_1042;
		}
	}
	return rc;
} // hcf_encap
#endif // HCF_ENCAP
#endif // HCF_DL_ONLY


/************************************************************************************************************
*
*.MODULE		int hcf_get_info( IFBP ifbp, LTVP ltvp )
*.PURPOSE		Obtains transient and persistent configuration information from the Card and from the HCF.
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*	ltvp		address of LengthTypeValue structure specifying the "what" and the "how much" of the
*				information to be collected from the HCF or from the Hermes
*
*.RETURNS
*	HCF_ERR_LEN			The provided buffer was too small
*	HCF_SUCCESS			Success
*!!	via cmd_exe ( type >= CFG_RID_FW_MIN )
*	HCF_ERR_NO_NIC		NIC removed during retrieval
*	HCF_ERR_TIME_OUT	Expected Hermes event did not occur in expected time
*!!	via cmd_exe and setup_bap (type >= CFG_RID_FW_MIN )
*	HCF_ERR_DEFUNCT_...	HCF is in defunct mode (bits 0x7F reflect cause)
*
*.DESCRIPTION
* The T-field of the LTV-record (provided by the MSF in parameter ltvp) specifies the RID wanted. The RID
* information identified by the T-field is copied into the V-field.
* On entry, the L-field specifies the size of the buffer, also called the "Initial DataLength". The L-value
* includes the size of the T-field, but not the size of the L-field itself.
* On return, the L-field indicates the number of words actually contained by the Type and Value fields.
* As the size of the Type field in the LTV-record is included in the "Initial DataLength" of the record, the
* V-field can contain at most "Initial DataLength" - 1 words of data.
* Copying stops if either the complete Information is copied or if the number of words indicated by the
* "Initial DataLength" were copied.  The "Initial DataLength" acts as a safe guard against Configuration
* Information blocks that have different sizes for different F/W versions, e.g. when later versions support
* more tallies than earlier versions.
* If the size of Value field of the RID exceeds the size of the "Initial DataLength" -1, as much data
* as fits is copied, and an error status of HCF_ERR_LEN is returned.
*
* It is the responsibility of the MSF to detect card removal and re-insertion and not call the HCF when the
* NIC is absent. The MSF cannot, however, timely detect a Card removal if the Card is removed while
* hcf_get_info is in progress.  Therefore, the HCF performs its own check on Card presence after the read
* operation of the NIC data.  If the Card is not present or removed during the execution of hcf_get_info,
* HCF_ERR_NO_NIC is returned and the content of the Data Buffer is unpredictable. This check is not performed
* in case of the "HCF embedded" pseudo RIDs like CFG_TALLIES.
*
* Assert fails if
* - ifbp has a recognizable out-of-range value.
* - reentrancy, may be  caused by calling hcf_functions without adequate protection
*	against NIC interrupts or multi-threading.
* - ltvp is a NULL pointer.
* - length field of the LTV-record at entry is 0 or 1 or has an excessive value (i.e. exceeds HCF_MAX_LTV).
* - type field of the LTV-record is invalid.
*
*.DIAGRAM
*	Hcf_get_mb_info copies the contents of the oldest MailBox Info block in the MailBox to PC RAM. If len is
*	less than the size of the MailBox Info block, only as much as fits in the PC RAM buffer is copied. After
*	the copying the MailBox Read pointer is updated to point to the next MailBox Info block, hence the
*	remainder of an "oversized" MailBox Info block is lost. The truncation of the MailBox Info block is NOT
*	reflected in the return status. Note that hcf_get_info guarantees the length of the PC RAM buffer meets
*	the minimum requirements of at least 2, so no PC RAM buffer overrun.
*
*	Calling hcf_get_mb_info when their is no MailBox Info block available or when there is no MailBox at all,
*	results in a "NULL" MailBox Info block.
*
*12:	see NOTICE
*17: The return status of cmd_wait and the first hcfio_in_string can be ignored, because when one fails, the
*	other fails via the IFB_DefunctStat mechanism
*20: "HCFASSERT( rc == HCF_SUCCESS, rc )" is not suitable because this will always trigger as side effect of
*	the HCFASSERT in hcf_put_info which calls hcf_get_info to figure out whether the RID exists at all.

*.NOTICE
*
*	"HCF embedded" pseudo RIDs:
*	CFG_MB_INFO, CFG_TALLIES, CFG_DRV_IDENTITY, CFG_DRV_SUP_RANGE, CFG_DRV_ACT_RANGES_PRI,
*	CFG_DRV_ACT_RANGES_STA, CFG_DRV_ACT_RANGES_HSI
*	Note the HCF_ERR_LEN is NOT adequately set, when L >= 2 but less than needed
*
*	Remarks: Transfers operation information and transient and persistent configuration information from the
*	Card and from the HCF to the MSF.
*	The exact layout of the provided data structure depends on the action code. Copying stops if either the
*	complete Configuration Information is copied or if the number of bytes indicated by len is copied.  Len
*	acts as a safe guard against Configuration Information blocks which have different sizes for different
*	Hermes versions, e.g. when later versions support more tallies than earlier versions. It is a conscious
*	decision that unused parts of the PC RAM buffer are not cleared.
*
*	Remarks: The only error against which is protected is the "Read error" as result of Card removal. Only the
*	last hcf_io_string need to be protected because if the first fails the second will fail as well. Checking
*	for cmd_exe errors is supposed superfluous because problems in cmd_exe are already caught or will be
*	caught by hcf_enable.
*
*	CFG_MB_INFO: copy the oldest MailBox Info Block or the "null" block if none available.
*
*	The mechanism to HCF_ASSERT on invalid typ-codes in the LTV record is based on the following strategy:
*	  - during the pseudo-asynchronous Hermes commands (diagnose, download)	only CFG_MB_INFO is acceptable
*	  -	some codes (e.g. CFG_TALLIES) are explicitly handled by the HCF which implies that these codes
*		are valid
*	  - all other codes in the range 0xFC00 through 0xFFFF are passed to the Hermes.  The Hermes returns an
*		LTV record with a zero value in the L-field for all Typ-codes it does not recognize. This is
*		defined and intended behavior, so HCF_ASSERT does not catch on this phenomena.
*	  -	all remaining codes are invalid and cause an ASSERT.
*
*.CONDITIONS
* In case of USB, HCF_MAX_MSG ;?USED;? to limit the amount of data that can be retrieved via hcf_get_info.
*
*
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/
int
hcf_get_info( IFBP ifbp, LTVP ltvp )
{

int			rc = HCF_SUCCESS;
hcf_16		len = ltvp->len;
hcf_16		type = ltvp->typ;
wci_recordp	p = &ltvp->len;		//destination word pointer (in LTV record)
hcf_16		*q = NULL;				/* source word pointer  Note!! DOS COM can't cope with FAR
									 * as a consequence MailBox must be near which is usually true anyway
									 */
int			i;

	HCFLOGENTRY( HCF_TRACE_GET_INFO, ltvp->typ )
	HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic )
	HCFASSERT_INT
	HCFASSERT( ltvp, 0 )
	HCFASSERT( 1 < ltvp->len && ltvp->len <= HCF_MAX_LTV + 1, MERGE_2( ltvp->typ, ltvp->len ) )

	ltvp->len = 0;								//default to: No Info Available
#if defined MSF_COMPONENT_ID || (HCF_EXT) & HCF_EXT_MB //filter out all specials
	for ( i = 0; ( q = xxxx[i] ) != NULL && q[1] != type; i++ ) /*NOP*/;
#endif // MSF_COMPONENT_ID / HCF_EXT_MB
#if HCF_TALLIES
	if ( type == CFG_TALLIES ) {													/*3*/
		(void)hcf_action( ifbp, HCF_ACT_TALLIES );
		q = (hcf_16*)&ifbp->IFB_TallyLen;
	}
#endif // HCF_TALLIES
#if (HCF_EXT) & HCF_EXT_MB
	if ( type == CFG_MB_INFO ) {
		if ( ifbp->IFB_MBInfoLen ) {
			if ( ifbp->IFB_MBp[ifbp->IFB_MBRp] == 0xFFFF ) {
				ifbp->IFB_MBRp = 0; //;?Probably superfluous
			}
			q = &ifbp->IFB_MBp[ifbp->IFB_MBRp];
			ifbp->IFB_MBRp += *q + 1;	//update read pointer
			if ( ifbp->IFB_MBp[ifbp->IFB_MBRp] == 0xFFFF ) {
				ifbp->IFB_MBRp = 0;
			}
			ifbp->IFB_MBInfoLen = ifbp->IFB_MBp[ifbp->IFB_MBRp];
		}
	}
#endif // HCF_EXT_MB
	if ( q != NULL ) {						//a special or CFG_TALLIES or CFG_MB_INFO
		i = min( len, *q ) + 1;				//total size of destination (including T-field)
		while ( i-- ) {
			*p++ = *q;
#if (HCF_TALLIES) & HCF_TALLIES_RESET
			if ( q > &ifbp->IFB_TallyTyp && type == CFG_TALLIES ) {
				*q = 0;
			}
#endif // HCF_TALLIES_RESET
			q++;
		}
	} else {								// not a special nor CFG_TALLIES nor CFG_MB_INFO
		if ( type == CFG_CNTL_OPT ) {										//read back effective options
			ltvp->len = 2;
			ltvp->val[0] = ifbp->IFB_CntlOpt;
#if (HCF_EXT) & HCF_EXT_NIC_ACCESS
		} else if ( type == CFG_PROD_DATA ) {  //only needed for some test tool on top of H-II NDIS driver
hcf_io		io_port;
wci_bufp	pt;					//pointer with the "right" type, just to help ease writing macros with embedded assembly
			OPW( HREG_AUX_PAGE, (hcf_16)(PLUG_DATA_OFFSET >> 7) );
			OPW( HREG_AUX_OFFSET, (hcf_16)(PLUG_DATA_OFFSET & 0x7E) );
			io_port = ifbp->IFB_IOBase + HREG_AUX_DATA;		//to prevent side effects of the MSF-defined macro
			p = ltvp->val;					//destination char pointer (in LTV record)
			i = len - 1;
			if (i > 0 ) {
				pt = (wci_bufp)p;	//just to help ease writing macros with embedded assembly
				IN_PORT_STRING_8_16( io_port, pt, i ); //space used by T: -1
			}
		} else if ( type == CFG_CMD_HCF ) {
#define P ((CFG_CMD_HCF_STRCT FAR *)ltvp)
			HCFASSERT( P->cmd == CFG_CMD_HCF_REG_ACCESS, P->cmd )		//only Hermes register access supported
			if ( P->cmd == CFG_CMD_HCF_REG_ACCESS ) {
				HCFASSERT( P->mode < ifbp->IFB_IOBase, P->mode )		//Check Register space
				ltvp->len = min( len, 4 );								//RESTORE ltv length
				P->add_info = IPW( P->mode );
			}
#undef P
#endif // HCF_EXT_NIC_ACCESS
#if (HCF_ASSERT) & HCF_ASSERT_PRINTF
        } else if (type == CFG_FW_PRINTF) {
           rc = fw_printf(ifbp, (CFG_FW_PRINTF_STRCT*)ltvp);
#endif // HCF_ASSERT_PRINTF
		} else if ( type >= CFG_RID_FW_MIN ) {
//;? by using HCMD_BUSY option when calling cmd_exe, using a get_frag with length 0 just to set up the
//;? BAP and calling cmd_cmpl, you could merge the 2 Busy waits. Whether this really helps (and what
//;? would be the optimal sequence in cmd_exe and get_frag) would have to be MEASURED
/*17*/		if ( ( rc = cmd_exe( ifbp, HCMD_ACCESS, type ) ) == HCF_SUCCESS &&
				 ( rc = setup_bap( ifbp, type, 0, IO_IN ) ) == HCF_SUCCESS ) {
				get_frag( ifbp, (wci_bufp)&ltvp->len, 2*len+2 BE_PAR(2) );
				if ( IPW( HREG_STAT ) == 0xFFFF ) {					//NIC removal test
					ltvp->len = 0;
					HCFASSERT( DO_ASSERT, type )
				}
			}
/*12*/	} else HCFASSERT( DO_ASSERT, type ) /*NOP*/; //NOP in case HCFASSERT is dummy
	}
	if ( len < ltvp->len ) {
		ltvp->len = len;
		if ( rc == HCF_SUCCESS ) {
			rc = HCF_ERR_LEN;
		}
	}
	HCFASSERT( rc == HCF_SUCCESS || ( rc == HCF_ERR_LEN && ifbp->IFB_AssertTrace & 1<<HCF_TRACE_PUT_INFO ),
			   MERGE_2( type, rc ) )																/*20*/
	HCFLOGEXIT( HCF_TRACE_GET_INFO )
	return rc;
} // hcf_get_info


/************************************************************************************************************
*
*.MODULE		int hcf_put_info( IFBP ifbp, LTVP ltvp )
*.PURPOSE		Transfers operation and configuration information to the Card and to the HCF.
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*	ltvp		specifies the RID (as defined by Hermes I/F) or pseudo-RID (as defined by WCI)
*
*.RETURNS
*	HCF_SUCCESS
*!!	via cmd_exe
*	HCF_ERR_NO_NIC 		NIC removed during data retrieval
*	HCF_ERR_TIME_OUT	Expected F/W event did not occur in time
*	HCF_ERR_DEFUNCT_...
*!!	via download				CFG_DLNV_START <= type <= CFG_DL_STOP
*!!	via put_info				CFG_RID_CFG_MIN <= type <= CFG_RID_CFG_MAX
*!!	via put_frag
*
*.DESCRIPTION
* The L-field of the LTV-record (provided by the MSF in parameter ltvp) specifies the size of the buffer.
* The L-value includes the size of the T-field, but not the size of the L-field.
* The T- field specifies the RID placed in the V-field by the MSF.
*
* Not all CFG-codes can be used for hcf_put_info.  The following CFG-codes are valid for hcf_put_info:
* o One of the CFG-codes in the group "Network Parameters, Static Configuration Entities"
* Changes made by hcf_put_info to CFG_codes in this group will not affect the F/W
* and HCF behavior until hcf_cntl_port( HCF_PORT_ENABLE) is called.
* o One of the CFG-codes in the group "Network Parameters, Dynamic Configuration Entities"
* Changes made by hcf_put_info to CFG_codes will affect the F/W and HCF behavior immediately.
* o CFG_PROG.
* This code is used to initiate and terminate the process to download data either to
* volatile or to non-volatile RAM on the NIC as well as for the actual download.
* o CFG-codes related to the HCF behavior.
* The related CFG-codes are:
*  - CFG_REG_MB
*  - CFG_REG_ASSERT_RTNP
*  - CFG_REG_INFO_LOG
*  - CFG_CMD_NIC
*  - CFG_CMD_DONGLE
*  - CFG_CMD_HCF
*  - CFG_NOTIFY
*
* All LTV-records "unknown" to the HCF are forwarded to the F/W.
*
* Assert fails if
* - ifbp has a recognizable out-of-range value.
* - ltvp is a NULL pointer.
* - hcf_put_info was called without prior call to hcf_connect
* - type field of the LTV-record is invalid, i.e. neither HCF nor F/W can handle the value.
* - length field of the LTV-record at entry is less than 1 or exceeds MAX_LTV_SIZE.
* - registering a MailBox with size less than 60 or a non-aligned buffer address is used.
* - reentrancy, may be  caused by calling hcf_functions without adequate protection against
*	NIC interrupts or multi-threading.
*
*.DIAGRAM
*
*.NOTICE
*	Remarks:  In case of Hermes Configuration LTVs, the codes for the type are "cleverly" chosen to be
*	identical to the RID. Hermes Configuration information is copied from the provided data structure into the
*	Card.
*	In case of HCF Configuration LTVs, the type values are chosen in a range which does not overlap the
*	RID-range.
*
*20:
*
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/

int
hcf_put_info( IFBP ifbp, LTVP ltvp )
{
int rc = HCF_SUCCESS;

	HCFLOGENTRY( HCF_TRACE_PUT_INFO, ltvp->typ )
	HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic )
	HCFASSERT_INT
	HCFASSERT( ltvp, 0 )
	HCFASSERT( 1 < ltvp->len && ltvp->len <= HCF_MAX_LTV + 1, ltvp->len )

											//all codes between 0xFA00 and 0xFCFF are passed to Hermes
#if (HCF_TYPE) & HCF_TYPE_WPA
 {	hcf_16 i;
	hcf_32 FAR * key_p;

	if ( ltvp->typ == CFG_ADD_TKIP_DEFAULT_KEY || ltvp->typ == CFG_ADD_TKIP_MAPPED_KEY ) {
		key_p = (hcf_32*)((CFG_ADD_TKIP_MAPPED_KEY_STRCT FAR *)ltvp)->tx_mic_key;
		i = TX_KEY;		//i.e. TxKeyIndicator == 1, KeyID == 0
		if ( ltvp->typ == CFG_ADD_TKIP_DEFAULT_KEY ) {
			key_p = (hcf_32*)((CFG_ADD_TKIP_DEFAULT_KEY_STRCT FAR *)ltvp)->tx_mic_key;
			i = CNV_LITTLE_TO_SHORT(((CFG_ADD_TKIP_DEFAULT_KEY_STRCT FAR *)ltvp)->tkip_key_id_info);
		}
		if ( i & TX_KEY ) {	/* TxKeyIndicator == 1
							   (either really set by MSF in case of DEFAULT or faked by HCF in case of MAPPED ) */
			ifbp->IFB_MICTxCntl = (hcf_16)( HFS_TX_CNTL_MIC | (i & KEY_ID )<<8 );
			ifbp->IFB_MICTxKey[0] = CNV_LONGP_TO_LITTLE( key_p );
			ifbp->IFB_MICTxKey[1] = CNV_LONGP_TO_LITTLE( (key_p+1) );
		}
		i = ( i & KEY_ID ) * 2;
		ifbp->IFB_MICRxKey[i]   = CNV_LONGP_TO_LITTLE( (key_p+2) );
		ifbp->IFB_MICRxKey[i+1] = CNV_LONGP_TO_LITTLE( (key_p+3) );
	}
#define P ((CFG_REMOVE_TKIP_DEFAULT_KEY_STRCT FAR *)ltvp)
	if ( ( ltvp->typ == CFG_REMOVE_TKIP_MAPPED_KEY )	||
		 ( ltvp->typ == CFG_REMOVE_TKIP_DEFAULT_KEY &&
		   ( (ifbp->IFB_MICTxCntl >> 8) & KEY_ID ) == CNV_SHORT_TO_LITTLE(P->tkip_key_id )
		 )
		) { ifbp->IFB_MICTxCntl = 0; }		//disable MIC-engine
#undef P
 }
#endif // HCF_TYPE_WPA

	if ( ltvp->typ == CFG_PROG ) {
		rc = download( ifbp, (CFG_PROG_STRCT FAR *)ltvp );
	} else switch (ltvp->typ) {
#if (HCF_ASSERT) & HCF_ASSERT_RT_MSF_RTN
	  case CFG_REG_ASSERT_RTNP:											//Register MSF Routines
#define P ((CFG_REG_ASSERT_RTNP_STRCT FAR *)ltvp)
		ifbp->IFB_AssertRtn = P->rtnp;
//		ifbp->IFB_AssertLvl = P->lvl;		//TODO not yet supported so default is set in hcf_connect
		HCFASSERT( DO_ASSERT, MERGE_2( HCF_ASSERT, 0xCAF1 ) )	//just to proof that the complete assert machinery is working
#undef P
		break;
#endif // HCF_ASSERT_RT_MSF_RTN
#if (HCF_EXT) & HCF_EXT_INFO_LOG
	  case CFG_REG_INFO_LOG:											//Register Log filter
		ifbp->IFB_RIDLogp = ((CFG_RID_LOG_STRCT FAR*)ltvp)->recordp;
		break;
#endif // HCF_EXT_INFO_LOG
	  case CFG_CNTL_OPT:												//overrule option
		HCFASSERT( ( ltvp->val[0] & ~(USE_DMA | USE_16BIT) ) == 0, ltvp->val[0] )
		if ( ( ltvp->val[0] & USE_DMA ) == 0 ) ifbp->IFB_CntlOpt &= ~USE_DMA;
		ifbp->IFB_CntlOpt |=  ltvp->val[0] & USE_16BIT;
		break;
#if (HCF_EXT) & HCF_EXT_MB
	  case CFG_REG_MB:													//Register MailBox
#define P ((CFG_REG_MB_STRCT FAR *)ltvp)
		HCFASSERT( ( (hcf_32)P->mb_addr & 0x0001 ) == 0, (hcf_32)P->mb_addr )
		HCFASSERT( (P)->mb_size >= 60, (P)->mb_size )
		ifbp->IFB_MBp = P->mb_addr;
		/* if no MB present, size must be 0 for ;?the old;? put_info_mb to work correctly */
		ifbp->IFB_MBSize = ifbp->IFB_MBp == NULL ? 0 : P->mb_size;
		ifbp->IFB_MBWp = ifbp->IFB_MBRp	= 0;
		ifbp->IFB_MBp[0] = 0;											//flag the MailBox as empty
		ifbp->IFB_MBInfoLen = 0;
		HCFASSERT( ifbp->IFB_MBSize >= 60 || ifbp->IFB_MBp == NULL, ifbp->IFB_MBSize )
#undef P
		break;
	  case CFG_MB_INFO:													//store MailBoxInfoBlock
		rc = put_info_mb( ifbp, (CFG_MB_INFO_STRCT FAR *)ltvp );
		break;
#endif // HCF_EXT_MB

