aboutsummaryrefslogtreecommitdiff
path: root/drivers/staging/csr/csr_wifi_hip_card_sdio.c
blob: cf148a0fec6a9bac96d6de75f3610e11e4f6d93b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
/*****************************************************************************

            (c) Cambridge Silicon Radio Limited 2012
            All rights reserved and confidential information of CSR

            Refer to LICENSE.txt included with this source for details
            on the license terms.

*****************************************************************************/

/*
 * ---------------------------------------------------------------------------
 * FILE: csr_wifi_hip_card_sdio.c
 *
 * PURPOSE: Implementation of the Card API for SDIO.
 *
 * NOTES:
 *      CardInit() is called from the SDIO probe callback when a card is
 *      inserted. This performs the basic SDIO initialisation, enabling i/o
 *      etc.
 *
 * ---------------------------------------------------------------------------
 */
#include <linux/slab.h>
#include "csr_wifi_hip_unifi.h"
#include "csr_wifi_hip_conversions.h"
#include "csr_wifi_hip_unifiversion.h"
#include "csr_wifi_hip_card.h"
#include "csr_wifi_hip_card_sdio.h"
#include "csr_wifi_hip_chiphelper.h"


/* Time to wait between attempts to read MAILBOX0 */
#define MAILBOX1_TIMEOUT                10  /* in millisecs */
#define MAILBOX1_ATTEMPTS               200 /* 2 seconds */

#define MAILBOX2_TIMEOUT                5   /* in millisecs */
#define MAILBOX2_ATTEMPTS               10  /* 50ms */

#define RESET_SETTLE_DELAY              25  /* in millisecs */

static CsrResult card_init_slots(card_t *card);
static CsrResult card_hw_init(card_t *card);
static CsrResult firmware_present_in_flash(card_t *card);
static void bootstrap_chip_hw(card_t *card);
static CsrResult unifi_reset_hardware(card_t *card);
static CsrResult unifi_hip_init(card_t *card);
static CsrResult card_access_panic(card_t *card);
static CsrResult unifi_read_chip_version(card_t *card);

/*
 * ---------------------------------------------------------------------------
 *  unifi_alloc_card
 *
 *      Allocate and initialise the card context structure.
 *
 *  Arguments:
 *      sdio            Pointer to SDIO context pointer to pass to low
 *                      level i/o functions.
 *      ospriv          Pointer to O/S private struct to pass when calling
 *                      callbacks to the higher level system.
 *
 *  Returns:
 *      Pointer to card struct, which represents the driver context or
 *      NULL if the allocation failed.
 * ---------------------------------------------------------------------------
 */
card_t* unifi_alloc_card(CsrSdioFunction *sdio, void *ospriv)
{
    card_t *card;
    u32 i;

    func_enter();


    card = kzalloc(sizeof(card_t), GFP_KERNEL);
    if (card == NULL)
    {
        return NULL;
    }

    card->sdio_if = sdio;
    card->ospriv  = ospriv;

    card->unifi_interrupt_seq = 1;

    /* Make these invalid. */
    card->proc_select = (u32)(-1);
    card->dmem_page = (u32)(-1);
    card->pmem_page = (u32)(-1);

    card->bh_reason_host = 0;
    card->bh_reason_unifi = 0;

    for (i = 0; i < sizeof(card->tx_q_paused_flag) / sizeof(card->tx_q_paused_flag[0]); i++)
    {
        card->tx_q_paused_flag[i] = 0;
    }
    card->memory_resources_allocated = 0;

    card->low_power_mode = UNIFI_LOW_POWER_DISABLED;
    card->periodic_wake_mode = UNIFI_PERIODIC_WAKE_HOST_DISABLED;

    card->host_state = UNIFI_HOST_STATE_AWAKE;
    card->intmode = CSR_WIFI_INTMODE_DEFAULT;

    /*
     * Memory resources for buffers are allocated when the chip is initialised
     * because we need configuration information from the firmware.
     */

    /*
     * Initialise wait queues and lists
     */
    card->fh_command_queue.q_body = card->fh_command_q_body;
    card->fh_command_queue.q_length = UNIFI_SOFT_COMMAND_Q_LENGTH;

    for (i = 0; i < UNIFI_NO_OF_TX_QS; i++)
    {
        card->fh_traffic_queue[i].q_body = card->fh_traffic_q_body[i];
        card->fh_traffic_queue[i].q_length = UNIFI_SOFT_TRAFFIC_Q_LENGTH;
    }