#if (HCF_EXT) & HCF_EXT_NIC_ACCESS
	  case CFG_CMD_NIC:
#define P ((CFG_CMD_NIC_STRCT FAR *)ltvp)
		OPW( HREG_PARAM_2, P->parm2 );
		OPW( HREG_PARAM_1, P->parm1 );
		rc = cmd_exe( ifbp, P->cmd, P->parm0 );
		P->hcf_stat = (hcf_16)rc;
		P->stat = IPW( HREG_STAT );
		P->resp0 = IPW( HREG_RESP_0 );
		P->resp1 = IPW( HREG_RESP_1 );
		P->resp2 = IPW( HREG_RESP_2 );
		P->ifb_err_cmd = ifbp->IFB_ErrCmd;
		P->ifb_err_qualifier = ifbp->IFB_ErrQualifier;
#undef P
		break;
	  case CFG_CMD_HCF:
#define P ((CFG_CMD_HCF_STRCT FAR *)ltvp)
		HCFASSERT( P->cmd == CFG_CMD_HCF_REG_ACCESS, P->cmd )		//only Hermes register access supported
		if ( P->cmd == CFG_CMD_HCF_REG_ACCESS ) {
			HCFASSERT( P->mode < ifbp->IFB_IOBase, P->mode )		//Check Register space
			OPW( P->mode, P->add_info);
		}
#undef P
		break;
#endif // HCF_EXT_NIC_ACCESS

#if (HCF_ASSERT) & HCF_ASSERT_PRINTF
      case CFG_FW_PRINTF_BUFFER_LOCATION:
        ifbp->IFB_FwPfBuff = *(CFG_FW_PRINTF_BUFFER_LOCATION_STRCT*)ltvp;
        break;
#endif // HCF_ASSERT_PRINTF

	  default:						//pass everything unknown above the "FID" range to the Hermes or Dongle
		rc = put_info( ifbp, ltvp );
	}
	//DO NOT !!! HCFASSERT( rc == HCF_SUCCESS, rc )												/* 20 */
	HCFLOGEXIT( HCF_TRACE_PUT_INFO )
	return rc;
} // hcf_put_info


#if (HCF_DL_ONLY) == 0
/************************************************************************************************************
*
*.MODULE		int hcf_rcv_msg( IFBP ifbp, DESC_STRCT *descp, unsigned int offset )
*.PURPOSE		All: decapsulate a message.
*				pre-HermesII.5: verify MIC.
*				non-USB, non-DMA mode: Transfer a message from the NIC to the Host and acknowledge reception.
*				USB: Transform a message from proprietary USB format to 802.3 format
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*	descp		Pointer to the Descriptor List location.
*	offset		USB: not used
*				non-USB: specifies the beginning of the data to be obtained (0 corresponds with DestAddr field
*				of frame).
*
*.RETURNS
*	HCF_SUCCESS			No SSN error ( or HCF_ERR_MIC already reported by hcf_service_nic)
*	HCF_ERR_MIC			message contains an erroneous MIC ( HCF_SUCCESS is reported if HCF_ERR_MIC is already
*						reported by hcf_service_nic)
* 	HCF_ERR_NO_NIC		NIC removed during data retrieval
* 	HCF_ERR_DEFUNCT...
*
*.DESCRIPTION
* The Receive Message Function can be executed by the MSF to obtain the Data Info fields of the message that
* is reported to be available by the Service NIC Function.
*
* The Receive Message Function copies the message data available in the Card memory into a buffer structure
* provided by the MSF.
* Only data of the message indicated by the Service NIC Function can be obtained.
* Execution of the Service NIC function may result in the availability of a new message, but it definitely
* makes the message reported by the preceding Service NIC function, unavailable.
*
* in non-USB/non-DMA mode, hcf_rcv_msg starts the copy process at the (non-negative) offset requested by the
* parameter offset, relative to HFS_ADDR_DEST, e.g offset 0 starts copying from the Destination Address, the
* very begin of the 802.3 frame message. Offset must either lay within the part of the 802.3 frame as stored
* by hcf_service_nic in the lookahead buffer or be just behind it, i.e. the first byte not yet read.
* When offset is within lookahead, data is copied from lookahead.
* When offset is beyond lookahead, data is read directly from RxFS in NIC with disregard of the actual value
* of offset
*
*.NOTICE:
* o at entry: look ahead buffer as passed with hcf_service_nic is still accessible and unchanged
* o at exit: Receive Frame in NIC memory is released
*
* Description:
* Starting at the byte indicated by the Offset value, the bytes are copied from the Data Info
* Part of the current Receive Frame Structure to the Host memory data buffer structure
* identified by descp.
* The maximum value for Offset is the number of characters of the 802.3 frame read into the
* look ahead buffer by hcf_service_nic (i.e. the look ahead buffer size minus
* Control and 802.11 fields)
* If Offset is less than the maximum value, copying starts from the look ahead buffer till the
* end of that buffer is reached
* Then (or if the maximum value is specified for Offset), the
* message is directly copied from NIC memory to Host memory.
* If an invalid (i.e. too large) offset is specified, an assert catches but the buffer contents are
* undefined.
* Copying stops if either:
* o the end of the 802.3 frame is reached
* o the Descriptor with a NULL pointer in the next_desc_addr field is reached
*
* When the copying stops, the receiver is ack'ed, thus freeing the NIC memory where the frame is stored
* As a consequence, hcf_rcv_msg can only be called once for any particular Rx frame.
*
* For the time being (PCI Bus mastering not yet supported), only the following fields of each
* of the descriptors in the descriptor list must be set by the MSF:
* o buf_cntl.buf_dim[1]
* o *next_desc_addr
* o *buf_addr
* At return from hcf_rcv_msg, the field buf_cntl.buf_dim[0] of the used Descriptors reflects
* the number of bytes in the buffer corresponding with the Descriptor.
* On the last used Descriptor, buf_cntl.buf_dim[0] is less or equal to buf_cntl.buf_dim[1].
* On all preceding Descriptors buf_cntl.buf_dim[0] is equal to buf_cntl.buf_dim[1].
* On all succeeding (unused) Descriptors, buf_cntl.buf_dim[0] is zero.
* Note: this I/F is based on the assumptions how the I/F needed for PCI Bus mastering will
* be, so it may change.
*
* The most likely handling of HCF_ERR_NO_NIC by the MSF is to drop the already copied
* data as elegantly as possible under the constraints and requirements posed by the (N)OS.
* If no received Frame Structure is pending, "Success" rather than "Read error" is returned.
* This error constitutes a logic flaw in the MSF
* The HCF can only catch a minority of this
* type of errors
* Based on consistency ideas, the HCF catches none of these errors.
*
* Assert fails if
* - ifbp has a recognizable out-of-range value
* - there is no unacknowledged Rx-message available
* - offset is out of range (outside look ahead buffer)
* - descp is a NULL pointer
* - any of the descriptors is not double word aligned
* - reentrancy, may be  caused by calling hcf_functions without adequate protection
* 	against NIC interrupts or multi-threading.
* - Interrupts are enabled.
*
*.DIAGRAM
*
*.NOTICE
* - by using unsigned int as type for offset, no need to worry about negative offsets
* - Asserting on being enabled/present is superfluous, since a non-zero IFB_lal implies that hcf_service_nic
*   was called and detected a Rx-message. A zero IFB_lal will set the BUF_CNT field of at least the first
*   descriptor to zero.
*
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/
int
hcf_rcv_msg( IFBP ifbp, DESC_STRCT *descp, unsigned int offset )
{
int			rc = HCF_SUCCESS;
wci_bufp	cp;										//char oriented working pointer
hcf_16		i;
int			tot_len = ifbp->IFB_RxLen - offset;		//total length
wci_bufp	lap = ifbp->IFB_lap + offset;			//start address in LookAhead Buffer
hcf_16		lal = ifbp->IFB_lal - offset;			//available data within LookAhead Buffer
hcf_16		j;

	HCFLOGENTRY( HCF_TRACE_RCV_MSG, offset )
	HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic )
	HCFASSERT_INT
	HCFASSERT( descp, HCF_TRACE_RCV_MSG )
	HCFASSERT( ifbp->IFB_RxLen, HCF_TRACE_RCV_MSG )
	HCFASSERT( ifbp->IFB_RxLen >= offset, MERGE_2( offset, ifbp->IFB_RxLen ) )
	HCFASSERT( ifbp->IFB_lal >= offset, offset )
	HCFASSERT( (ifbp->IFB_CntlOpt & USE_DMA) == 0, 0xDADA )

	if ( tot_len < 0 ) {
		lal = 0; tot_len = 0;				//suppress all copying activity in the do--while loop
	}
	do {									//loop over all available fragments
		// obnoxious hcf.c(1480) : warning C4769: conversion of near pointer to long integer
		HCFASSERT( ((hcf_32)descp & 3 ) == 0, (hcf_32)descp )
		cp = descp->buf_addr;
		j = min( (hcf_16)tot_len, descp->BUF_SIZE );	//minimum of "what's` available" and fragment size
		descp->BUF_CNT = j;
		tot_len -= j;						//adjust length still to go
		if ( lal ) {						//if lookahead Buffer not yet completely copied
			i = min( lal, j );				//minimum of "what's available" in LookAhead and fragment size
			lal -= i;						//adjust length still available in LookAhead
			j -= i;							//adjust length still available in current fragment
			/*;? while loop could be improved by moving words but that is complicated on platforms with
			 * alignment requirements*/
			while ( i-- ) *cp++ = *lap++;
		}
		if ( j ) {	//if LookAhead Buffer exhausted but still space in fragment, copy directly from NIC RAM
			get_frag( ifbp, cp, j BE_PAR(0) );
			CALC_RX_MIC( cp, j );
		}
	} while ( ( descp = descp->next_desc_addr ) != NULL );
#if (HCF_TYPE) & HCF_TYPE_WPA
	if ( ifbp->IFB_RxFID ) {
		rc = check_mic( ifbp );				//prevents MIC error report if hcf_service_nic already consumed all
	}
#endif // HCF_TYPE_WPA
	(void)hcf_action( ifbp, HCF_ACT_RX_ACK );		//only 1 shot to get the data, so free the resources in the NIC
	HCFASSERT( rc == HCF_SUCCESS, rc )
	HCFLOGEXIT( HCF_TRACE_RCV_MSG )
	return rc;
} // hcf_rcv_msg
#endif // HCF_DL_ONLY


#if (HCF_DL_ONLY) == 0
/************************************************************************************************************
*
*.MODULE		int hcf_send_msg( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl )
*.PURPOSE		Encapsulate a message and append padding and MIC.
*				non-USB: Transfers the resulting message from Host to NIC and initiates transmission.
*				USB: Transfer resulting message into a flat buffer.
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*	descp		pointer to the DescriptorList or NULL
*	tx_cntl		indicates MAC-port and (Hermes) options
*					HFS_TX_CNTL_SPECTRALINK
*					HFS_TX_CNTL_PRIO
*					HFS_TX_CNTL_TX_OK
*					HFS_TX_CNTL_TX_EX
*					HFS_TX_CNTL_TX_DELAY
*					HFS_TX_CNTL_TX_CONT
*					HCF_PORT_0				 MAC Port 0 (default)
*					HCF_PORT_1 (AP only)	 MAC Port 1
*					HCF_PORT_2 (AP only)	 MAC Port 2
*					HCF_PORT_3 (AP only)	 MAC Port 3
*					HCF_PORT_4 (AP only)	 MAC Port 4
*					HCF_PORT_5 (AP only)	 MAC Port 5
*					HCF_PORT_6 (AP only)	 MAC Port 6
*
*.RETURNS
*	HCF_SUCCESS
*	HCF_ERR_DEFUNCT_..
*	HCF_ERR_TIME_OUT
*
*.DESCRIPTION:
* The Send Message Function embodies 2 functions:
* o transfers a message (including MAC header) from the provided buffer structure in Host memory to the Transmit
* Frame Structure (TxFS) in NIC memory.
* o Issue a send command to the F/W to actually transmit the contents of the TxFS.
*
* Control is based on the Resource Indicator IFB_RscInd.
* The Resource Indicator is maintained by the HCF and should only be interpreted but not changed by the MSF.
* The MSF must check IFB_RscInd to be non-zero before executing the call to the Send Message Function.
* When no resources are available, the MSF must handle the queuing of the Transmit frame and check the
* Resource Indicator periodically after calling hcf_service_nic.
*
* The Send Message Functions transfers a message to NIC memory when it is called with a non-NULL descp.
* Before the Send Message Function is invoked this way, the Resource Indicator (IFB_RscInd) must be checked.
* If the Resource is not available, Send Message Function execution must be postponed until after processing of
* a next hcf_service_nic it appears that the Resource has become available.
* The message is copied from the buffer structure identified by descp to the NIC.
* Copying stops if a NULL pointer in the next_desc_addr field is reached.
* Hcf_send_msg does not check for transmit buffer overflow, because the F/W does this protection.
* In case of a transmit buffer overflow, the surplus which does not fit in the buffer is simply dropped.
*
* The Send Message Function activates the F/W to actually send the message to the medium when the
* HFS_TX_CNTL_TX_DELAY bit of the tx_cntl parameter is not set.
* If the descp parameter of the current call is non-NULL, the message as represented by descp is send.
* If the descp parameter of the current call is NULL, and if the preceding call of the Send Message Function had
* a non-NULL descp and the preceding call had the HFS_TX_CNTL_TX_DELAY bit of tx_cntl set, then the message as
* represented by the descp of the preceding call is send.
*
* Hcf_send_msg supports encapsulation (see HCF_ENCAP) of Ethernet-II frames.
* An Ethernet-II frame is transferred to the Transmit Frame structure as an 802.3 frame.
* Hcf_send_msg distinguishes between an 802.3 and an Ethernet-II frame by looking at the data length/type field
* of the frame. If this field contains a value larger than 1514, the frame is considered to be an Ethernet-II
* frame, otherwise it is treated as an 802.3 frame.
* To ease implementation of the HCF, this type/type field must be located in the first descriptor structure,
* i.e. the 1st fragment must have a size of at least 14 (to contain DestAddr, SrcAddr and Len/Type field).
* An Ethernet-II frame is encapsulated by inserting a SNAP header between the addressing information and the
* type field.  This insertion is transparent for the MSF.
* The HCF contains a fixed table that stores a number of types. If the value specified by the type/type field
* occurs in this table, Bridge Tunnel Encapsulation is used, otherwise RFC1042 encapsulation is used.
* Bridge Tunnel uses	AA AA 03 00 00 F8 as SNAP header,
* RFC1042 uses	AA AA 03 00 00 00 as SNAP header.
* The table currently contains:
* 0 0x80F3	AppleTalk Address Resolution Protocol (AARP)
* 0 0x8137	IPX
*
* The algorithm to distinguish between 802.3 and Ethernet-II frames limits the maximum length for frames of
* 802.3 frames to 1514 bytes.
* Encapsulation can be suppressed by means of the system constant HCF_ENCAP, e.g. to support proprietary
* protocols with 802.3 like frames with a size larger than 1514 bytes.
*
* In case the HCF encapsulates the frame, the number of bytes that is actually transmitted is determined by the
* cumulative value of the buf_cntl.buf_dim[0] fields.
* In case the HCF does not encapsulate the frame, the number of bytes that is actually transmitted is not
* determined by the cumulative value of the buf_cntl.buf_dim[DESC_CNTL_CNT] fields of the desc_strct's but by
* the Length field of the 802.3 frame.
* If there is a conflict between the cumulative value of the buf_cntl.buf_dim[0] fields and the
* 802.3 Length field the 802.3 Length field determines the number of bytes actually transmitted by the NIC while
* the cumulative value of the buf_cntl.buf_dim[0] fields determines the position of the MIC, hence a mismatch
* will result in MIC errors on the Receiving side.
* Currently this problem is flagged on the Transmit side by an Assert.
* The following fields of each of the descriptors in the descriptor list must be set by the MSF:
* o buf_cntl.buf_dim[0]
* o *next_desc_addr
* o *buf_addr
*
* All bits of the tx_cntl parameter except HFS_TX_CNTL_TX_DELAY and the HCF_PORT# bits are passed to the F/W via
* the HFS_TX_CNTL field of the TxFS.
*
* Note that hcf_send_msg does not detect NIC absence.  The MSF is supposed to have its own -platform dependent-
* way to recognize card removal/insertion.
* The total system must be robust against card removal and there is no principal difference between card removal
* just after hcf_send_msg returns but before the actual transmission took place or sometime earlier.
*
* Assert fails if
* - ifbp has a recognizable out-of-range value
* - descp is a NULL pointer
* - no resources for PIF available.
* - Interrupts are enabled.
* - reentrancy, may be  caused by calling hcf_functions without adequate protection
*	against NIC interrupts or multi-threading.
*
*.DIAGRAM
*4:	for the normal case (i.e. no HFS_TX_CNTL_TX_DELAY option active), a fid is acquired via the
*	routine get_fid.  If no FID is acquired, the remainder is skipped without an error notification.  After
*	all, the MSF is not supposed to call hcf_send_msg when no Resource is available.
*7:	The ControlField of the TxFS is written.  Since put_frag can only return the fatal Defunct or "No NIC", the
*	return status can be ignored because when it fails, cmd_wait will fail as well.  (see also the note on the
*	need for a return code below).
*	Note that HFS_TX_CNTL has different values for H-I, H-I/SSN and H-II and HFS_ADDR_DEST has different
*	values for H-I (regardless of SSN) and H-II.
*	By writing 17, 1 or 2 ( implying 16, 0 or 1 garbage word after HFS_TX_CNTL) the BAP just gets to
*	HFS_ADDR_DEST for H-I, H-I/SSN and H-II respectively.
*10: if neither encapsulation nor MIC calculation is needed, splitting the first fragment in two does not
*	really help but it makes the flow easier to follow to do not optimize on this difference
*
*	hcf_send_msg checks whether the frame is an Ethernet-II rather than an "official" 802.3 frame.
*	The E-II check is based on the length/type field in the MAC header. If this field has a value larger than
*	1500, E-II is assumed. The implementation of this test fails if the length/type field is not in the first
*	descriptor.  If E-II is recognized, a SNAP header is inserted. This SNAP header represents either RFC1042
*	or Bridge-Tunnel encapsulation, depending on the return status of the support routine hcf_encap.
*
*.NOTICE
*	hcf_send_msg leaves the responsibility to only send messages on enabled ports at the MSF level.
*	This is considered the strategy which is sufficiently adequate for all "robust" MSFs, have the least
*	processor utilization and being still acceptable robust at the WCI !!!!!
*
*	hcf_send_msg does not NEED a return value to report NIC absence or removal during the execution of
*	hcf_send_msg(), because the MSF and higher layers must be able to cope anyway with the NIC being removed
*	after a successful completion of hcf_send_msg() but before the actual transmission took place.
*	To accommodate user expectations the current implementation does report NIC absence.
*	Defunct blocks all NIC access and will (also) be reported on a number of other calls.
*
*	hcf_send_msg does not check for transmit buffer overflow because the Hermes does this protection.
*	In case of a transmit buffer overflow, the surplus which does not fit in the buffer is simply dropped.
*	Note that this possibly results in the transmission of incomplete frames.
*
*	After some deliberation with F/W team, it is decided that - being in the twilight zone of not knowing
*	whether the problem at hand is an MSF bug, HCF buf, F/W bug, H/W malfunction or even something else - there
*	is no "best thing to do" in case of a failing send, hence the HCF considers the TxFID ownership to be taken
*	over by the F/W and hopes for an Allocate event in due time
*
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/
int
hcf_send_msg( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl )
{
int			rc = HCF_SUCCESS;
DESC_STRCT	*p /* = descp*/;		//working pointer
hcf_16		len;					// total byte count
hcf_16		i;

hcf_16		fid = 0;

	HCFASSERT( ifbp->IFB_RscInd || descp == NULL, ifbp->IFB_RscInd )
	HCFASSERT( (ifbp->IFB_CntlOpt & USE_DMA) == 0, 0xDADB )

	HCFLOGENTRY( HCF_TRACE_SEND_MSG, tx_cntl )
	HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic )
	HCFASSERT_INT
	/* obnoxious c:/hcf/hcf.c(1480) : warning C4769: conversion of near pointer to long integer,
	 * so skip */
	HCFASSERT( ((hcf_32)descp & 3 ) == 0, (hcf_32)descp )
#if HCF_ASSERT
{	int x = ifbp->IFB_FWIdentity.comp_id == COMP_ID_FW_AP ? tx_cntl & ~HFS_TX_CNTL_PORT : tx_cntl;
	HCFASSERT( (x & ~HCF_TX_CNTL_MASK ) == 0, tx_cntl )
}
#endif // HCF_ASSERT

	if ( descp ) ifbp->IFB_TxFID = 0;				//cancel a pre-put message

#if (HCF_EXT) & HCF_EXT_TX_CONT				// Continuous transmit test
	if ( tx_cntl == HFS_TX_CNTL_TX_CONT ) {
	 	fid = get_fid(ifbp);
	 	if (fid != 0 ) {
											//setup BAP to begin of TxFS
			(void)setup_bap( ifbp, fid, 0, IO_OUT );
											//copy all the fragments in a transparent fashion
		 	for ( p = descp; p; p = p->next_desc_addr ) {
			/* obnoxious warning C4769: conversion of near pointer to long integer */
				HCFASSERT( ((hcf_32)p & 3 ) == 0, (hcf_32)p )
				put_frag( ifbp, p->buf_addr, p->BUF_CNT BE_PAR(0) );
			}
			rc = cmd_exe( ifbp, HCMD_THESEUS | HCMD_BUSY | HCMD_STARTPREAMBLE, fid );
			if ( ifbp->IFB_RscInd == 0 ) {
				ifbp->IFB_RscInd = get_fid( ifbp );
			}
		}
											// een slecht voorbeeld doet goed volgen ;?
		HCFLOGEXIT( HCF_TRACE_SEND_MSG )
		return rc;
	}
#endif // HCF_EXT_TX_CONT
									/* the following initialization code is redundant for a pre-put message
									 * but moving it inside the "if fid" logic makes the merging with the
									 * USB flow awkward
									 */
#if (HCF_TYPE) & HCF_TYPE_WPA
	tx_cntl |= ifbp->IFB_MICTxCntl;
#endif // HCF_TYPE_WPA
	fid = ifbp->IFB_TxFID;
	if (fid == 0 && ( fid = get_fid( ifbp ) ) != 0 ) 		/* 4 */
			/* skip the next compound statement if:
			   - pre-put message or
			   - no fid available (which should never occur if the MSF adheres to the WCI)
			 */
	{		// to match the closing curly bracket of above "if" in case of HCF_TYPE_USB
											//calculate total length ;? superfluous unless CCX or Encapsulation
		len = 0;
		p = descp;
		do len += p->BUF_CNT; while ( ( p = p->next_desc_addr ) != NULL );
		p = descp;
//;?	HCFASSERT( len <= HCF_MAX_MSG, len )
/*7*/	(void)setup_bap( ifbp, fid, HFS_TX_CNTL, IO_OUT );
#if (HCF_TYPE) & HCF_TYPE_TX_DELAY
		HCFASSERT( ( descp != NULL ) ^ ( tx_cntl & HFS_TX_CNTL_TX_DELAY ), tx_cntl )
		if ( tx_cntl & HFS_TX_CNTL_TX_DELAY ) {
			tx_cntl &= ~HFS_TX_CNTL_TX_DELAY;		//!!HFS_TX_CNTL_TX_DELAY no longer available
			ifbp->IFB_TxFID = fid;
			fid = 0;								//!!fid no longer available, be careful when modifying code
		}
#endif // HCF_TYPE_TX_DELAY
		OPW( HREG_DATA_1, tx_cntl ) ;
		OPW( HREG_DATA_1, 0 );
#if ! ( (HCF_TYPE) & HCF_TYPE_CCX )
		HCFASSERT( p->BUF_CNT >= 14, p->BUF_CNT )
											/* assume DestAddr/SrcAddr/Len/Type ALWAYS contained in 1st fragment
											 * otherwise life gets too cumbersome for MIC and Encapsulation !!!!!!!!
		if ( p->BUF_CNT >= 14 ) {	alternatively: add a safety escape !!!!!!!!!!!! }	*/
#endif // HCF_TYPE_CCX
		CALC_TX_MIC( NULL, -1 );		//initialize MIC
/*10*/	put_frag( ifbp, p->buf_addr, HCF_DASA_SIZE BE_PAR(0) );	//write DA, SA with MIC calculation
		CALC_TX_MIC( p->buf_addr, HCF_DASA_SIZE );		//MIC over DA, SA
		CALC_TX_MIC( null_addr, 4 );		//MIC over (virtual) priority field
#if (HCF_TYPE) & HCF_TYPE_CCX
		//!!be careful do not use positive test on HCF_ACT_CCX_OFF, because IFB_CKIPStat is initially 0
		if(( ifbp->IFB_CKIPStat == HCF_ACT_CCX_ON ) ||
           ((GET_BUF_CNT(p) >= 20 )   && ( ifbp->IFB_CKIPStat == HCF_ACT_CCX_OFF ) &&
            (p->buf_addr[12] == 0xAA) && (p->buf_addr[13] == 0xAA) &&
            (p->buf_addr[14] == 0x03) && (p->buf_addr[15] == 0x00) &&
            (p->buf_addr[16] == 0x40) && (p->buf_addr[17] == 0x96) &&
            (p->buf_addr[18] == 0x00) && (p->buf_addr[19] == 0x00)))
        {
            i = HCF_DASA_SIZE;

            OPW( HREG_DATA_1, CNV_SHORT_TO_BIG( len - i ));

            /* need to send out the remainder of the fragment */
			put_frag( ifbp, &p->buf_addr[i], GET_BUF_CNT(p) - i BE_PAR(0) );
        }
        else
#endif // HCF_TYPE_CCX
		{
											//if encapsulation needed
#if (HCF_ENCAP) == HCF_ENC
											//write length (with SNAP-header,Type, without //DA,SA,Length ) no MIC calc.
			if ( ( snap_header[sizeof(snap_header)-1] = hcf_encap( &p->buf_addr[HCF_DASA_SIZE] ) ) != ENC_NONE ) {
				OPW( HREG_DATA_1, CNV_END_SHORT( len + (sizeof(snap_header) + 2) - ( 2*6 + 2 ) ) );
											//write splice with MIC calculation
				put_frag( ifbp, snap_header, sizeof(snap_header) BE_PAR(0) );
				CALC_TX_MIC( snap_header, sizeof(snap_header) );	//MIC over 6 byte SNAP
				i = HCF_DASA_SIZE;
			} else
#endif // HCF_ENC
			{
				OPW( HREG_DATA_1, *(wci_recordp)&p->buf_addr[HCF_DASA_SIZE] );
				i = 14;
			}
											//complete 1st fragment starting with Type with MIC calculation
			put_frag( ifbp, &p->buf_addr[i], p->BUF_CNT - i BE_PAR(0) );
			CALC_TX_MIC( &p->buf_addr[i], p->BUF_CNT - i );
		}
											//do the remaining fragments with MIC calculation
		while ( ( p = p->next_desc_addr ) != NULL ) {
			/* obnoxious c:/hcf/hcf.c(1480) : warning C4769: conversion of near pointer to long integer,
			 * so skip */
			HCFASSERT( ((hcf_32)p & 3 ) == 0, (hcf_32)p )
			put_frag( ifbp, p->buf_addr, p->BUF_CNT BE_PAR(0) );
			CALC_TX_MIC( p->buf_addr, p->BUF_CNT );
		}
											//pad message, finalize MIC calculation and write MIC to NIC
		put_frag_finalize( ifbp );
	}
	if ( fid ) {
/*16*/	rc = cmd_exe( ifbp, HCMD_BUSY | HCMD_TX | HCMD_RECL, fid );
		ifbp->IFB_TxFID = 0;
			/* probably this (i.e. no RscInd AND "HREG_EV_ALLOC") at this point in time occurs so infrequent,
			 * that it might just as well be acceptable to skip this
			 * "optimization" code and handle that additional interrupt once in a while
			 */
// 180 degree error in logic ;? #if ALLOC_15
/*20*/	if ( ifbp->IFB_RscInd == 0 ) {
			ifbp->IFB_RscInd = get_fid( ifbp );
		}
// #endif // ALLOC_15
	}
//	HCFASSERT( level::ifbp->IFB_RscInd, ifbp->IFB_RscInd )
	HCFLOGEXIT( HCF_TRACE_SEND_MSG )
	return rc;
} // hcf_send_msg
#endif // HCF_DL_ONLY


#if (HCF_DL_ONLY) == 0
/************************************************************************************************************
*
*.MODULE		int hcf_service_nic( IFBP ifbp, wci_bufp bufp, unsigned int len )
*.PURPOSE		Services (most) NIC events.
*				Provides received message
*				Provides status information.
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*  In non-DMA mode:
*	bufp		address of char buffer, sufficiently large to hold the first part of the RxFS up through HFS_TYPE
*	len			length in bytes of buffer specified by bufp
*				value between HFS_TYPE + 2 and HFS_ADDR_DEST + HCF_MAX_MSG
*
*.RETURNS
*	HCF_SUCCESS
*	HCF_ERR_MIC	message contains an erroneous MIC (only if frame fits completely in bufp)
*
*.DESCRIPTION
*
* MSF-accessible fields of Result Block
* - IFB_RxLen			0 or Frame size.
* - IFB_MBInfoLen		0 or the L-field of the oldest MBIB.
* - IFB_RscInd
* - IFB_HCF_Tallies		updated if a corresponding event occurred.
* - IFB_NIC_Tallies		updated if a Tally Info frame received from the NIC.
* - IFB_DmaPackets
* - IFB_TxFsStat
* - IFB_TxFsSwSup
* - IFB_LinkStat		reflects new link status or 0x0000 if no change relative to previous hcf_service_nic call.
or
* - IFB_LinkStat		link status, 0x8000 reflects change relative to previous hcf_service_nic call.
*
* When IFB_MBInfoLen is non-zero, at least one MBIB is available.
*
* IFB_RxLen	reflects the number of received bytes in 802.3 view (Including DestAddr, SrcAddr and Length,
* excluding MIC-padding, MIC and sum check) of active Rx Frame Structure. If no Rx Data s available, IFB_RxLen
* equals 0x0000.
* Repeated execution causes the Service NIC Function to provide information about subsequently received
* messages, irrespective whether a hcf_rcv_msg or hcf_action(HCF_ACT_RX) is performed in between.
*
* When IFB_RxLen is non-zero, a Received Frame Structure is available to be routed to the protocol stack.
* When Monitor Mode is not active, this is guaranteed to be an error-free non-WMP frame.
* In case of Monitor Mode, it may also be a frame with an error or a WMP frame.
* Erroneous frames have a non-zero error-sub field in the HFS_STAT field in the look ahead buffer.
*
* If a Receive message is available in NIC RAM, the Receive Frame Structure is (partly) copied from the NIC to
* the buffer identified by bufp.
* Copying stops either after len bytes or when the complete 802.3 frame is copied.
* During the copying the message is decapsulated (if appropriate).
* If the frame is read completely by hcf_service_nic (i.e. the frame fits completely in the lookahead buffer),
* the frame is automatically ACK'ed to the F/W and still available via the look ahead buffer and hcf_rcv_msg.
* Only if the frame is read completely by hcf_service_nic, hcf_service_nic checks the MIC and sets the return
* status accordingly.  In this case, hcf_rcv_msg does not check the MIC.
*
* The MIC calculation algorithm works more efficient if the length of the look ahead buffer is
* such that it fits exactly 4 n bytes of the 802.3 frame, i.e. len == HFS_ADDR_DEST + 4*n.
*
* The Service NIC Function supports the NIC event service handling process.
* It performs the appropriate actions to service the NIC, such that the event cause is eliminated and related
* information is saved.
* The Service NIC Function is executed by the MSF ISR or polling routine as first step to determine the event
* cause(s).  It is the responsibility of the MSF to perform all not directly NIC related interrupt service
* actions, e.g. in a PC environment this includes servicing the PIC, and managing the Processor Interrupt
* Enabling/Disabling.
* In case of a polled based system, the Service NIC Function must be executed "frequently".
* The Service NIC Function may have side effects related to the Mailbox and Resource Indicator (IFB_RscInd).
*
* hcf_service_nic returns:
* - The length of the data in the available MBIB (IFB_MBInfoLen)
* - Changes in the link status (IFB_LinkStat)
* - The length of the data in the available Receive Frame Structure (IFB_RxLen)
* - updated IFB_RscInd
* - Updated Tallies
*
* hcf_service_nic is presumed to neither interrupt other HCF-tasks nor to be interrupted by other HCF-tasks.
* A way to achieve this is to precede hcf_service_nic as well as all other HCF-tasks with a call to
* hcf_action to disable the card interrupts and, after all work is completed, with a call to hcf_action to
* restore (which is not necessarily the same as enabling) the card interrupts.
* In case of a polled environment, it is assumed that the MSF programmer is sufficiently familiar with the
* specific requirements of that environment to translate the interrupt strategy to a polled strategy.
*
* hcf_service_nic services the following Hermes events:
* - HREG_EV_INFO		Asynchronous Information Frame
* - HREG_EV_INFO_DROP	WMAC did not have sufficient RAM to build Unsolicited Information Frame
* - HREG_EV_TX_EXC		(if applicable, i.e. selected via HCF_EXT_INT_TX_EX bit of HCF_EXT)
* - HREG_EV_SLEEP_REQ	(if applicable, i.e. selected via HCF_DDS/HCF_CDS bit of HCF_SLEEP)
* ** in non_DMA mode
* - HREG_EV_ALLOC		Asynchronous part of Allocation/Reclaim completed while out of resources at
* 						completion of hcf_send_msg/notify
* - HREG_EV_RX			the detection of the availability of received messages
* 						including WaveLAN Management Protocol (WMP) message processing
* ** in DMA mode
* - HREG_EV_RDMAD
* - HREG_EV_TDMAD
*!! hcf_service_nic does not service the following Hermes events:
*!! 	HREG_EV_TX 			(the "OK" Tx Event) is no longer supported by the WCI, if it occurs it is unclear
*!! 						what the cause is, so no meaningful strategy is available. Not acking the bit is
*!! 						probably the best help that can be given to the debugger.
*!! 	HREG_EV_CMD			handled in cmd_wait.
*!! 	HREG_EV_FW_DMA 		(i.e. HREG_EV_RXDMA, HREG_EV_TXDMA and_EV_LPESC) are either not used or used
*!! 						between the F/W and the DMA engine.
*!! 	HREG_EV_ACK_REG_READY is only applicable for H-II (i.e. not HII.5 and up, see DAWA)
*
*	If, in non-DMA mode, a Rx message is available, its length is reflected by the IFB_RxLen field of the IFB.
*	This length reflects the data itself and the Destination Address, Source Address and DataLength/Type field
*	but not the SNAP-header in case of decapsulation by the HCF.  If no message is available, IFB_RxLen is
*	zero.  Former versions of the HCF handled WMP messages and supported a "monitor" mode in hcf_service_nic,
*	which deposited certain or all Rx messages in the MailBox. The responsibility to handle these frames is
*	moved to the MSF. The HCF offers as supports hcf_put_info with CFG_MB_INFO as parameter to emulate the old
* 	implementation under control of the MSF.
*
* **Rx Buffer free strategy
*	When hcf_service_nic reports the availability of a non-DMA message, the MSF can access that message by
*	means of hcf_rcv_msg. It must be prevented that the LAN Controller writes new data in the NIC buffer
*	before the MSF is finished with the current message. The NIC buffer is returned to the LAN Controller
*	when:
*	 - the complete frame fits in the lookahead buffer or
*	 - hcf_rcv_msg is called or
*	 - hcf_action with HCF_ACT_RX is called or
*	 - hcf_service_nic is called again
*	It can be reasoned that hcf_action( INT_ON ) should not be given before the MSF has completely processed
*	a reported Rx-frame. The reason is that the INT_ON action is guaranteed to cause a (Rx-)interrupt (the
*	MSF is processing a Rx-frame, hence the Rx-event bit in the Hermes register must be active). This
*	interrupt will cause hcf_service_nic to be called, which will cause the ack-ing of the "last" Rx-event
*	to the Hermes, causing the Hermes to discard the associated NIC RAM buffer.
* Assert fails if
* - ifbp is zero or other recognizable out-of-range value.
* - hcf_service_nic is called without a prior call to hcf_connect.
* - interrupts are enabled.
* - reentrancy, may be  caused by calling hcf_functions without adequate protection
*	against NIC interrupts or multi-threading.
*
*
*.DIAGRAM
*1:	IFB_LinkStat is cleared, if a LinkStatus frame is received, IFB_LinkStat will be updated accordingly
*	by isr_info.
or
*1:	IFB_LinkStat change indication is cleared. If a LinkStatus frame is received, IFB_LinkStat will be updated
*	accordingly by isr_info.
*2: IFB_RxLen must be cleared before the NIC presence check otherwise:
*	 -	this value may stay non-zero if the NIC is pulled out at an inconvenient moment.
*	 -	the RxAck on a zero-FID needs a zero-value for IFB_RxLen to work
*	 Note that as side-effect of the hcf_action call, the remainder of Rx related info is re-initialized as
*	 well.
*4:	In case of Defunct mode, the information supplied by Hermes is unreliable, so the body of
*	hcf_service_nic is skipped. Since hcf_cntl turns into a NOP if Primary or Station F/W is incompatible,
*	hcf_service_nic is also skipped in those cases.
*	To prevent that hcf_service_nic reports bogus information to the MSF with all - possibly difficult to
*	debug - undesirable side effects, it is paramount to check the NIC presence. In former days the presence
*	test was based on the Hermes register HREG_SW_0. Since in HCF_ACT_INT_OFF is chosen for strategy based on
*	HREG_EV_STAT, this is now also used in hcf_service_nic. The motivation to change strategy is partly
*	due to inconsistent F/W implementations with respect to HREG_SW_0 manipulation around reset and download.
*	Note that in polled environments Card Removal is not detected by INT_OFF which makes the check in
*	hcf_service_nic even more important.
*8:	The event status register of the Hermes is sampled
*	The assert checks for unexpected events ;?????????????????????????????????????.
*	 - HREG_EV_INFO_DROP is explicitly excluded from the acceptable HREG_EV_STAT bits because it indicates
*	   a too heavily loaded system.
*	 - HREG_EV_ACK_REG_READY is 0x0000 for H-I (and hopefully H-II.5)
*
*
*	HREG_EV_TX_EXC is accepted (via HREG_EV_TX_EXT) if and only if HCF_EXT_INT_TX_EX set in the HCF_EXT
*	definition at compile time.
*	The following activities are handled:
*	 -	Alloc events are handled by hcf_send_msg (and notify). Only if there is no "spare" resource, the
*		alloc event is superficially serviced by hcf_service_nic to create a pseudo-resource with value
*		0x001. This value is recognized by get_fid (called by hcf_send_msg and notify) where the real
*		TxFid is retrieved and the Hermes is acked and - hopefully - the "normal" case with a spare TxFid
*		in IFB_RscInd is restored.
*	 -	Info drop events are handled by incrementing a tally
*	 -	LinkEvent (including solicited and unsolicited tallies) are handled by procedure isr_info.
*	-	TxEx (if selected at compile time) is handled by copying the significant part of the TxFS
*		into the IFB for further processing by the MSF.
*		Note the complication of the zero-FID protection sub-scheme in DAWA.
*	Note, the Ack of all of above events is handled at the end of hcf_service_nic
*16: In case of  non-DMA ( either not compiled in or due to a run-time choice):
*	If an Rx-frame is available, first the FID of that frame is read, including the complication of the
*	zero-FID protection sub-scheme in DAWA. Note that such a zero-FID is acknowledged at the end of
*	hcf_service_nic and that this depends on the IFB_RxLen initialization in the begin of hcf_service_nic.
*	The Assert validates the HCF assumption about Hermes implementation upon which the range of
*	Pseudo-RIDs is based.
*	Then the control fields up to the start of the 802.3 frame are read from the NIC into the lookahead buffer.
*	The status field is converted to native Endianess.
*	The length is, after implicit Endianess conversion if needed, and adjustment for the 14 bytes of the
*	802.3 MAC header, stored in IFB_RxLen.
*	In MAC Monitor mode, 802.11 control frames with a TOTAL length of 14 are received, so without this
*	length adjustment, IFB_RxLen could not be used to distinguish these frames from "no frame".
*	No MIC calculation processes are associated with the reading of these Control fields.
*26: This length test feels like superfluous robustness against malformed frames, but it turned out to be
*	needed in the real (hostile) world.
*	The decapsulation check needs sufficient data to represent DA, SA, L, SNAP and Type which amounts to
*	22 bytes. In MAC Monitor mode, 802.11 control frames with a smaller length are received. To prevent
*	that the implementation goes haywire, a check on the length is needed.
*	The actual decapsulation takes place on the fly in the copying process by overwriting the SNAP header.
*	Note that in case of decapsulation the SNAP header is not passed to the MSF, hence IFB_RxLen must be
*	compensated for the SNAP header length.
*	The 22 bytes needed for decapsulation are (more than) sufficient for the exceptional handling of the
*	MIC algorithm of the L-field (replacing the 2 byte L-field with 4 0x00 bytes).
*30: The 12 in the no-SSN branch corresponds with the get_frag, the 2 with the IPW of the SSN branch
*32: If Hermes reported MIC-presence, than the MIC engine is initialized with the non-dummy MIC calculation
*	routine address and appropriate key.
*34: The 8 bytes after the DA, SA, L are read and it is checked whether decapsulation is needed i.e.:
*	  - the Hermes reported Tunnel encapsulation or
*	  - the Hermes reported 1042 Encapsulation and hcf_encap reports that the HCF would not have used
*		1042 as the encapsulation mechanism
*	Note that the first field of the RxFS in bufp has Native Endianess due to the conversion done by the
*	BE_PAR in get_frag.
*36: The Type field is the only word kept (after moving) of the just read 8 bytes, it is moved to the
*	L-field.  The original L-field and 6 byte SNAP header are discarded, so IFB_RxLen and buf_addr must
*	be adjusted by 8.
*40: Determine how much of the frame (starting with DA) fits in the Lookahead buffer, then read the not-yet
*	read data into the lookahead buffer.
*	If the lookahead buffer contains the complete message, check the MIC. The majority considered this
*	I/F more appropriate then have the MSF call hcf_get_data only to check the MIC.
*44: Since the complete message is copied from NIC RAM to PC RAM, the Rx can be acknowledged to the Hermes
*	to optimize the flow ( a better chance to get new Rx data in the next pass through hcf_service_nic ).
*	This acknowledgement can not be done via hcf_action( HCF_ACT_RX_ACK ) because this also clears
*	IFB_RxLEN thus corrupting the I/F to the MSF.
*;?: In case of DMA (compiled in and activated):