    /* Initialise mini-coredump pointers in case no coredump buffers
     * are requested by the OS layer.
     */
    card->request_coredump_on_reset = 0;
    card->dump_next_write = NULL;
    card->dump_cur_read = NULL;
    card->dump_buf = NULL;

#ifdef UNIFI_DEBUG
    /* Determine offset of LSB in pointer for later alignment sanity check.
     * Synergy integer types have specific widths, which cause compiler
     * warnings when casting pointer types, e.g. on 64-bit systems.
     */
    {
        u32 val = 0x01234567;

        if (*((u8 *)&val) == 0x01)
        {
            card->lsb = sizeof(void *) - 1;     /* BE */
        }
        else
        {
            card->lsb = 0;                      /* LE */
        }
    }
#endif
    func_exit();
    return card;
} /* unifi_alloc_card() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_init_card
 *
 *      Reset the hardware and perform HIP initialization
 *
 *  Arguments:
 *      card        Pointer to card struct
 *
 *  Returns:
 *      CsrResult code
 *      CSR_RESULT_SUCCESS if successful
 * ---------------------------------------------------------------------------
 */
CsrResult unifi_init_card(card_t *card, s32 led_mask)
{
    CsrResult r;

    func_enter();

    if (card == NULL)
    {
        func_exit_r(CSR_WIFI_HIP_RESULT_INVALID_VALUE);
        return CSR_WIFI_HIP_RESULT_INVALID_VALUE;
    }

    r = unifi_init(card);
    if (r != CSR_RESULT_SUCCESS)
    {
        func_exit_r(r);
        return r;
    }

    r = unifi_hip_init(card);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        func_exit_r(r);
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to start host protocol.\n");
        func_exit_r(r);
        return r;
    }

    func_exit();
    return CSR_RESULT_SUCCESS;
}


/*
 * ---------------------------------------------------------------------------
 *  unifi_init
 *
 *      Init the hardware.
 *
 *  Arguments:
 *      card        Pointer to card struct
 *
 *  Returns:
 *      CsrResult code
 *      CSR_RESULT_SUCCESS if successful
 * ---------------------------------------------------------------------------
 */
CsrResult unifi_init(card_t *card)
{
    CsrResult r;
    CsrResult csrResult;

    func_enter();

    if (card == NULL)
    {
        func_exit_r(CSR_WIFI_HIP_RESULT_INVALID_VALUE);
        return CSR_WIFI_HIP_RESULT_INVALID_VALUE;
    }

    /*
     * Disable the SDIO interrupts while initialising UniFi.
     * Re-enable them when f/w is running.
     */
    csrResult = CsrSdioInterruptDisable(card->sdio_if);
    if (csrResult == CSR_SDIO_RESULT_NO_DEVICE)
    {
        return CSR_WIFI_HIP_RESULT_NO_DEVICE;
    }

    /*
     * UniFi's PLL may start with a slow clock (~ 1 MHz) so initially
     * set the SDIO bus clock to a similar value or SDIO accesses may
     * fail.
     */
    csrResult = CsrSdioMaxBusClockFrequencySet(card->sdio_if, UNIFI_SDIO_CLOCK_SAFE_HZ);
    if (csrResult != CSR_RESULT_SUCCESS)
    {
        r = ConvertCsrSdioToCsrHipResult(card, csrResult);
        func_exit_r(r);
        return r;
    }
    card->sdio_clock_speed = UNIFI_SDIO_CLOCK_SAFE_HZ;

    /*
     * Reset UniFi. Note, this only resets the WLAN function part of the chip,
     * the SDIO interface is not reset.
     */
    unifi_trace(card->ospriv, UDBG1, "Resetting UniFi\n");
    r = unifi_reset_hardware(card);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to reset UniFi\n");
        func_exit_r(r);
        return r;
    }

    /* Reset the power save mode, to be active until the MLME-reset is complete */
    r = unifi_configure_low_power_mode(card,
                                       UNIFI_LOW_POWER_DISABLED, UNIFI_PERIODIC_WAKE_HOST_DISABLED);
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to set power save mode\n");
        func_exit_r(r);
        return r;
    }