*54: Limiting the number of places where the F/W is acked (e.g. the merging of the Rx-ACK with the other
*	ACKs), is supposed to diminish the potential of race conditions in the F/W.
*	Note 1: The CMD event is acknowledged in cmd_cmpl
*	Note 2: HREG_EV_ACK_REG_READY is 0x0000 for H-I (and hopefully H-II.5)
*	Note 3: The ALLOC event is acknowledged in get_fid (except for the initialization flow)
*
*.NOTICE
* The Non-DMA HREG_EV_RX is handled different compared with the other F/W events.
* The HREG_EV_RX event is acknowledged by the first hcf_service_nic call after the
* hcf_service_nic call that reported the occurrence of this event.
* This acknowledgment
* makes the next Receive Frame Structure (if any) available.
* An updated IFB_RxLen
* field reflects this availability.
*
*.NOTICE
* The minimum size for Len must supply space for:
* -	an F/W dependent number of bytes of Control Info field including the 802.11 Header field
* -	Destination Address
* -	Source Address
* -	Length field
* -	[ SNAP Header]
* -	[ Ethernet-II Type]
* This results in 68 for Hermes-I and 80 for Hermes-II
* This way the minimum amount of information is available needed by the HCF to determine whether the frame
* must be decapsulated.
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/
int
hcf_service_nic( IFBP ifbp, wci_bufp bufp, unsigned int len )
{

int			rc = HCF_SUCCESS;
hcf_16		stat;
wci_bufp	buf_addr;
hcf_16 		i;

	HCFLOGENTRY( HCF_TRACE_SERVICE_NIC, ifbp->IFB_IntOffCnt )
	HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic )
	HCFASSERT_INT

	ifbp->IFB_LinkStat = 0; // ;? to be obsoleted ASAP												/* 1*/
	ifbp->IFB_DSLinkStat &= ~CFG_LINK_STAT_CHANGE;													/* 1*/
	(void)hcf_action( ifbp, HCF_ACT_RX_ACK );														/* 2*/
	if ( ifbp->IFB_CardStat == 0 && ( stat = IPW( HREG_EV_STAT ) ) != 0xFFFF ) {					/* 4*/
/*		IF_NOT_DMA( HCFASSERT( !( stat & ~HREG_EV_BASIC_MASK, stat ) )
 *		IF_NOT_USE_DMA( HCFASSERT( !( stat & ~HREG_EV_BASIC_MASK, stat ) )
 *		IF_USE_DMA( HCFASSERT( !( stat & ~( HREG_EV_BASIC_MASK ^ ( HREG_EV_...DMA.... ), stat ) )
 */
																									/* 8*/
		if ( ifbp->IFB_RscInd == 0 && stat & HREG_EV_ALLOC ) { //Note: IFB_RscInd is ALWAYS 1 for DMA
			ifbp->IFB_RscInd = 1;
		}
		IF_TALLY( if ( stat & HREG_EV_INFO_DROP ) ifbp->IFB_HCF_Tallies.NoBufInfo++; )
#if (HCF_EXT) & HCF_EXT_INT_TICK
		if ( stat & HREG_EV_TICK ) {
			ifbp->IFB_TickCnt++;
		}
#if 0 // (HCF_SLEEP) & HCF_DDS
		if ( ifbp->IFB_TickCnt == 3 && ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_CONNECTED ) == 0 ) {
CFG_DDS_TICK_TIME_STRCT ltv;
			// 2 second period (with 1 tick uncertanty) in not-connected mode -->go into DS_OOR
			hcf_action( ifbp, HCF_ACT_SLEEP );
			ifbp->IFB_DSLinkStat |= CFG_LINK_STAT_DS_OOR; //set OutOfRange
			ltv.len = 2;
			ltv.typ = CFG_DDS_TICK_TIME;
			ltv.tick_time = ( ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_TIMER ) + 0x10 ) *64; //78 is more right
			hcf_put_info( ifbp, (LTVP)&ltv );
			printk( "<5>Preparing for sleep, link_status: %04X, timer : %d\n",
					ifbp->IFB_DSLinkStat, ltv.tick_time );//;?remove me 1 day
			ifbp->IFB_TickCnt++; //;?just to make sure we do not keep on printing above message
			if ( ltv.tick_time < 300 * 125 ) ifbp->IFB_DSLinkStat += 0x0010;

		}
#endif // HCF_DDS
#endif // HCF_EXT_INT_TICK
		if ( stat & HREG_EV_INFO ) {
			isr_info( ifbp );
		}
#if (HCF_EXT) & HCF_EXT_INT_TX_EX
		if ( stat & HREG_EV_TX_EXT && ( i = IPW( HREG_TX_COMPL_FID ) ) != 0 /*DAWA*/ ) {
			DAWA_ZERO_FID( HREG_TX_COMPL_FID )
			(void)setup_bap( ifbp, i, 0, IO_IN );
			get_frag( ifbp, &ifbp->IFB_TxFsStat, HFS_SWSUP BE_PAR(1) );
		}
#endif // HCF_EXT_INT_TX_EX
//!rlav DMA engine will handle the rx event, not the driver
#if HCF_DMA
		if ( !( ifbp->IFB_CntlOpt & USE_DMA ) ) //!! be aware of the logical indentations
#endif // HCF_DMA
/*16*/	  if ( stat & HREG_EV_RX && ( ifbp->IFB_RxFID = IPW( HREG_RX_FID ) ) != 0 ) { //if 0 then DAWA_ACK
			HCFASSERT( bufp, len )
			HCFASSERT( len >= HFS_DAT + 2, len )
			DAWA_ZERO_FID( HREG_RX_FID )
			HCFASSERT( ifbp->IFB_RxFID < CFG_PROD_DATA, ifbp->IFB_RxFID)
			(void)setup_bap( ifbp, ifbp->IFB_RxFID, 0, IO_IN );
			get_frag( ifbp, bufp, HFS_ADDR_DEST BE_PAR(1) );
			ifbp->IFB_lap = buf_addr = bufp + HFS_ADDR_DEST;
			ifbp->IFB_RxLen = (hcf_16)(bufp[HFS_DAT_LEN] + (bufp[HFS_DAT_LEN+1]<<8) + 2*6 + 2);
/*26*/		if ( ifbp->IFB_RxLen >= 22 ) {		// convenient for MIC calculation (5 DWs + 1 "skipped" W)
												//.  get DA,SA,Len/Type and (SNAP,Type or 8 data bytes)
/*30*/			get_frag( ifbp, buf_addr, 22 BE_PAR(0) );
/*32*/			CALC_RX_MIC( bufp, -1 );		//.  initialize MIC
				CALC_RX_MIC( buf_addr, HCF_DASA_SIZE );	//.  MIC over DA, SA
				CALC_RX_MIC( null_addr, 4 );	//.  MIC over (virtual) priority field
				CALC_RX_MIC( buf_addr+14, 8 );	//.  skip Len, MIC over SNAP,Type or 8 data bytes)
				buf_addr += 22;
#if (HCF_TYPE) & HCF_TYPE_CCX
//!!be careful do not use positive test on HCF_ACT_CCX_OFF, because IFB_CKIPStat is initially 0
				if( ifbp->IFB_CKIPStat != HCF_ACT_CCX_ON  )
#endif // HCF_TYPE_CCX
				{
#if (HCF_ENCAP) == HCF_ENC
					HCFASSERT( len >= HFS_DAT + 2 + sizeof(snap_header), len )
/*34*/ 				i = *(wci_recordp)&bufp[HFS_STAT] & ( HFS_STAT_MSG_TYPE | HFS_STAT_ERR );
					if ( i == HFS_STAT_TUNNEL ||
						 ( i == HFS_STAT_1042 && hcf_encap( (wci_bufp)&bufp[HFS_TYPE] ) != ENC_TUNNEL ) ) {
												//.  copy E-II Type to 802.3 LEN field
/*36*/					bufp[HFS_LEN  ] = bufp[HFS_TYPE  ];
						bufp[HFS_LEN+1] = bufp[HFS_TYPE+1];
												//.  discard Snap by overwriting with data
						ifbp->IFB_RxLen -= (HFS_TYPE - HFS_LEN);
						buf_addr -= ( HFS_TYPE - HFS_LEN ); // this happens to bring us at a DW boundary of 36
					}
#endif // HCF_ENC
				}
			}
/*40*/		ifbp->IFB_lal = min( (hcf_16)(len - HFS_ADDR_DEST), ifbp->IFB_RxLen );
			i = ifbp->IFB_lal - ( buf_addr - ( bufp + HFS_ADDR_DEST ) );
			get_frag( ifbp, buf_addr, i BE_PAR(0) );
			CALC_RX_MIC( buf_addr, i );
#if (HCF_TYPE) & HCF_TYPE_WPA
			if ( ifbp->IFB_lal == ifbp->IFB_RxLen ) {
				rc = check_mic( ifbp );
			}
#endif // HCF_TYPE_WPA
/*44*/		if ( len - HFS_ADDR_DEST >= ifbp->IFB_RxLen ) {
				ifbp->IFB_RxFID = 0;
			} else { /* IFB_RxFID is cleared, so  you do not get another Rx_Ack at next entry of hcf_service_nic */
				stat &= (hcf_16)~HREG_EV_RX;	//don't ack Rx if processing not yet completed
			}
		}
		// in case of DMA: signal availability of rx and/or tx packets to MSF
		IF_USE_DMA( ifbp->IFB_DmaPackets |= stat & ( HREG_EV_RDMAD | HREG_EV_TDMAD ); )
		// rlav : pending HREG_EV_RDMAD or HREG_EV_TDMAD events get acknowledged here.
/*54*/	stat &= (hcf_16)~( HREG_EV_SLEEP_REQ | HREG_EV_CMD | HREG_EV_ACK_REG_READY | HREG_EV_ALLOC | HREG_EV_FW_DMA );
//a positive mask would be easier to understand /*54*/	stat &= (hcf_16)~( HREG_EV_SLEEP_REQ | HREG_EV_CMD | HREG_EV_ACK_REG_READY | HREG_EV_ALLOC | HREG_EV_FW_DMA );
		IF_USE_DMA( stat &= (hcf_16)~HREG_EV_RX; )
		if ( stat ) {
			DAWA_ACK( stat );	/*DAWA*/
		}
	}
	HCFLOGEXIT( HCF_TRACE_SERVICE_NIC )
	return rc;
} // hcf_service_nic
#endif // HCF_DL_ONLY


/************************************************************************************************************
************************** H C F   S U P P O R T   R O U T I N E S ******************************************
************************************************************************************************************/


/************************************************************************************************************
*
*.SUBMODULE		void calc_mic( hcf_32* p, hcf_32 m )
*.PURPOSE		calculate MIC on a quad byte.
*
*.ARGUMENTS
*	p			address of the MIC
*	m			32 bit value to be processed by the MIC calculation engine
*
*.RETURNS		N.A.
*
*.DESCRIPTION
* calc_mic is the implementation of the MIC algorithm. It is a monkey-see monkey-do copy of
* Michael::appendByte()
* of Appendix C of ..........
*
*
*.DIAGRAM
*
*.NOTICE
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/

#if (HCF_TYPE) & HCF_TYPE_WPA

#define ROL32( A, n ) ( ((A) << (n)) | ( ((A)>>(32-(n)))  & ( (1UL << (n)) - 1 ) ) )
#define ROR32( A, n ) ROL32( (A), 32-(n) )

#define L	*p
#define R	*(p+1)

void
calc_mic( hcf_32* p, hcf_32 m )
{
#if HCF_BIG_ENDIAN
	m = (m >> 16) | (m << 16);
#endif // HCF_BIG_ENDIAN
	L ^= m;
	R ^= ROL32( L, 17 );
	L += R;
	R ^= ((L & 0xff00ff00) >> 8) | ((L & 0x00ff00ff) << 8);
	L += R;
	R ^= ROL32( L, 3 );
	L += R;
	R ^= ROR32( L, 2 );
	L += R;
} // calc_mic
#undef R
#undef L
#endif // HCF_TYPE_WPA



#if (HCF_TYPE) & HCF_TYPE_WPA
/************************************************************************************************************
*
*.SUBMODULE		void calc_mic_rx_frag( IFBP ifbp, wci_bufp p, int len )
*.PURPOSE		calculate MIC on a single fragment.
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*	bufp		(byte) address of buffer
*	len			length in bytes of buffer specified by bufp
*
*.RETURNS		N.A.
*
*.DESCRIPTION
* calc_mic_rx_frag ........
*
* The MIC is located in the IFB.
* The MIC is separate for Tx and Rx, thus allowing hcf_send_msg to occur between hcf_service_nic and
* hcf_rcv_msg.
*
*
*.DIAGRAM
*
*.NOTICE
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/
void
calc_mic_rx_frag( IFBP ifbp, wci_bufp p, int len )
{
static union { hcf_32 x32; hcf_16 x16[2]; hcf_8 x8[4]; } x;	//* area to accumulate 4 bytes input for MIC engine
int i;

	if ( len == -1 ) {								//initialize MIC housekeeping
		i = *(wci_recordp)&p[HFS_STAT];
		/* i = CNV_SHORTP_TO_LITTLE(&p[HFS_STAT]); should not be neede to prevent alignment poroblems
		 * since len == -1 if and only if p is lookahaead buffer which MUST be word aligned
		 * to be re-investigated by NvR
		 */

		if ( ( i & HFS_STAT_MIC ) == 0 ) {
			ifbp->IFB_MICRxCarry = 0xFFFF;			//suppress MIC calculation
		} else {
			ifbp->IFB_MICRxCarry = 0;
//*	Note that "coincidentally" the bit positions used in HFS_STAT
//*	correspond with the offset of the key in IFB_MICKey
			i = ( i & HFS_STAT_MIC_KEY_ID ) >> 10;	/* coincidentally no shift needed for i itself */
			ifbp->IFB_MICRx[0] = CNV_LONG_TO_LITTLE(ifbp->IFB_MICRxKey[i  ]);
			ifbp->IFB_MICRx[1] = CNV_LONG_TO_LITTLE(ifbp->IFB_MICRxKey[i+1]);
		}
	} else {
		if ( ifbp->IFB_MICRxCarry == 0 ) {
			x.x32 = CNV_LONGP_TO_LITTLE(p);
			p += 4;
			if ( len < 4 ) {
				ifbp->IFB_MICRxCarry = (hcf_16)len;
			} else {
				ifbp->IFB_MICRxCarry = 4;
				len -= 4;
			}
		} else while ( ifbp->IFB_MICRxCarry < 4 && len ) {		//note for hcf_16 applies: 0xFFFF > 4
			x.x8[ifbp->IFB_MICRxCarry++] = *p++;
			len--;
		}
		while ( ifbp->IFB_MICRxCarry == 4 ) {	//contrived so we have only 1 call to calc_mic so we could bring it in-line
			calc_mic( ifbp->IFB_MICRx, x.x32 );
			x.x32 = CNV_LONGP_TO_LITTLE(p);
			p += 4;
			if ( len < 4 ) {
				ifbp->IFB_MICRxCarry = (hcf_16)len;
			}
			len -= 4;
		}
	}
} // calc_mic_rx_frag
#endif // HCF_TYPE_WPA


#if (HCF_TYPE) & HCF_TYPE_WPA
/************************************************************************************************************
*
*.SUBMODULE		void calc_mic_tx_frag( IFBP ifbp, wci_bufp p, int len )
*.PURPOSE		calculate MIC on a single fragment.
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*	bufp		(byte) address of buffer
*	len			length in bytes of buffer specified by bufp
*
*.RETURNS		N.A.
*
*.DESCRIPTION
* calc_mic_tx_frag ........
*
* The MIC is located in the IFB.
* The MIC is separate for Tx and Rx, thus allowing hcf_send_msg to occur between hcf_service_nic and
* hcf_rcv_msg.
*
*
*.DIAGRAM
*
*.NOTICE
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/
void
calc_mic_tx_frag( IFBP ifbp, wci_bufp p, int len )
{
static union { hcf_32 x32; hcf_16 x16[2]; hcf_8 x8[4]; } x;	//* area to accumulate 4 bytes input for MIC engine

														//if initialization request
	if ( len == -1 ) {
														//.  presume MIC calculation disabled
		ifbp->IFB_MICTxCarry = 0xFFFF;
														//.  if MIC calculation enabled
		if ( ifbp->IFB_MICTxCntl ) {
														//.  .  clear MIC carry
			ifbp->IFB_MICTxCarry = 0;
														//.  .  initialize MIC-engine
			ifbp->IFB_MICTx[0] = CNV_LONG_TO_LITTLE(ifbp->IFB_MICTxKey[0]);	/*Tx always uses Key 0 */
			ifbp->IFB_MICTx[1] = CNV_LONG_TO_LITTLE(ifbp->IFB_MICTxKey[1]);
		}
														//else
	} else {
														//.  if MIC enabled (Tx) / if MIC present (Rx)
														//.  and no carry from previous calc_mic_frag
		if ( ifbp->IFB_MICTxCarry == 0 ) {
														//.  .  preset accu with 4 bytes from buffer
			x.x32 = CNV_LONGP_TO_LITTLE(p);
														//.  .  adjust pointer accordingly
			p += 4;
														//.  .  if buffer contained less then 4 bytes
			if ( len < 4 ) {
														//.  .  .  promote valid bytes in accu to carry
														//.  .  .  flag accu to contain incomplete double word
				ifbp->IFB_MICTxCarry = (hcf_16)len;
														//.  .  else
			} else {
														//.  .  .  flag accu to contain complete double word
				ifbp->IFB_MICTxCarry = 4;
														//.  .  adjust remaining buffer length
				len -= 4;
			}
														//.  else if MIC enabled
														//.  and if carry bytes from previous calc_mic_tx_frag
														//.  .  move (1-3) bytes from carry into accu
		} else while ( ifbp->IFB_MICTxCarry < 4 && len ) {		/* note for hcf_16 applies: 0xFFFF > 4 */
			x.x8[ifbp->IFB_MICTxCarry++] = *p++;
			len--;
		}
														//.  while accu contains complete double word
														//.  and MIC enabled
		while ( ifbp->IFB_MICTxCarry == 4 ) {
														//.  .  pass accu to MIC engine
			calc_mic( ifbp->IFB_MICTx, x.x32 );
														//.  .  copy next 4 bytes from buffer to accu
			x.x32 = CNV_LONGP_TO_LITTLE(p);
														//.  .  adjust buffer pointer
			p += 4;
														//.  .  if buffer contained less then 4 bytes
														//.  .  .  promote valid bytes in accu to carry
														//.  .  .  flag accu to contain incomplete double word
			if ( len < 4 ) {
				ifbp->IFB_MICTxCarry = (hcf_16)len;
			}
														//.  .  adjust remaining buffer length
			len -= 4;
		}
	}
} // calc_mic_tx_frag
#endif // HCF_TYPE_WPA


#if HCF_PROT_TIME
/************************************************************************************************************
*
*.SUBMODULE		void calibrate( IFBP ifbp )
*.PURPOSE		calibrates the S/W protection counter against the Hermes Timer tick.
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*
*.RETURNS		N.A.
*
*.DESCRIPTION
* calibrates the S/W protection counter against the Hermes Timer tick
* IFB_TickIni is the value used to initialize the S/W protection counter such that the expiration period
* more or less independent of the processor speed. If IFB_TickIni is not yet calibrated, it is done now.
* This calibration is "reasonably" accurate because the Hermes is in a quiet state as a result of the
* Initialize command.
*
*
*.DIAGRAM
*
*1:	IFB_TickIni is initialized at INI_TICK_INI by hcf_connect. If calibrate succeeds, IFB_TickIni is
*	guaranteed to be changed. As a consequence there will be only 1 shot at calibration (regardless of the
*	number of init calls) under normal circumstances.
*2:	Calibration is done HCF_PROT_TIME_CNT times. This diminish the effects of jitter and interference,
*	especially in a pre-emptive environment. HCF_PROT_TIME_CNT is in the range of 16 through 32 and derived
*	from the HCF_PROT_TIME specified by the MSF programmer. The divisor needed to scale HCF_PROT_TIME into the
*	16-32 range, is used as a multiplicator after the calibration, to scale the found value back to the
*	requested range. This way a compromise is achieved between accuracy and duration of the calibration
*	process.
*3:	Acknowledge the Timer Tick Event.
*	Each cycle is limited to at most INI_TICK_INI samples of the TimerTick status of the Hermes.
*	Since the start of calibrate is unrelated to the Hermes Internal Timer, the first interval may last from 0
*	to the normal interval, all subsequent intervals should be the full length of the Hermes Tick interval.
*	The Hermes Timer Tick is not reprogrammed by the HCF, hence it is running at the default of 10 k
*	microseconds.
*4:	If the Timer Tick Event is continuously up (prot_cnt still has the value INI_TICK_INI) or no Timer Tick
*	Event occurred before the protection counter expired, reset IFB_TickIni to INI_TICK_INI,
*	set the defunct bit of IFB_CardStat (thus rendering the Hermes inoperable) and exit the calibrate routine.
*8:	ifbp->IFB_TickIni is multiplied to scale the found value back to the requested range as explained under 2.
*
*.NOTICE
* o Although there are a number of viewpoints possible, calibrate() uses as error strategy that a single
*	failure of the Hermes TimerTick is considered fatal.
* o There is no hard and concrete time-out value defined for Hermes activities. The default 1 seconds is
*	believed to be sufficiently "relaxed" for real life and to be sufficiently short to be still useful in an
*	environment with humans.
* o Note that via IFB_DefunctStat time outs in cmd_wait and in hcfio_string block all Hermes access till the
*	next init so functions which call a mix of cmd_wait and hcfio_string only need to check the return status
*	of the last call
* o The return code is preset at Time out.
*	The additional complication that no calibrated value for the protection count can be assumed since
*	calibrate() does not yet have determined a calibrated value (a catch 22), is handled by setting the
*	initial value at INI_TICK_INI (by hcf_connect). This approach is considered safe, because:
*	  - the HCF does not use the pipeline mechanism of Hermes commands.
*	  - the likelihood of failure (the only time when protection count is relevant) is small.
*	  - the time will be sufficiently large on a fast machine (busy bit drops on good NIC before counter
*		expires)
*	  - the time will be sufficiently small on a slow machine (counter expires on bad NIC before the end user
*	  	switches the power off in despair
*	The time needed to wrap a 32 bit counter around is longer than many humans want to wait, hence the more or
*	less arbitrary value of 0x40000L is chosen, assuming it does not take too long on an XT and is not too
*	short on a scream-machine.
*
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/
HCF_STATIC void
calibrate( IFBP ifbp )
{
int		cnt = HCF_PROT_TIME_CNT;
hcf_32	prot_cnt;

	HCFTRACE( ifbp, HCF_TRACE_CALIBRATE );
	if ( ifbp->IFB_TickIni == INI_TICK_INI ) {													/*1*/
		ifbp->IFB_TickIni = 0;																	/*2*/
			while ( cnt-- ) {
				prot_cnt = INI_TICK_INI;
				OPW( HREG_EV_ACK, HREG_EV_TICK );												/*3*/
				while ( (IPW( HREG_EV_STAT ) & HREG_EV_TICK) == 0 && --prot_cnt ) {
					ifbp->IFB_TickIni++;
				}
				if ( prot_cnt == 0 || prot_cnt == INI_TICK_INI ) {								/*4*/
					ifbp->IFB_TickIni = INI_TICK_INI;
					ifbp->IFB_DefunctStat = HCF_ERR_DEFUNCT_TIMER;
					ifbp->IFB_CardStat |= CARD_STAT_DEFUNCT;
					HCFASSERT( DO_ASSERT, prot_cnt )
				}
			}
		ifbp->IFB_TickIni <<= HCF_PROT_TIME_SHFT;												/*8*/
	}
	HCFTRACE( ifbp, HCF_TRACE_CALIBRATE | HCF_TRACE_EXIT );
} // calibrate
#endif // HCF_PROT_TIME


#if (HCF_DL_ONLY) == 0
#if (HCF_TYPE) & HCF_TYPE_WPA
/************************************************************************************************************
*
*.SUBMODULE		int check_mic( IFBP ifbp )
*.PURPOSE		verifies the MIC of a received non-USB frame.
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*
*.RETURNS
*	HCF_SUCCESS
*	HCF_ERR_MIC
*
*.DESCRIPTION
*
*
*.DIAGRAM
*
*4:	test whether or not a MIC is reported by the Hermes
*14: the calculated MIC and the received MIC are compared, the return status is set when there is a mismatch
*
*.NOTICE
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/
int
check_mic( IFBP ifbp )
{
int		rc = HCF_SUCCESS;
hcf_32 x32[2];				//* area to save rcvd 8 bytes MIC

													//if MIC present in RxFS
	if ( *(wci_recordp)&ifbp->IFB_lap[-HFS_ADDR_DEST] & HFS_STAT_MIC ) {
	//or if ( ifbp->IFB_MICRxCarry != 0xFFFF )
		CALC_RX_MIC( mic_pad, 8 );					//.  process up to 3 remaining bytes of data and append 5 to 8 bytes of padding to MIC calculation
		get_frag( ifbp, (wci_bufp)x32, 8 BE_PAR(0));//.  get 8 byte MIC from NIC
													//.  if calculated and received MIC do not match
													//.  .  set status at HCF_ERR_MIC
/*14*/  if ( x32[0] != CNV_LITTLE_TO_LONG(ifbp->IFB_MICRx[0]) ||
        	 x32[1] != CNV_LITTLE_TO_LONG(ifbp->IFB_MICRx[1])	  ) {
			rc = HCF_ERR_MIC;
		}
	}
													//return status
	return rc;
} // check_mic
#endif // HCF_TYPE_WPA
#endif // HCF_DL_ONLY


/************************************************************************************************************
*
*.SUBMODULE		int cmd_cmpl( IFBP ifbp )
*.PURPOSE		waits for Hermes Command Completion.
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*
*.RETURNS
*	IFB_DefunctStat
*	HCF_ERR_TIME_OUT
*	HCF_ERR_DEFUNCT_CMD_SEQ
*	HCF_SUCCESS
*
*.DESCRIPTION
*
*
*.DIAGRAM
*
*2:	Once cmd_cmpl is called, the Busy option bit in IFB_Cmd must be cleared
*4:	If Status register and command code don't match either:
*	 - the Hermes and Host are out of sync ( a fatal error)
*	 - error bits are reported via the Status Register.
*	Out of sync is considered fatal and brings the HCF in Defunct mode
*	Errors reported via the Status Register should be caused by sequence violations in Hermes command
*	sequences and hence these bugs should have been found during engineering testing. Since there is no
*	strategy to cope with this problem, it might as well be ignored at run time. Note that for any particular
*	situation where a strategy is formulated to handle the consequences of a particular bug causing a
*	particular Error situation reported via the Status Register, the bug should be removed rather than adding
*	logic to cope with the consequences of the bug.
*	There have been HCF versions where an error report via the Status Register even brought the HCF in defunct
*	mode (although it was not yet named like that at that time). This is particular undesirable behavior for a
*	general library.
*	Simply reporting the error (as "interesting") is debatable. There also have been HCF versions with this
*	strategy using the "vague" HCF_FAILURE code.
*	The error is reported via:
*	 - MiscErr tally of the HCF Tally set
*	 - the (informative) fields IFB_ErrCmd and IFB_ErrQualifier
*	 - the assert mechanism
*8:	Here the Defunct case and the Status error are separately treated
*
*
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/
HCF_STATIC int
cmd_cmpl( IFBP ifbp )
{

PROT_CNT_INI
int		rc = HCF_SUCCESS;
hcf_16	stat;

	HCFLOGENTRY( HCF_TRACE_CMD_CPL, ifbp->IFB_Cmd )
	ifbp->IFB_Cmd &= ~HCMD_BUSY;												/* 2 */
	HCF_WAIT_WHILE( (IPW( HREG_EV_STAT) & HREG_EV_CMD) == 0 );					/* 4 */
	stat = IPW( HREG_STAT );
#if HCF_PROT_TIME
	if ( prot_cnt == 0 ) {
		IF_TALLY( ifbp->IFB_HCF_Tallies.MiscErr++; )
		rc = HCF_ERR_TIME_OUT;
		HCFASSERT( DO_ASSERT, ifbp->IFB_Cmd )
	} else
#endif // HCF_PROT_TIME
	{
		DAWA_ACK( HREG_EV_CMD );
/*4*/	if ( stat != (ifbp->IFB_Cmd & HCMD_CMD_CODE) ) {
/*8*/		if ( ( (stat ^ ifbp->IFB_Cmd ) & HCMD_CMD_CODE) != 0 ) {
				rc = ifbp->IFB_DefunctStat = HCF_ERR_DEFUNCT_CMD_SEQ;
				ifbp->IFB_CardStat |= CARD_STAT_DEFUNCT;
			}
			IF_TALLY( ifbp->IFB_HCF_Tallies.MiscErr++; )
			ifbp->IFB_ErrCmd = stat;
			ifbp->IFB_ErrQualifier = IPW( HREG_RESP_0 );
			HCFASSERT( DO_ASSERT, MERGE_2( IPW( HREG_PARAM_0 ), ifbp->IFB_Cmd ) )
			HCFASSERT( DO_ASSERT, MERGE_2( ifbp->IFB_ErrQualifier, ifbp->IFB_ErrCmd ) )
		}
	}
	HCFASSERT( rc == HCF_SUCCESS, rc)
	HCFLOGEXIT( HCF_TRACE_CMD_CPL )
	return rc;
} // cmd_cmpl


/************************************************************************************************************
*
*.SUBMODULE		int cmd_exe( IFBP ifbp, int cmd_code, int par_0 )
*.PURPOSE		Executes synchronous part of Hermes Command and - optionally - waits for Command Completion.
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*	cmd_code
*	par_0
*
*.RETURNS
*	IFB_DefunctStat
*	HCF_ERR_DEFUNCT_CMD_SEQ
*	HCF_SUCCESS
*	HCF_ERR_TO_BE_ADDED	<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
*
*.DESCRIPTION
* Executes synchronous Hermes Command and waits for Command Completion
*
* The general HCF strategy is to wait for command completion. As a consequence:
* - the read of the busy bit before writing the command register is superfluous
* - the Hermes requirement that no Inquiry command may be executed if there is still an unacknowledged
*	Inquiry command outstanding, is automatically met.
* The Tx command uses the "Busy" bit in the cmd_code parameter to deviate from this general HCF strategy.
* The idea is that by not busy-waiting on completion of this frequently used command the processor
* utilization is diminished while using the busy-wait on all other seldom used commands the flow is kept
* simple.
*
*
*
*.DIAGRAM
*
*1:	skip the body of cmd_exe when in defunct mode or when - based on the S/W Support register write and
*	read back test - there is apparently no NIC.
*	Note: we gave up on the "old" strategy to write the S/W Support register at magic only when needed. Due to
*	the intricateness of Hermes F/W varieties ( which behave differently as far as corruption of the S/W
*	Support register is involved), the increasing number of Hermes commands which do an implicit initialize
*	(thus modifying the S/W Support register) and the workarounds of some OS/Support S/W induced aspects (e.g.
*	the System Soft library at WinNT which postpones the actual mapping of I/O space up to 30 seconds after
*	giving the go-ahead), the "magic" strategy is now reduced to a simple write and read back. This means that
*	problems like a bug tramping over the memory mapped Hermes registers will no longer be noticed as side
*	effect of the S/W Support register check.
*2:	check whether the preceding command skipped the busy wait and if so, check for command completion
*
*.NOTICE
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/

HCF_STATIC int
cmd_exe( IFBP ifbp, hcf_16 cmd_code, hcf_16 par_0 )	//if HCMD_BUSY of cmd_code set, then do NOT wait for completion
{
int rc;

	HCFLOGENTRY( HCF_TRACE_CMD_EXE, cmd_code )
	HCFASSERT( (cmd_code & HCMD_CMD_CODE) != HCMD_TX || cmd_code & HCMD_BUSY, cmd_code ) //Tx must have Busy bit set
	OPW( HREG_SW_0, HCF_MAGIC );
	if ( IPW( HREG_SW_0 ) == HCF_MAGIC ) {														/* 1 */
		rc = ifbp->IFB_DefunctStat;
	}
	else rc = HCF_ERR_NO_NIC;
	if ( rc == HCF_SUCCESS ) {
		//;?is this a hot idea, better MEASURE performance impact
/*2*/	if ( ifbp->IFB_Cmd & HCMD_BUSY ) {
			rc = cmd_cmpl( ifbp );
		}
		OPW( HREG_PARAM_0, par_0 );
		OPW( HREG_CMD, cmd_code &~HCMD_BUSY );
		ifbp->IFB_Cmd = cmd_code;
		if ( (cmd_code & HCMD_BUSY) == 0 ) {	//;?is this a hot idea, better MEASURE performance impact
			rc = cmd_cmpl( ifbp );
		}
	}
	HCFASSERT( rc == HCF_SUCCESS, MERGE_2( rc, cmd_code ) )
	HCFLOGEXIT( HCF_TRACE_CMD_EXE )
	return rc;
} // cmd_exe