    /*
     * Set initial value of page registers.
     * The page registers will be maintained by unifi_read...() and
     * unifi_write...().
     */
    card->proc_select = (u32)(-1);
    card->dmem_page = (u32)(-1);
    card->pmem_page = (u32)(-1);
    r = unifi_write_direct16(card, ChipHelper_HOST_WINDOW3_PAGE(card->helper) * 2, 0);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to write SHARED_DMEM_PAGE\n");
        func_exit_r(r);
        return r;
    }
    r = unifi_write_direct16(card, ChipHelper_HOST_WINDOW2_PAGE(card->helper) * 2, 0);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to write PROG_MEM2_PAGE\n");
        func_exit_r(r);
        return r;
    }

    /*
     * If the driver has reset UniFi due to previous SDIO failure, this may
     * have been due to a chip watchdog reset. In this case, the driver may
     * have requested a mini-coredump which needs to be captured now the
     * SDIO interface is alive.
     */
    (void)unifi_coredump_handle_request(card);

    /*
     * Probe to see if the UniFi has ROM/flash to boot from. CSR6xxx should do.
     */
    r = firmware_present_in_flash(card);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r == CSR_WIFI_HIP_RESULT_NOT_FOUND)
    {
        unifi_error(card->ospriv, "No firmware found\n");
    }
    else if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Probe for Flash failed\n");
    }

    func_exit_r(r);
    return r;
} /* unifi_init() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_download
 *
 *      Load the firmware.
 *
 *  Arguments:
 *      card        Pointer to card struct
 *      led_mask    Loader LED mask
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS on success
 *      CsrResult error code on failure.
 * ---------------------------------------------------------------------------
 */
CsrResult unifi_download(card_t *card, s32 led_mask)
{
    CsrResult r;
    void *dlpriv;

    func_enter();

    if (card == NULL)
    {
        func_exit_r(CSR_WIFI_HIP_RESULT_INVALID_VALUE);
        return CSR_WIFI_HIP_RESULT_INVALID_VALUE;
    }

    /* Set the loader led mask */
    card->loader_led_mask = led_mask;

    /* Get the firmware file information */
    unifi_trace(card->ospriv, UDBG1, "downloading firmware...\n");

    dlpriv = unifi_dl_fw_read_start(card, UNIFI_FW_STA);
    if (dlpriv == NULL)
    {
        func_exit_r(CSR_WIFI_HIP_RESULT_NOT_FOUND);
        return CSR_WIFI_HIP_RESULT_NOT_FOUND;
    }

    /* Download the firmware. */
    r = unifi_dl_firmware(card, dlpriv);
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to download firmware\n");
        func_exit_r(r);
        return r;
    }

    /* Free the firmware file information. */
    unifi_fw_read_stop(card->ospriv, dlpriv);

    func_exit();

    return CSR_RESULT_SUCCESS;
} /* unifi_download() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_hip_init
 *
 *      This function performs the f/w initialisation sequence as described
 *      in the Unifi Host Interface Protocol Specification.
 *      It allocates memory for host-side slot data and signal queues.
 *
 *  Arguments:
 *      card        Pointer to card struct
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS on success or else a CSR error code
 *
 *  Notes:
 *      The firmware must have been downloaded.
 * ---------------------------------------------------------------------------
 */
static CsrResult unifi_hip_init(card_t *card)
{
    CsrResult r;
    CsrResult csrResult;

    func_enter();

    r = card_hw_init(card);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to establish communication with UniFi\n");
        func_exit_r(r);
        return r;
    }
#ifdef CSR_PRE_ALLOC_NET_DATA
    /* if there is any preallocated netdata left from the prev session free it now */
    prealloc_netdata_free(card);
#endif
    /*
     * Allocate memory for host-side slot data and signal queues.
     * We need the config info read from the firmware to know how much
     * memory to allocate.
     */
    r = card_init_slots(card);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Init slots failed: %d\n", r);
        func_exit_r(r);
        return r;
    }

    unifi_trace(card->ospriv, UDBG2, "Sending first UniFi interrupt\n");

    r = unifi_set_host_state(card, UNIFI_HOST_STATE_AWAKE);
    if (r != CSR_RESULT_SUCCESS)
    {
        func_exit_r(r);
        return r;
    }