/************************************************************************************************************
*
*.SUBMODULE		int download( IFBP ifbp, CFG_PROG_STRCT FAR *ltvp )
*.PURPOSE		downloads F/W image into NIC and initiates execution of the downloaded F/W.
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*	ltvp		specifies the pseudo-RID (as defined by WCI)
*
*.RETURNS
*
*.DESCRIPTION
*
*
*.DIAGRAM
*1:	First, Ack everything to unblock a (possibly) blocked cmd pipe line
*	Note 1: it is very likely that an Alloc event is pending and very well possible that a (Send) Cmd event is
*	pending
*	Note 2: it is assumed that this strategy takes away the need to ack every conceivable event after an
*	Hermes Initialize
*
*
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/
HCF_STATIC int
download( IFBP ifbp, CFG_PROG_STRCT FAR *ltvp )						//Hermes-II download (volatile only)
{
hcf_16				i;
int					rc = HCF_SUCCESS;
wci_bufp			cp;
hcf_io				io_port = ifbp->IFB_IOBase + HREG_AUX_DATA;

	HCFLOGENTRY( HCF_TRACE_DL, ltvp->typ )
#if (HCF_TYPE) & HCF_TYPE_PRELOADED
	HCFASSERT( DO_ASSERT, ltvp->mode )
#else
													//if initial "program" LTV
	if ( ifbp->IFB_DLMode == CFG_PROG_STOP && ltvp->mode == CFG_PROG_VOLATILE) {
													//.  switch Hermes to initial mode
/*1*/	OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ );
		rc = cmd_exe( ifbp, HCMD_INI, 0 );	/* HCMD_INI can not be part of init() because that is called on
											 * other occasions as well */
		rc = init( ifbp );
	}
													//if final "program" LTV
	if ( ltvp->mode == CFG_PROG_STOP && ifbp->IFB_DLMode == CFG_PROG_VOLATILE) {
													//.  start tertiary (or secondary)
		OPW( HREG_PARAM_1, (hcf_16)(ltvp->nic_addr >> 16) );
		rc = cmd_exe( ifbp, HCMD_EXECUTE, (hcf_16) ltvp->nic_addr );
		if (rc == HCF_SUCCESS) {
			rc = init( ifbp );	/*;? do we really want to skip init if cmd_exe failed, i.e.
								 *	 IFB_FW_Comp_Id is than possibly incorrect */
	  	}
													//else (non-final)
	} else {
													//.  if mode == Readback SEEPROM
#if 0	//;? as long as the next if contains a hard coded 0, might as well leave it out even more obvious
		if ( 0 /*len is definitely not want we want;?*/ && ltvp->mode == CFG_PROG_SEEPROM_READBACK ) {
			OPW( HREG_PARAM_1, (hcf_16)(ltvp->nic_addr >> 16) );
			OPW( HREG_PARAM_2, MUL_BY_2(ltvp->len - 4));
													//.  .  perform Hermes prog cmd with appropriate mode bits
			rc = cmd_exe( ifbp, HCMD_PROGRAM | ltvp->mode, (hcf_16)ltvp->nic_addr );
													//.  .  set up NIC RAM addressability according Resp0-1
			OPW( HREG_AUX_PAGE,   IPW( HREG_RESP_1) );
			OPW( HREG_AUX_OFFSET, IPW( HREG_RESP_0) );
													//.  .  set up L-field of LTV according Resp2
			i = ( IPW( HREG_RESP_2 ) + 1 ) / 2;  // i contains max buffer size in words, a probably not very useful piece of information ;?
/*Nico's code based on i is the "real amount of data available"
			if ( ltvp->len - 4 < i ) rc = HCF_ERR_LEN;
			else ltvp->len = i + 4;
*/
/* Rolands code based on the idea that a MSF should not ask for more than is available
			// check if number of bytes requested exceeds max buffer size
			if ( ltvp->len - 4 > i ) {
				rc = HCF_ERR_LEN;
				ltvp->len = i + 4;
			}
*/
													//.  .  copy data from NIC via AUX port to LTV
			cp = (wci_bufp)ltvp->host_addr;						/*IN_PORT_STRING_8_16 macro may modify its parameters*/
			i = ltvp->len - 4;
			IN_PORT_STRING_8_16( io_port, cp, i );		//!!!WORD length, cp MUST be a char pointer	// $$ char
													//.  else (non-final programming)
		} else
#endif //;? as long as the above if contains a hard coded 0, might as well leave it out even more obvious
		{											//.  .  get number of words to program
			HCFASSERT( ltvp->segment_size, *ltvp->host_addr )
			i = ltvp->segment_size/2;
													//.  .  copy data (words) from LTV via AUX port to NIC
			cp = (wci_bufp)ltvp->host_addr;						//OUT_PORT_STRING_8_16 macro may modify its parameters
													//.  .  if mode == volatile programming
			if ( ltvp->mode == CFG_PROG_VOLATILE ) {
													//.  .  .  set up NIC RAM addressability via AUX port
				OPW( HREG_AUX_PAGE, (hcf_16)(ltvp->nic_addr >> 16 << 9 | (ltvp->nic_addr & 0xFFFF) >> 7 ) );
				OPW( HREG_AUX_OFFSET, (hcf_16)(ltvp->nic_addr & 0x007E) );
				OUT_PORT_STRING_8_16( io_port, cp, i );		//!!!WORD length, cp MUST be a char pointer
			}
		}
	}
	ifbp->IFB_DLMode = ltvp->mode;					//save state in IFB_DLMode
#endif // HCF_TYPE_PRELOADED
	HCFASSERT( rc == HCF_SUCCESS, rc )
	HCFLOGEXIT( HCF_TRACE_DL )
	return rc;
} // download


#if (HCF_ASSERT) & HCF_ASSERT_PRINTF
/**************************************************
* Certain Hermes-II firmware versions can generate
* debug information. This debug information is
* contained in a buffer in nic-RAM, and can be read
* via the aux port.
**************************************************/
HCF_STATIC int
fw_printf(IFBP ifbp, CFG_FW_PRINTF_STRCT FAR *ltvp)
{
    int rc = HCF_SUCCESS;
    hcf_16 fw_cnt;
//    hcf_32 DbMsgBuffer = 0x29D2, DbMsgCount= 0x000029D0;
//    hcf_16 DbMsgSize=0x00000080;
    hcf_32 DbMsgBuffer;
    CFG_FW_PRINTF_BUFFER_LOCATION_STRCT *p = &ifbp->IFB_FwPfBuff;
    ltvp->len = 1;
    if ( p->DbMsgSize != 0 ) {
        // first, check the counter in nic-RAM and compare it to the latest counter value of the HCF
        OPW( HREG_AUX_PAGE, (hcf_16)(p->DbMsgCount >> 7) );
        OPW( HREG_AUX_OFFSET, (hcf_16)(p->DbMsgCount & 0x7E) );
        fw_cnt = ((IPW( HREG_AUX_DATA) >>1 ) & ((hcf_16)p->DbMsgSize - 1));
        if ( fw_cnt != ifbp->IFB_DbgPrintF_Cnt ) {
//    DbgPrint("fw_cnt=%d IFB_DbgPrintF_Cnt=%d\n", fw_cnt, ifbp->IFB_DbgPrintF_Cnt);
            DbMsgBuffer = p->DbMsgBuffer + ifbp->IFB_DbgPrintF_Cnt * 6; // each entry is 3 words
            OPW( HREG_AUX_PAGE, (hcf_16)(DbMsgBuffer >> 7) );
            OPW( HREG_AUX_OFFSET, (hcf_16)(DbMsgBuffer & 0x7E) );
            ltvp->msg_id     = IPW(HREG_AUX_DATA);
            ltvp->msg_par    = IPW(HREG_AUX_DATA);
            ltvp->msg_tstamp = IPW(HREG_AUX_DATA);
            ltvp->len = 4;
            ifbp->IFB_DbgPrintF_Cnt++;
            ifbp->IFB_DbgPrintF_Cnt &= (p->DbMsgSize - 1);
        }
    }
    return rc;
};
#endif // HCF_ASSERT_PRINTF


#if (HCF_DL_ONLY) == 0
/************************************************************************************************************
*
*.SUBMODULE		hcf_16 get_fid( IFBP ifbp )
*.PURPOSE		get allocated FID for either transmit or notify.
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*
*.RETURNS
*	0	no FID available
*	<>0	FID number
*
*.DESCRIPTION
*
*
*.DIAGRAM
*	The preference is to use a "pending" alloc. If no alloc is pending, then - if available - the "spare" FID
*	is used.
*	If the spare FID is used, IFB_RscInd (representing the spare FID) must be cleared
*	If the pending alloc is used, the alloc event must be acknowledged to the Hermes.
*	In case the spare FID was depleted and the IFB_RscInd has been "faked" as pseudo resource with a 0x0001
*	value by hcf_service_nic, IFB_RscInd has to be "corrected" again to its 0x0000 value.
*
*	Note that due to the Hermes-II H/W problems which are intended to be worked around by DAWA, the Alloc bit
*	in the Event register is no longer a reliable indication of the presence/absence of a FID. The "Clear FID"
*	part of the DAWA logic, together with the choice of the definition of the return information from get_fid,
*	handle this automatically, i.e. without additional code in get_fid.
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/
HCF_STATIC hcf_16
get_fid( IFBP ifbp )
{

hcf_16 fid = 0;
#if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0
PROT_CNT_INI
#endif // HCF_TYPE_HII5

	IF_DMA( HCFASSERT(!(ifbp->IFB_CntlOpt & USE_DMA), ifbp->IFB_CntlOpt) )

	if ( IPW( HREG_EV_STAT) & HREG_EV_ALLOC) {
		fid = IPW( HREG_ALLOC_FID );
		HCFASSERT( fid, ifbp->IFB_RscInd )
		DAWA_ZERO_FID( HREG_ALLOC_FID )
#if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0
		HCF_WAIT_WHILE( ( IPW( HREG_EV_STAT ) & HREG_EV_ACK_REG_READY ) == 0 );
		HCFASSERT( prot_cnt, IPW( HREG_EV_STAT ) )
#endif // HCF_TYPE_HII5
		DAWA_ACK( HREG_EV_ALLOC );			//!!note that HREG_EV_ALLOC is written only once
// 180 degree error in logic ;? #if ALLOC_15
		if ( ifbp->IFB_RscInd == 1 ) {
			ifbp->IFB_RscInd = 0;
		}
//#endif // ALLOC_15
	} else {
// 180 degree error in logic ;? #if ALLOC_15
		fid = ifbp->IFB_RscInd;
//#endif // ALLOC_15
		ifbp->IFB_RscInd = 0;
	}
	return fid;
} // get_fid
#endif // HCF_DL_ONLY


/************************************************************************************************************
*
*.SUBMODULE		void get_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) )
*.PURPOSE		reads with 16/32 bit I/O via BAP1 port from NIC RAM to Host memory.
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*	bufp		(byte) address of buffer
*	len			length in bytes of buffer specified by bufp
*	word_len	Big Endian only: number of leading bytes to swap in pairs
*
*.RETURNS		N.A.
*
*.DESCRIPTION
* process the single byte (if applicable) read by the previous get_frag and copy len (or len-1) bytes from
* NIC to bufp.
* On a Big Endian platform, the parameter word_len controls the number of leading bytes whose endianess is
* converted (i.e. byte swapped)
*
*
*.DIAGRAM
*10: The PCMCIA card can be removed in the middle of the transfer. By depositing a "magic number" in the
*	HREG_SW_0 register of the Hermes at initialization time and by verifying this register, it can be
*	determined whether the card is still present. The return status is set accordingly.
*	Clearing the buffer is a (relative) cheap way to prevent that failing I/O results in run-away behavior
*	because the garbage in the buffer is interpreted by the caller irrespective of the return status (e.g.
*	hcf_service_nic has this behavior).
*
*.NOTICE
*	It turns out DOS ODI uses zero length fragments. The HCF code can cope with it, but as a consequence, no
*	Assert on len is possible
*
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/
HCF_STATIC void
get_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) )
{
hcf_io		io_port = ifbp->IFB_IOBase + HREG_DATA_1;	//BAP data register
wci_bufp	p = bufp;									//working pointer
int			i;											//prevent side effects from macro
int			j;

	HCFASSERT( ((hcf_32)bufp & (HCF_ALIGN-1) ) == 0, (hcf_32)bufp )

/*1:	here recovery logic for intervening BAP access between hcf_service_nic and hcf_rcv_msg COULD be added
 * 	if current access is RxInitial
 * 	.  persistent_offset += len
 */

	i = len;
													//if buffer length > 0 and carry from previous get_frag
	if ( i && ifbp->IFB_CarryIn ) {
													//.  move carry to buffer
													//.  adjust buffer length and pointer accordingly
		*p++ = (hcf_8)(ifbp->IFB_CarryIn>>8);
		i--;
													//.  clear carry flag
		ifbp->IFB_CarryIn = 0;
	}
#if (HCF_IO) & HCF_IO_32BITS
	//skip zero-length I/O, single byte I/O and I/O not worthwhile (i.e. less than 6 bytes)for DW logic
													//if buffer length >= 6 and 32 bits I/O support
	if ( !(ifbp->IFB_CntlOpt & USE_16BIT) && i >= 6 ) {
hcf_32 FAR	*p4; //prevent side effects from macro
		if ( ( (hcf_32)p & 0x1 ) == 0 ) {			//.  if buffer at least word aligned
			if ( (hcf_32)p & 0x2 ) {				//.  .  if buffer not double word aligned
													//.  .  .  read single word to get double word aligned
				*(wci_recordp)p = IN_PORT_WORD( io_port );
													//.  .  .  adjust buffer length and pointer accordingly
				p += 2;
				i -= 2;
			}
													//.  .  read as many double word as possible
			p4 = (hcf_32 FAR *)p;
			j = i/4;
			IN_PORT_STRING_32( io_port, p4, j );
													//.  .  adjust buffer length and pointer accordingly
			p += i & ~0x0003;
			i &= 0x0003;
		}
	}
#endif // HCF_IO_32BITS
													//if no 32-bit support OR byte aligned OR 1-3 bytes left
	if ( i ) {
													//.  read as many word as possible in "alignment safe" way
		j = i/2;
		IN_PORT_STRING_8_16( io_port, p, j );
													//.  if 1 byte left
		if ( i & 0x0001 ) {
													//.  .  read 1 word
			ifbp->IFB_CarryIn = IN_PORT_WORD( io_port );
													//.  .  store LSB in last char of buffer
			bufp[len-1] = (hcf_8)ifbp->IFB_CarryIn;
													//.  .  save MSB in carry, set carry flag
			ifbp->IFB_CarryIn |= 0x1;
		}
	}
#if HCF_BIG_ENDIAN
	HCFASSERT( word_len == 0 || word_len == 2 || word_len == 4, word_len )
	HCFASSERT( word_len == 0 || ((hcf_32)bufp & 1 ) == 0, (hcf_32)bufp )
	HCFASSERT( word_len <= len, MERGE2( word_len, len ) )
	//see put_frag for an alternative implementation, but be careful about what are int's and what are
	//hcf_16's
	if ( word_len ) {								//.  if there is anything to convert
hcf_8 c;
		c = bufp[1];								//.  .  convert the 1st hcf_16
		bufp[1] = bufp[0];
		bufp[0] = c;
		if ( word_len > 1 ) {						//.  .  if there is to convert more than 1 word ( i.e 2 )
			c = bufp[3];							//.  .  .  convert the 2nd hcf_16
			bufp[3] = bufp[2];
			bufp[2] = c;
		}
	}
#endif // HCF_BIG_ENDIAN
} // get_frag

/************************************************************************************************************
*
*.SUBMODULE		int init( IFBP ifbp )
*.PURPOSE		Handles common initialization aspects (H-I init, calibration, config.mngmt, allocation).
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*
*.RETURNS
*	HCF_ERR_INCOMP_PRI
*	HCF_ERR_INCOMP_FW
*	HCF_ERR_TIME_OUT
*	>>hcf_get_info
*		HCF_ERR_NO_NIC
*		HCF_ERR_LEN
*
*.DESCRIPTION
* init will successively:
* - in case of a (non-preloaded) H-I, initialize the NIC
* - calibrate the S/W protection timer against the Hermes Timer
* - collect HSI, "active" F/W Configuration Management Information
* - in case active F/W is Primary F/W: collect Primary F/W Configuration Management Information
* - check HSI and Primary F/W compatibility with the HCF
* - in case active F/W is Station or AP F/W: check Station or AP F/W compatibility with the HCF
* - in case active F/W is not Primary F/W: allocate FIDs to be used in transmit/notify process
*
*
*.DIAGRAM
*2:	drop all error status bits in IFB_CardStat since they are expected to be re-evaluated.
*4:	Ack everything except HREG_EV_SLEEP_REQ. It is very likely that an Alloc event is pending and
*	very well possible that a Send Cmd event is pending. Acking HREG_EV_SLEEP_REQ is handled by hcf_action(
*	HCF_ACT_INT_ON ) !!!
*10: Calibrate the S/W time-out protection mechanism by calling calibrate(). Note that possible errors
*	in the calibration process are nor reported by init but will show up via the defunct mechanism in
*	subsequent hcf-calls.
*14: usb_check_comp() is called to have the minimal visual clutter for the legacy H-I USB dongle
*	compatibility check.
*16: The following configuration management related information is retrieved from the NIC:
*	 - HSI supplier
*	 - F/W Identity
*	 - F/W supplier
*	 if appropriate:
*	 - PRI Identity
*	 - PRI supplier
*	 appropriate means on H-I: always
*	 and on H-II if F/W supplier reflects a primary (i.e. only after an Hermes Reset or Init
*	 command).
*	 QUESTION ;? !!!!!! should, For each of the above RIDs the Endianess is converted to native Endianess.
*	 Only the return code of the first hcf_get_info is used. All hcf_get_info calls are made, regardless of
*	 the success or failure of the 1st hcf_get_info. The assumptions are:
*	  - if any call fails, they all fail, so remembering the result of the 1st call is adequate
*	  - a failing call will overwrite the L-field with a 0x0000 value, which services both as an
*		error indication for the values cached in the IFB as making mmd_check_comp fail.
*	 In case of H-I, when getting the F/W identity fails, the F/W is assumed to be H-I AP F/W pre-dating
*	 version 9.0 and the F/W Identity and Supplier are faked accordingly.
*	 In case of H-II, the Primary, Station and AP Identity are merged into a single F/W Identity.
*	 The same applies to the Supplier information. As a consequence the PRI information can no longer be
*	 retrieved when a Tertiary runs. To accommodate MSFs and Utilities who depend on PRI information being
*	 available at any time, this information is cached in the IFB. In this cache the generic "F/W" value of
*	 the typ-fields is overwritten with the specific (legacy) "PRI" values. To actually re-route the (legacy)
*	 PRI request via hcf_get_info, the xxxx-table must be set.  In case of H-I, this caching, modifying and
*	 re-routing is not needed because PRI information is always available directly from the NIC. For
*	 consistency the caching fields in the IFB are filled with the PRI information anyway.
*18: mdd_check_comp() is called to check the Supplier Variant and Range of the Host-S/W I/F (HSI) and the
*	Primary Firmware Variant and Range against the Top and Bottom level supported by this HCF.  If either of
*	these tests fails, the CARD_STAT_INCOMP_PRI bit of IFB_CardStat is set
*	Note: There should always be a primary except during production, so this makes the HCF in its current form
*	unsuitable for manufacturing test systems like the FTS. This can be remedied by an adding a test like
*	ifbp->IFB_PRISup.id == COMP_ID_PRI
*20: In case there is Tertiary F/W and this F/W is Station F/W, the Supplier Variant and Range of the Station
*	Firmware function as retrieved from the Hermes is checked against the Top and Bottom level supported by
*	this HCF.
*	Note: ;? the tertiary F/W compatibility checks could be moved to the DHF, which already has checked the
*	CFI and MFI compatibility of the image with the NIC before the image was downloaded.
*28: In case of non-Primary F/W: allocates and acknowledge a (TX or Notify) FID and allocates without
*	acknowledge another (TX or Notify) FID (the so-called 1.5 alloc scheme) with the following steps:
*	- execute the allocate command by calling cmd_exe
*	- wait till either the alloc event or a time-out occurs
*	- regardless whether the alloc event occurs, call get_fid to
*	  - read the FID and save it in IFB_RscInd to be used as "spare FID"
*	  - acknowledge the alloc event
*	  - do another "half" allocate to complete the "1.5 Alloc scheme"
*	  Note that above 3 steps do not harm and thus give the "cheapest" acceptable strategy.
*	  If a time-out occurred, then report time out status (after all)
*
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/
HCF_STATIC int
init( IFBP ifbp )
{

int	rc = HCF_SUCCESS;