    /* Enable the SDIO interrupts now that the f/w is running. */
    csrResult = CsrSdioInterruptEnable(card->sdio_if);
    if (csrResult == CSR_SDIO_RESULT_NO_DEVICE)
    {
        return CSR_WIFI_HIP_RESULT_NO_DEVICE;
    }

    /* Signal the UniFi to start handling messages */
    r = CardGenInt(card);
    if (r != CSR_RESULT_SUCCESS)
    {
        func_exit_r(r);
        return r;
    }

    func_exit();

    return CSR_RESULT_SUCCESS;
} /* unifi_hip_init() */


/*
 * ---------------------------------------------------------------------------
 *  _build_sdio_config_data
 *
 *      Unpack the SDIO configuration information from a buffer read from
 *      UniFi into a host structure.
 *      The data is byte-swapped for a big-endian host if necessary by the
 *      UNPACK... macros.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *      cfg_data        Destination structure to unpack into.
 *      cfg_data_buf    Source buffer to read from. This should be the raw
 *                      data read from UniFi.
 *
 *  Returns:
 *      None.
 * ---------------------------------------------------------------------------
 */
static void _build_sdio_config_data(sdio_config_data_t *cfg_data,
                                    const u8     *cfg_data_buf)
{
    s16 offset = 0;

    cfg_data->version = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT16;

    cfg_data->sdio_ctrl_offset = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT16;

    cfg_data->fromhost_sigbuf_handle = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT16;

    cfg_data->tohost_sigbuf_handle = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT16;

    cfg_data->num_fromhost_sig_frags = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT16;

    cfg_data->num_tohost_sig_frags = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT16;

    cfg_data->num_fromhost_data_slots = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT16;

    cfg_data->num_tohost_data_slots = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT16;

    cfg_data->data_slot_size = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT16;

    cfg_data->initialised = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT16;

    cfg_data->overlay_size = CSR_GET_UINT32_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT32;

    cfg_data->data_slot_round = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT16;

    cfg_data->sig_frag_size = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT16;

    cfg_data->tohost_signal_padding = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
} /* _build_sdio_config_data() */


/*
 * - Function ----------------------------------------------------------------
 * card_hw_init()
 *
 *      Perform the initialisation procedure described in the UniFi Host
 *      Interface Protocol document (section 3.3.8) and read the run-time
 *      configuration information from the UniFi. This is stuff like number
 *      of bulk data slots etc.
 *
 *      The card enumeration and SD initialisation has already been done by
 *      the SDIO library, see card_sdio_init().
 *
 *      The initialisation is done when firmware is ready, i.e. this may need
 *      to be called after a f/w download operation.
 *
 *      The initialisation procedure goes like this:
 *       - Wait for UniFi to start-up by polling SHARED_MAILBOX1
 *       - Find the symbol table and look up SLT_SDIO_SLOT_CONFIG
 *       - Read the config structure
 *       - Check the "SDIO initialised" flag, if not zero do a h/w reset and
 *         start again
 *       - Decide the number of bulk data slots to allocate, allocate them and
 *         set "SDIO initialised" flag (and generate an interrupt) to say so.
 *
 * Arguments:
 *      card        Pointer to card struct
 *
 * Returns:
 *      CSR_RESULT_SUCEESS on success,
 *      a CSR error code on failure
 *
 * Notes:
 *      All data in the f/w is stored in a little endian format, without any
 *      padding bytes. Every read from this memory has to be transformed in
 *      host (cpu specific) format, before it is stored in driver's parameters
 *      or/and structures. Athough unifi_card_read16() and unifi_read32() do perform
 *      the convertion internally, unifi_readn() does not.
 * ---------------------------------------------------------------------------
 */
static CsrResult card_hw_init(card_t *card)
{
    u32 slut_address;
    u16 initialised;
    u16 finger_print;
    symbol_t slut;
    sdio_config_data_t *cfg_data;
    u8 cfg_data_buf[SDIO_CONFIG_DATA_SIZE];
    CsrResult r;
    void *dlpriv;
    s16 major, minor;
    s16 search_4slut_again;
    CsrResult csrResult;

    func_enter();