	HCFLOGENTRY( HCF_TRACE_INIT, 0 )

	ifbp->IFB_CardStat = 0;																			/* 2*/
	OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ ); 											/* 4*/
	IF_PROT_TIME( calibrate( ifbp ); ) 													/*10*/
#if 0 // OOR
	ifbp->IFB_FWIdentity.len = 2;							//misuse the IFB space for a put
	ifbp->IFB_FWIdentity.typ = CFG_TICK_TIME;
	ifbp->IFB_FWIdentity.comp_id = (1000*1000)/1024 + 1;	//roughly 1 second
	hcf_put_info( ifbp, (LTVP)&ifbp->IFB_FWIdentity.len );
#endif // OOR
	ifbp->IFB_FWIdentity.len = sizeof(CFG_FW_IDENTITY_STRCT)/sizeof(hcf_16) - 1;
	ifbp->IFB_FWIdentity.typ = CFG_FW_IDENTITY;
	rc = hcf_get_info( ifbp, (LTVP)&ifbp->IFB_FWIdentity.len );
/* ;? conversion should not be needed for mmd_check_comp */
#if HCF_BIG_ENDIAN
	ifbp->IFB_FWIdentity.comp_id       = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWIdentity.comp_id );
	ifbp->IFB_FWIdentity.variant       = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWIdentity.variant );
	ifbp->IFB_FWIdentity.version_major = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWIdentity.version_major );
	ifbp->IFB_FWIdentity.version_minor = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWIdentity.version_minor );
#endif // HCF_BIG_ENDIAN
#if defined MSF_COMPONENT_ID																		/*14*/
	if ( rc == HCF_SUCCESS ) {																		/*16*/
		ifbp->IFB_HSISup.len = sizeof(CFG_SUP_RANGE_STRCT)/sizeof(hcf_16) - 1;
		ifbp->IFB_HSISup.typ = CFG_NIC_HSI_SUP_RANGE;
		rc = hcf_get_info( ifbp, (LTVP)&ifbp->IFB_HSISup.len );
/* ;? conversion should not be needed for mmd_check_comp , BUT according to a report of a BE-user it is
 * should be resolved in the WARP release
 * since some compilers make ugly but unnecessary code of these instructions even for LE,
 * it is conditionally compiled */
#if HCF_BIG_ENDIAN
		ifbp->IFB_HSISup.role    = CNV_LITTLE_TO_SHORT( ifbp->IFB_HSISup.role );
		ifbp->IFB_HSISup.id      = CNV_LITTLE_TO_SHORT( ifbp->IFB_HSISup.id );
		ifbp->IFB_HSISup.variant = CNV_LITTLE_TO_SHORT( ifbp->IFB_HSISup.variant );
		ifbp->IFB_HSISup.bottom  = CNV_LITTLE_TO_SHORT( ifbp->IFB_HSISup.bottom );
		ifbp->IFB_HSISup.top     = CNV_LITTLE_TO_SHORT( ifbp->IFB_HSISup.top );
#endif // HCF_BIG_ENDIAN
		ifbp->IFB_FWSup.len = sizeof(CFG_SUP_RANGE_STRCT)/sizeof(hcf_16) - 1;
		ifbp->IFB_FWSup.typ = CFG_FW_SUP_RANGE;
		(void)hcf_get_info( ifbp, (LTVP)&ifbp->IFB_FWSup.len );
/* ;? conversion should not be needed for mmd_check_comp */
#if HCF_BIG_ENDIAN
		ifbp->IFB_FWSup.role    = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWSup.role );
		ifbp->IFB_FWSup.id      = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWSup.id );
		ifbp->IFB_FWSup.variant = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWSup.variant );
		ifbp->IFB_FWSup.bottom  = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWSup.bottom );
		ifbp->IFB_FWSup.top     = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWSup.top );
#endif // HCF_BIG_ENDIAN

		if ( ifbp->IFB_FWSup.id == COMP_ID_PRI ) {												/* 20*/
int i = sizeof( CFG_FW_IDENTITY_STRCT) + sizeof(CFG_SUP_RANGE_STRCT );
			while ( i-- ) ((hcf_8*)(&ifbp->IFB_PRIIdentity))[i] = ((hcf_8*)(&ifbp->IFB_FWIdentity))[i];
			ifbp->IFB_PRIIdentity.typ = CFG_PRI_IDENTITY;
			ifbp->IFB_PRISup.typ = CFG_PRI_SUP_RANGE;
			xxxx[xxxx_PRI_IDENTITY_OFFSET] = &ifbp->IFB_PRIIdentity.len;
			xxxx[xxxx_PRI_IDENTITY_OFFSET+1] = &ifbp->IFB_PRISup.len;
		}
		if ( !mmd_check_comp( (void*)&cfg_drv_act_ranges_hsi, &ifbp->IFB_HSISup)				 /* 22*/
#if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0
//;? the PRI compatibility check is only relevant for DHF
			 || !mmd_check_comp( (void*)&cfg_drv_act_ranges_pri, &ifbp->IFB_PRISup)
#endif // HCF_TYPE_PRELOADED
		   ) {
			ifbp->IFB_CardStat = CARD_STAT_INCOMP_PRI;
			rc = HCF_ERR_INCOMP_PRI;
		}
		if ( ( ifbp->IFB_FWSup.id == COMP_ID_STA &&	!mmd_check_comp( (void*)&cfg_drv_act_ranges_sta, &ifbp->IFB_FWSup) ) ||
			 ( ifbp->IFB_FWSup.id == COMP_ID_APF && !mmd_check_comp( (void*)&cfg_drv_act_ranges_apf, &ifbp->IFB_FWSup) )
		   ) {																					/* 24 */
			ifbp->IFB_CardStat |= CARD_STAT_INCOMP_FW;
			rc = HCF_ERR_INCOMP_FW;
		}
	}
#endif // MSF_COMPONENT_ID
#if (HCF_DL_ONLY) == 0																			/* 28 */
	if ( rc == HCF_SUCCESS && ifbp->IFB_FWIdentity.comp_id >= COMP_ID_FW_STA ) {
PROT_CNT_INI
		/**************************************************************************************
		* rlav: the DMA engine needs the host to cause a 'hanging alloc event' for it to consume.
		* not sure if this is the right spot in the HCF, thinking about hcf_enable...
		**************************************************************************************/
		rc = cmd_exe( ifbp, HCMD_ALLOC, 0 );
// 180 degree error in logic ;? #if ALLOC_15
//		ifbp->IFB_RscInd = 1;	//let's hope that by the time hcf_send_msg isa called, there will be a FID
//#else
		if ( rc == HCF_SUCCESS ) {
			HCF_WAIT_WHILE( (IPW( HREG_EV_STAT ) & HREG_EV_ALLOC) == 0 );
			IF_PROT_TIME( HCFASSERT(prot_cnt, IPW( HREG_EV_STAT ) ) /*NOP*/;)
#if HCF_DMA
			if ( ! ( ifbp->IFB_CntlOpt & USE_DMA ) )
#endif // HCF_DMA
			{
				ifbp->IFB_RscInd = get_fid( ifbp );
				HCFASSERT( ifbp->IFB_RscInd, 0 )
				cmd_exe( ifbp, HCMD_ALLOC, 0 );
				IF_PROT_TIME( if ( prot_cnt == 0 ) rc = HCF_ERR_TIME_OUT; )
			}
		}
//#endif // ALLOC_15
	}
#endif // HCF_DL_ONLY
	HCFASSERT( rc == HCF_SUCCESS, rc )
	HCFLOGEXIT( HCF_TRACE_INIT )
	return rc;
} // init

#if (HCF_DL_ONLY) == 0
/************************************************************************************************************
*
*.SUBMODULE		void isr_info( IFBP ifbp )
*.PURPOSE		handles link events.
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*
*.RETURNS		N.A.
*
*.DESCRIPTION
*
*
*.DIAGRAM
*1:	First the FID number corresponding with the InfoEvent is determined.
*	Note the complication of the zero-FID protection sub-scheme in DAWA.
*	Next the L-field and the T-field are fetched into scratch buffer info.
*2:	In case of tallies, the 16 bits Hermes values are accumulated in the IFB into 32 bits values. Info[0]
*	is (expected to be) HCF_NIC_TAL_CNT + 1. The contraption "while ( info[0]-- >1 )" rather than
*	"while ( --info[0] )" is used because it is dangerous to determine the length of the Value field by
*	decrementing info[0]. As a result of a bug in some version of the F/W, info[0] may be 0, resulting
*	in a very long loop in the pre-decrement logic.
*4:	In case of a link status frame, the information is copied to the IFB field IFB_linkStat
*6:	All other than Tallies (including "unknown" ones) are checked against the selection set by the MSF
*	via CFG_RID_LOG. If a match is found or the selection set has the wild-card type (i.e non-NULL buffer
*	pointer at the terminating zero-type), the frame is copied to the (type-specific) log buffer.
*	Note that to accumulate tallies into IFB AND to log them or to log a frame when a specific match occures
*	AND based on the wild-card selection, you have to call setup_bap again after the 1st copy.
*
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/
HCF_STATIC void
isr_info( IFBP ifbp )
{
hcf_16	info[2], fid;
#if (HCF_EXT) & HCF_EXT_INFO_LOG
RID_LOGP	ridp = ifbp->IFB_RIDLogp;	//NULL or pointer to array of RID_LOG structures (terminated by zero typ)
#endif // HCF_EXT_INFO_LOG

	HCFTRACE( ifbp, HCF_TRACE_ISR_INFO );																/* 1 */
	fid = IPW( HREG_INFO_FID );
	DAWA_ZERO_FID( HREG_INFO_FID )
	if ( fid ) {
		(void)setup_bap( ifbp, fid, 0, IO_IN );
		get_frag( ifbp, (wci_bufp)info, 4 BE_PAR(2) );
		HCFASSERT( info[0] <= HCF_MAX_LTV + 1, MERGE_2( info[1], info[0] ) )  //;? a smaller value makes more sense
#if (HCF_TALLIES) & HCF_TALLIES_NIC		//Hermes tally support
		if ( info[1] == CFG_TALLIES ) {
hcf_32	*p;
/*2*/		if ( info[0] > HCF_NIC_TAL_CNT ) {
				info[0] = HCF_NIC_TAL_CNT + 1;
			}
			p = (hcf_32*)&ifbp->IFB_NIC_Tallies;
			while ( info[0]-- >1 ) *p++ += IPW( HREG_DATA_1 );	//request may return zero length
		}
		else
#endif // HCF_TALLIES_NIC
		{
/*4*/		if ( info[1] == CFG_LINK_STAT ) {
				ifbp->IFB_LinkStat = IPW( HREG_DATA_1 );
			}
#if (HCF_EXT) & HCF_EXT_INFO_LOG
/*6*/		while ( 1 ) {
				if ( ridp->typ == 0 || ridp->typ == info[1] ) {
					if ( ridp->bufp ) {
						HCFASSERT( ridp->len >= 2, ridp->typ )
						ridp->bufp[0] = min((hcf_16)(ridp->len - 1), info[0] ); 	//save L
						ridp->bufp[1] = info[1];						//save T
						get_frag( ifbp, (wci_bufp)&ridp->bufp[2], (ridp->bufp[0] - 1)*2 BE_PAR(0) );
					}
					break;
				}
				ridp++;
			}
#endif // HCF_EXT_INFO_LOG
		}
		HCFTRACE( ifbp, HCF_TRACE_ISR_INFO | HCF_TRACE_EXIT );
	}
	return;
} // isr_info
#endif // HCF_DL_ONLY

//
//
// #endif // HCF_TALLIES_NIC
// /*4*/	if ( info[1] == CFG_LINK_STAT ) {
// 			ifbp->IFB_DSLinkStat = IPW( HREG_DATA_1 ) | CFG_LINK_STAT_CHANGE;	//corrupts BAP !! ;?
// 			ifbp->IFB_LinkStat = ifbp->IFB_DSLinkStat & CFG_LINK_STAT_FW; //;? to be obsoleted
// 			printk( "<4>linkstatus: %04x\n", ifbp->IFB_DSLinkStat );		//;?remove me 1 day
// #if (HCF_SLEEP) & HCF_DDS
// 			if ( ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_CONNECTED ) == 0 ) { 	//even values are disconnected etc.
// 				ifbp->IFB_TickCnt = 0;				//start 2 second period (with 1 tick uncertanty)
// 				printk( "<5>isr_info: AwaitConnection phase started, IFB_TickCnt = 0\n" );		//;?remove me 1 day
// 			}
// #endif // HCF_DDS
// 		}
// #if (HCF_EXT) & HCF_EXT_INFO_LOG
// /*6*/	while ( 1 ) {
// 			if ( ridp->typ == 0 || ridp->typ == info[1] ) {
// 				if ( ridp->bufp ) {
// 					HCFASSERT( ridp->len >= 2, ridp->typ )
// 					(void)setup_bap( ifbp, fid, 2, IO_IN );			//restore BAP for tallies, linkstat and specific type followed by wild card
// 					ridp->bufp[0] = min( ridp->len - 1, info[0] ); 	//save L
// 					get_frag( ifbp, (wci_bufp)&ridp->bufp[1], ridp->bufp[0]*2 BE_PAR(0) );
// 				}
// 				break; //;?this break is no longer needed due to setup_bap but lets concentrate on DDS first
// 			}
// 			ridp++;
// 		}
// #endif // HCF_EXT_INFO_LOG
// 	}
// 	HCFTRACE( ifbp, HCF_TRACE_ISR_INFO | HCF_TRACE_EXIT );
//
//
//
//
//	return;
//} // isr_info
//#endif // HCF_DL_ONLY


/************************************************************************************************************
*
*.SUBMODULE		void mdd_assert( IFBP ifbp, unsigned int line_number, hcf_32 q )
*.PURPOSE		filters assert on level and interfaces to the MSF supplied msf_assert routine.
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*	line_number	line number of the line which caused the assert
*	q			qualifier, additional information which may give a clue about the problem
*
*.RETURNS		N.A.
*
*.DESCRIPTION
*
*
*.DIAGRAM
*
*.NOTICE
* mdd_assert has been through a turmoil, renaming hcf_assert to assert and hcf_assert again and supporting off
* and on being called from the MSF level and other ( immature ) ModularDriverDevelopment modules like DHF and
* MMD.
 * !!!! The assert routine is not an hcf_..... routine in the sense that it may be called by the MSF,
 *		however it is called from mmd.c and dhf.c, so it must be external.
 *		To prevent namespace pollution it needs a prefix, to prevent that MSF programmers think that
 *		they are allowed to call the assert logic, the prefix HCF can't be used, so MDD is selected!!!!
 *
* When called from the DHF module the line number is incremented by DHF_FILE_NAME_OFFSET and when called from
* the MMD module by MMD_FILE_NAME_OFFSET.
*
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/
#if HCF_ASSERT
void
mdd_assert( IFBP ifbp, unsigned int line_number, hcf_32 q )
{
hcf_16	run_time_flag = ifbp->IFB_AssertLvl;

	if ( run_time_flag /* > ;?????? */ ) { //prevent recursive behavior, later to be extended to level filtering
		ifbp->IFB_AssertQualifier = q;
		ifbp->IFB_AssertLine = (hcf_16)line_number;
#if (HCF_ASSERT) & ( HCF_ASSERT_LNK_MSF_RTN | HCF_ASSERT_RT_MSF_RTN )
		if ( ifbp->IFB_AssertRtn ) {
			ifbp->IFB_AssertRtn( line_number, ifbp->IFB_AssertTrace, q );
		}
#endif // HCF_ASSERT_LNK_MSF_RTN / HCF_ASSERT_RT_MSF_RTN
#if (HCF_ASSERT) & HCF_ASSERT_SW_SUP
		OPW( HREG_SW_2, line_number );
		OPW( HREG_SW_2, ifbp->IFB_AssertTrace );
		OPW( HREG_SW_2, (hcf_16)q );
		OPW( HREG_SW_2, (hcf_16)(q >> 16 ) );
#endif // HCF_ASSERT_SW_SUP

#if (HCF_EXT) & HCF_EXT_MB && (HCF_ASSERT) & HCF_ASSERT_MB
		ifbp->IFB_AssertLvl = 0;									// prevent recursive behavior
		hcf_put_info( ifbp, (LTVP)&ifbp->IFB_AssertStrct );
		ifbp->IFB_AssertLvl = run_time_flag;						// restore appropriate filter level
#endif // HCF_EXT_MB / HCF_ASSERT_MB
	}
} // mdd_assert
#endif // HCF_ASSERT


/************************************************************************************************************
*
*.SUBMODULE		void put_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) )
*.PURPOSE		writes with 16/32 bit I/O via BAP1 port from Host memory to NIC RAM.
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*	bufp		(byte) address of buffer
*	len			length in bytes of buffer specified by bufp
*	word_len	Big Endian only: number of leading bytes to swap in pairs
*
*.RETURNS		N.A.
*
*.DESCRIPTION
* process the single byte (if applicable) not yet written by the previous put_frag and copy len
* (or len-1) bytes from bufp to NIC.
*
*
*.DIAGRAM
*
*.NOTICE
*	It turns out DOS ODI uses zero length fragments. The HCF code can cope with it, but as a consequence, no
*	Assert on len is possible
*
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/
HCF_STATIC void
put_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) )
{
hcf_io		io_port = ifbp->IFB_IOBase + HREG_DATA_1;	//BAP data register
int			i;											//prevent side effects from macro
hcf_16		j;
	HCFASSERT( ((hcf_32)bufp & (HCF_ALIGN-1) ) == 0, (hcf_32)bufp )
#if HCF_BIG_ENDIAN
	HCFASSERT( word_len == 0 || word_len == 2 || word_len == 4, word_len )
	HCFASSERT( word_len == 0 || ((hcf_32)bufp & 1 ) == 0, (hcf_32)bufp )
	HCFASSERT( word_len <= len, MERGE_2( word_len, len ) )

	if ( word_len ) {									//if there is anything to convert
 														//.  convert and write the 1st hcf_16
		j = bufp[1] | bufp[0]<<8;
		OUT_PORT_WORD( io_port, j );
														//.  update pointer and counter accordingly
		len -= 2;
		bufp += 2;
		if ( word_len > 1 ) {							//.  if there is to convert more than 1 word ( i.e 2 )
 														//.  .  convert and write the 2nd hcf_16
			j = bufp[1] | bufp[0]<<8;	/*bufp is already incremented by 2*/
			OUT_PORT_WORD( io_port, j );
														//.  .  update pointer and counter accordingly
			len -= 2;
			bufp += 2;
		}
	}
#endif // HCF_BIG_ENDIAN
	i = len;
	if ( i && ifbp->IFB_CarryOut ) {					//skip zero-length
		j = ((*bufp)<<8) + ( ifbp->IFB_CarryOut & 0xFF );
		OUT_PORT_WORD( io_port, j );
		bufp++; i--;
		ifbp->IFB_CarryOut = 0;
	}
#if (HCF_IO) & HCF_IO_32BITS
	//skip zero-length I/O, single byte I/O and I/O not worthwhile (i.e. less than 6 bytes)for DW logic
													//if buffer length >= 6 and 32 bits I/O support
	if ( !(ifbp->IFB_CntlOpt & USE_16BIT) && i >= 6 ) {
hcf_32 FAR	*p4; //prevent side effects from macro
		if ( ( (hcf_32)bufp & 0x1 ) == 0 ) {			//.  if buffer at least word aligned
			if ( (hcf_32)bufp & 0x2 ) {				//.  .  if buffer not double word aligned
                                                 	//.  .  .  write a single word to get double word aligned
				j = *(wci_recordp)bufp;		//just to help ease writing macros with embedded assembly
				OUT_PORT_WORD( io_port, j );
													//.  .  .  adjust buffer length and pointer accordingly
				bufp += 2; i -= 2;
			}
													//.  .  write as many double word as possible
			p4 = (hcf_32 FAR *)bufp;
			j = (hcf_16)i/4;
			OUT_PORT_STRING_32( io_port, p4, j );
													//.  .  adjust buffer length and pointer accordingly
			bufp += i & ~0x0003;
			i &= 0x0003;
		}
	}
#endif // HCF_IO_32BITS
													//if no 32-bit support OR byte aligned OR 1 word left
	if ( i ) {
													//.  if odd number of bytes left
		if ( i & 0x0001 ) {
													//.  .  save left over byte (before bufp is corrupted) in carry, set carry flag
			ifbp->IFB_CarryOut = (hcf_16)bufp[i-1] | 0x0100;	//note that i and bufp are always simultaneously modified, &bufp[i-1] is invariant
		}
													//.  write as many word as possible in "alignment safe" way
		j = (hcf_16)i/2;
		OUT_PORT_STRING_8_16( io_port, bufp, j );
	}
} // put_frag


/************************************************************************************************************
*
*.SUBMODULE		void put_frag_finalize( IFBP ifbp )
*.PURPOSE		cleanup after put_frag for trailing odd byte and MIC transfer to NIC.
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*
*.RETURNS		N.A.
*
*.DESCRIPTION
* finalize the MIC calculation with the padding pattern, output the last byte (if applicable)
* of the message and the MIC to the TxFS
*
*
*.DIAGRAM
*2:	1 byte of the last put_frag may be still in IFB_CarryOut ( the put_frag carry holder ), so ........
*	1 - 3 bytes of the last put_frag may be still in IFB_tx_32 ( the MIC engine carry holder ), so ........
*	The call to the MIC calculation routine feeds these remaining bytes (if any) of put_frag and the
*	just as many bytes of the padding as needed to the MIC calculation engine. Note that the "unneeded" pad
*	bytes simply end up in the MIC engine carry holder and are never used.
*8:	write the remainder of the MIC and possible some garbage to NIC RAM
*	Note: i is always 4 (a loop-invariant of the while in point 2)
*
*.NOTICE
*
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/
HCF_STATIC void
put_frag_finalize( IFBP ifbp )
{
#if (HCF_TYPE) & HCF_TYPE_WPA
	if ( ifbp->IFB_MICTxCarry != 0xFFFF) {		//if MIC calculation active
		CALC_TX_MIC( mic_pad, 8);				//.  feed (up to 8 bytes of) virtual padding to MIC engine
												//.  write (possibly) trailing byte + (most of) MIC
		put_frag( ifbp, (wci_bufp)ifbp->IFB_MICTx, 8 BE_PAR(0) );
	}
#endif // HCF_TYPE_WPA
	put_frag( ifbp, null_addr, 1 BE_PAR(0) );	//write (possibly) trailing data or MIC byte
} // put_frag_finalize


/************************************************************************************************************
*
*.SUBMODULE		int put_info( IFBP ifbp, LTVP ltvp )
*.PURPOSE		support routine to handle the "basic" task of hcf_put_info to pass RIDs to the NIC.
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*	ltvp		address in NIC RAM where LVT-records are located
*
*.RETURNS
*	HCF_SUCCESS
*	>>put_frag
*	>>cmd_wait
*
*.DESCRIPTION
*
*
*.DIAGRAM
*20: do not write RIDs to NICs which have incompatible Firmware
*24: If the RID does not exist, the L-field is set to zero.
*	Note that some RIDs can not be read, e.g. the pseudo RIDs for direct Hermes commands and CFG_DEFAULT_KEYS
*28: If the RID is written successful, pass it to the NIC by means of an Access Write command
*
*.NOTICE
*	The mechanism to HCF_ASSERT on invalid typ-codes in the LTV record is based on the following strategy:
*	  -	some codes (e.g. CFG_REG_MB) are explicitly handled by the HCF which implies that these codes
*		are valid. These codes are already consumed by hcf_put_info.
*	  - all other codes are passed to the Hermes. Before the put action is executed, hcf_get_info is called
*		with an LTV record with a value of 1 in	the L-field and the intended put action type in the Typ-code
*		field. If the put action type is valid, it is also valid as a get action type code - except
*		for CFG_DEFAULT_KEYS and CFG_ADD_TKIP_DEFAULT_KEY - so the HCF_ASSERT logic of hcf_get_info should
*		not catch.
*
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/
HCF_STATIC int
put_info( IFBP ifbp, LTVP ltvp	)
{

int rc = HCF_SUCCESS;

	HCFASSERT( ifbp->IFB_CardStat == 0, MERGE_2( ltvp->typ, ifbp->IFB_CardStat ) )
	HCFASSERT( CFG_RID_CFG_MIN <= ltvp->typ && ltvp->typ <= CFG_RID_CFG_MAX, ltvp->typ )

	if ( ifbp->IFB_CardStat == 0 &&																/* 20*/
		 ( ( CFG_RID_CFG_MIN <= ltvp->typ    && ltvp->typ <= CFG_RID_CFG_MAX ) ||
		   ( CFG_RID_ENG_MIN <= ltvp->typ /* && ltvp->typ <= 0xFFFF */       )     ) ) {
#if HCF_ASSERT //FCC8, FCB0, FCB4, FCB6, FCB7, FCB8, FCC0, FCC4, FCBC, FCBD, FCBE, FCBF
 {
 hcf_16		t = ltvp->typ;
 LTV_STRCT 	x = { 2, t, {0} };															/*24*/
	hcf_get_info( ifbp, (LTVP)&x );
	if ( x.len == 0 &&
		 ( t != CFG_DEFAULT_KEYS && t != CFG_ADD_TKIP_DEFAULT_KEY && t != CFG_REMOVE_TKIP_DEFAULT_KEY &&
		   t != CFG_ADD_TKIP_MAPPED_KEY && t != CFG_REMOVE_TKIP_MAPPED_KEY &&
		   t != CFG_HANDOVER_ADDR && t != CFG_DISASSOCIATE_ADDR &&
		   t != CFG_FCBC && t != CFG_FCBD && t != CFG_FCBE && t != CFG_FCBF &&
		   t != CFG_DEAUTHENTICATE_ADDR
		 )
		) {
		HCFASSERT( DO_ASSERT, ltvp->typ )
		}
 }
#endif // HCF_ASSERT

		rc = setup_bap( ifbp, ltvp->typ, 0, IO_OUT );
		put_frag( ifbp, (wci_bufp)ltvp, 2*ltvp->len + 2 BE_PAR(2) );
/*28*/	if ( rc == HCF_SUCCESS ) {
			rc = cmd_exe( ifbp, HCMD_ACCESS + HCMD_ACCESS_WRITE, ltvp->typ );
		}
	}
	return rc;
} // put_info


#if (HCF_DL_ONLY) == 0
/************************************************************************************************************
*
*.SUBMODULE		int put_info_mb( IFBP ifbp, CFG_MB_INFO_STRCT FAR * ltvp )
*.PURPOSE	 	accumulates a ( series of) buffers into a single Info block into the MailBox.
*
*.ARGUMENTS
*	ifbp		address of the Interface Block
*	ltvp		address of structure specifying the "type" and the fragments of the information to be synthesized
*				as an LTV into the MailBox
*
*.RETURNS
*
*.DESCRIPTION
* If the data does not fit (including no MailBox is available), the IFB_MBTally is incremented and an
* error status is returned.
* HCF_ASSERT does not catch.
* Calling put_info_mb when their is no MailBox available, is considered a design error in the MSF.
*
* Note that there is always at least 1 word of unused space in the mail box.
* As a consequence:
* - no problem in pointer arithmetic (MB_RP == MB_WP means unambiguously mail box is completely empty
* - There is always free space to write an L field with a value of zero after each MB_Info block.  This
*   allows for an easy scan mechanism in the "get MB_Info block" logic.
*
*
*.DIAGRAM
*1:	Calculate L field of the MBIB, i.e. 1 for the T-field + the cumulative length of the fragments.
*2:	The free space in the MailBox is calculated (2a: free part from Write Ptr to Read Ptr, 2b: free part
*	turns out to wrap around) . If this space suffices to store the number of words reflected by len (T-field
*	+ Value-field) plus the additional MailBox Info L-field + a trailing 0 to act as the L-field of a trailing
*	dummy or empty LTV record, then a MailBox Info block is build in the MailBox consisting of
*	  - the value len in the first word
*	  - type in the second word
*	  - a copy of the contents of the fragments in the second and higher word
*
*4:	Since put_info_mb() can more or less directly be called from the MSF level, the I/F must be robust
*	against out-of-range variables. As failsafe coding, the MB update is skipped by changing tlen to 0 if
*	len == 0; This will indirectly cause an assert as result of the violation of the next if clause.
*6:	Check whether the free space in MailBox suffices (this covers the complete absence of the MailBox).
*	Note that len is unsigned, so even MSF I/F violation works out O.K.
*	The '2' in the expression "len+2" is used because 1 word is needed for L itself and 1 word is needed
*	for the zero-sentinel
*8:	update MailBox Info length report to MSF with "oldest" MB Info Block size. Be careful here, if you get
*	here before the MailBox is registered, you can't read from the buffer addressed by IFB_MBp (it is the
*	Null buffer) so don't move this code till the end of this routine but keep it where there is garuanteed
*	a buffer.
*
*.NOTICE
*	boundary testing depends on the fact that IFB_MBSize is guaranteed to be zero if no MailBox is present,
*	and to a lesser degree, that IFB_MBWp = IFB_MBRp = 0
*
*.ENDDOC				END DOCUMENTATION
*
************************************************************************************************************/
#if (HCF_EXT) & HCF_EXT_MB

HCF_STATIC int
put_info_mb( IFBP ifbp, CFG_MB_INFO_STRCT FAR * ltvp )
{

int			rc = HCF_SUCCESS;
hcf_16		i;						//work counter
hcf_16		*dp;					//destination pointer (in MailBox)
wci_recordp	sp;						//source pointer
hcf_16		len;					//total length to copy to MailBox
hcf_16		tlen;					//free length/working length/offset in WMP frame

	if ( ifbp->IFB_MBp == NULL ) return rc;  //;?not sufficient
	HCFASSERT( ifbp->IFB_MBp != NULL, 0 )					//!!!be careful, don't get into an endless recursion
	HCFASSERT( ifbp->IFB_MBSize, 0 )

	len = 1;																							/* 1 */
	for ( i = 0; i < ltvp->frag_cnt; i++ ) {
		len += ltvp->frag_buf[i].frag_len;
	}
	if ( ifbp->IFB_MBRp > ifbp->IFB_MBWp ) {
		tlen = ifbp->IFB_MBRp - ifbp->IFB_MBWp;															/* 2a*/
	} else {
		if ( ifbp->IFB_MBRp == ifbp->IFB_MBWp ) {
			ifbp->IFB_MBRp = ifbp->IFB_MBWp = 0;	// optimize Wrapping
		}
		tlen = ifbp->IFB_MBSize - ifbp->IFB_MBWp;														/* 2b*/
		if ( ( tlen <= len + 2 ) && ( len + 2 < ifbp->IFB_MBRp ) ) {	//if trailing space is too small but
																	//	 leading space is sufficiently large
			ifbp->IFB_MBp[ifbp->IFB_MBWp] = 0xFFFF;					//flag dummy LTV to fill the trailing space
			ifbp->IFB_MBWp = 0;										//reset WritePointer to begin of MailBox
			tlen = ifbp->IFB_MBRp;									//get new available space size
		}
	}
	dp = &ifbp->IFB_MBp[ifbp->IFB_MBWp];
	if ( len == 0 ) {
		tlen = 0; //;? what is this good for
	}
	if ( len + 2 >= tlen ){																				/* 6 */
		//Do Not ASSERT, this is a normal condition
		IF_TALLY( ifbp->IFB_HCF_Tallies.NoBufMB++; ) /*NOP to cover against analomies with empty compound*/;
		rc = HCF_ERR_LEN;
	} else {
		*dp++ = len;									//write Len (= size of T+V in words to MB_Info block
		*dp++ = ltvp->base_typ;							//write Type to MB_Info block
		ifbp->IFB_MBWp += len + 1;						//update WritePointer of MailBox
		for ( i = 0; i < ltvp->frag_cnt; i++ ) {				// process each of the fragments
			sp = ltvp->frag_buf[i].frag_addr;
			len = ltvp->frag_buf[i].frag_len;
			while ( len-- ) *dp++ = *sp++;
		}
		ifbp->IFB_MBp[ifbp->IFB_MBWp] = 0;				//to assure get_info for CFG_MB_INFO stops
		ifbp->IFB_MBInfoLen = ifbp->IFB_MBp[ifbp->IFB_MBRp];											/* 8 */
	}
	return rc;
} // put_info_mb

#endif // HCF_EXT_MB
#endif // HCF_DL_ONLY


/************************************************************************************************************
*
*.SUBMODULE		int setup_bap( IFBP ifbp, hcf_16 fid, int offset, int type )
*.PURPOSE		set up data access to NIC RAM via BAP_1.
*
*.ARGUMENTS
*	ifbp			address of I/F Block
*	fid				FID/RID
*	offset			!!even!! offset in FID/RID
*	type			IO_IN, IO_OUT
*
*.RETURNS
*	HCF_SUCCESS					O.K
*	HCF_ERR_NO_NIC				card is removed
*	HCF_ERR_DEFUNCT_TIME_OUT	Fatal malfunction detected
*	HCF_ERR_DEFUNCT_.....		if and only if IFB_DefunctStat <> 0
*
*.DESCRIPTION
*
* A non-zero return status indicates:
* - the NIC is considered nonoperational, e.g. due to a time-out of some Hermes activity in the past
* - BAP_1 could not properly be initialized
* - the card is removed before completion of the data transfer
* In all other cases, a zero is returned.
* BAP Initialization failure indicates an H/W error which is very likely to signal complete H/W failure.
* Once a BAP Initialization failure has occurred all subsequent interactions with the Hermes will return a
* "defunct" status till the Hermes is re-initialized by means of an hcf_connect.
*
* A BAP is a set of registers (Offset, Select and Data) offering read/write access to a particular FID or
* RID. This access is based on a auto-increment feature.
* There are two BAPs but these days the HCF uses only BAP_1 and leaves BAP_0 to the PCI Busmastering H/W.
*
* The BAP-mechanism is based on the Busy bit in the Offset register (see the Hermes definition). The waiting
* for Busy must occur between writing the Offset register and accessing the Data register. The
* implementation to wait for the Busy bit drop after each write to the Offset register, implies that the
* requirement that the Busy bit is low  before the Select register is written, is automatically met.
* BAP-setup may be time consuming (e.g. 380 usec for large offsets occurs frequently). The wait for Busy bit
* drop is protected by a loop counter, which is initialized with IFB_TickIni, which is calibrated in init.
*
* The NIC I/F is optimized for word transfer and can only handle word transfer at a word boundary in NIC
* RAM. The intended solution for transfer of a single byte has multiple H/W flaws. There have been different
* S/W Workaround strategies. RID access is hcf_16 based by "nature", so no byte access problems.  For Tx/Rx
* FID access,  the byte logic became obsolete by absorbing it in the double word oriented nature of the MIC
* feature.
*
*
*.DIAGRAM
*
*2:	the test on rc checks whether the HCF went into "defunct" mode ( e.g. BAP initialization or a call to
*	cmd_wait did ever fail).
*4:	the select register and offset register are set
*	the offset register is monitored till a successful condition (no busy bit) is detected or till the
*	(calibrated) protection counter expires
*	If the counter expires, this is reflected in IFB_DefunctStat, so all subsequent calls to setup_bap fail
*	immediately ( see 2)
*6:	initialization of the carry as used by pet/get_frag
*8:	HREG_OFFSET_ERR is ignored as error because:
*	 a: the Hermes is robust against it
*	 b: it is not known what causes it (probably a bug), hence no strategy can be specified which level is
*		to handle this error in which way. In the past, it could be induced by the MSF level, e.g. by calling
*		hcf_rcv_msg while there was no Rx-FID available. Since this is an MSF-error which is caught by ASSERT,
*		there is no run-time action required by the HCF.
*	Lumping the Offset error in with the Busy bit error, as has been done in the past turns out to be a
*	disaster or a life saver, just depending on what the cause of the error is. Since no prediction can be
*	done about the future, it is "felt" to be the best strategy to ignore this error. One day the code was
*	accompanied by the following comment:
*	//	ignore HREG_OFFSET_ERR, someone, supposedly the MSF programmer ;) made a bug. Since we don't know
*	//	what is going on, we might as well go on - under management pressure - by ignoring it
*
*.ENDDOC                          END DOCUMENTATION
*
************************************************************************************************************/
HCF_STATIC int
setup_bap( IFBP ifbp, hcf_16 fid, int offset, int type )
{
PROT_CNT_INI
int	rc;

	HCFTRACE( ifbp, HCF_TRACE_STRIO );
	rc = ifbp->IFB_DefunctStat;
	if (rc == HCF_SUCCESS) {										/*2*/
		OPW( HREG_SELECT_1, fid );																/*4*/
		OPW( HREG_OFFSET_1, offset );
		if ( type == IO_IN ) {
			ifbp->IFB_CarryIn = 0;
		}
		else ifbp->IFB_CarryOut = 0;
		HCF_WAIT_WHILE( IPW( HREG_OFFSET_1) & HCMD_BUSY );
		HCFASSERT( !( IPW( HREG_OFFSET_1) & HREG_OFFSET_ERR ), MERGE_2( fid, offset ) )			/*8*/
		if ( prot_cnt == 0 ) {
			HCFASSERT( DO_ASSERT, MERGE_2( fid, offset ) )
			rc = ifbp->IFB_DefunctStat = HCF_ERR_DEFUNCT_TIME_OUT;
			ifbp->IFB_CardStat |= CARD_STAT_DEFUNCT;
		}
	}
	HCFTRACE( ifbp, HCF_TRACE_STRIO | HCF_TRACE_EXIT );
	return rc;
} // setup_bap