    /*
     * The device revision from the TPLMID_MANF and TPLMID_CARD fields
     * of the CIS are available as
     *   card->sdio_if->pDevice->ManfID
     *   card->sdio_if->pDevice->AppID
     */

    /*
     * Run in a loop so we can patch.
     */
    do
    {
        /* Reset these each time around the loop. */
        search_4slut_again = 0;
        cfg_data = NULL;

        r = card_wait_for_firmware_to_start(card, &slut_address);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_error(card->ospriv, "Firmware hasn't started\n");
            func_exit_r(r);
            return r;
        }
        unifi_trace(card->ospriv, UDBG4, "SLUT addr 0x%lX\n", slut_address);

        /*
         * Firmware has started, but doesn't know full clock configuration yet
         * as some of the information may be in the MIB. Therefore we set an
         * initial SDIO clock speed, faster than UNIFI_SDIO_CLOCK_SAFE_HZ, for
         * the patch download and subsequent firmware initialisation, and
         * full speed UNIFI_SDIO_CLOCK_MAX_HZ will be set once the f/w tells us
         * that it is ready.
         */
        csrResult = CsrSdioMaxBusClockFrequencySet(card->sdio_if, UNIFI_SDIO_CLOCK_INIT_HZ);
        if (csrResult != CSR_RESULT_SUCCESS)
        {
            r = ConvertCsrSdioToCsrHipResult(card, csrResult);
            func_exit_r(r);
            return r;
        }
        card->sdio_clock_speed = UNIFI_SDIO_CLOCK_INIT_HZ;

        /*
         * Check the SLUT fingerprint.
         * The slut_address is a generic pointer so we must use unifi_card_read16().
         */
        unifi_trace(card->ospriv, UDBG4, "Looking for SLUT finger print\n");
        finger_print = 0;
        r = unifi_card_read16(card, slut_address, &finger_print);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_error(card->ospriv, "Failed to read SLUT finger print\n");
            func_exit_r(r);
            return r;
        }

        if (finger_print != SLUT_FINGERPRINT)
        {
            unifi_error(card->ospriv, "Failed to find Symbol lookup table fingerprint\n");
            func_exit_r(CSR_RESULT_FAILURE);
            return CSR_RESULT_FAILURE;
        }

        /* Symbol table starts imedately after the fingerprint */
        slut_address += 2;

        /* Search the table until either the end marker is found, or the
         * loading of patch firmware invalidates the current table.
         */
        while (!search_4slut_again)
        {
            u16 s;
            u32 l;

            r = unifi_card_read16(card, slut_address, &s);
            if (r != CSR_RESULT_SUCCESS)
            {
                func_exit_r(r);
                return r;
            }
            slut_address += 2;

            if (s == CSR_SLT_END)
            {
                unifi_trace(card->ospriv, UDBG3, "  found CSR_SLT_END\n");
                break;
            }

            r = unifi_read32(card, slut_address, &l);
            if (r != CSR_RESULT_SUCCESS)
            {
                func_exit_r(r);
                return r;
            }
            slut_address += 4;

            slut.id = s;
            slut.obj = l;

            unifi_trace(card->ospriv, UDBG3, "  found SLUT id %02d.%08lx\n", slut.id, slut.obj);
            switch (slut.id)
            {
                case CSR_SLT_SDIO_SLOT_CONFIG:
                    cfg_data = &card->config_data;
                    /*
                     * unifi_card_readn reads n bytes from the card, where data is stored
                     * in a little endian format, without any padding bytes. So, we
                     * can not just pass the cfg_data pointer or use the
                     * sizeof(sdio_config_data_t) since the structure in the host can
                     * be big endian formatted or have padding bytes for alignment.
                     * We use a char buffer to read the data from the card.
                     */
                    r = unifi_card_readn(card, slut.obj, cfg_data_buf, SDIO_CONFIG_DATA_SIZE);
                    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
                    {
                        return r;
                    }
                    if (r != CSR_RESULT_SUCCESS)
                    {
                        unifi_error(card->ospriv, "Failed to read config data\n");
                        func_exit_r(r);
                        return r;
                    }
                    /* .. and then we copy the data to the host structure */
                    _build_sdio_config_data(cfg_data, cfg_data_buf);

                    /* Make sure the from host data slots are what we expect
                        we reserve 2 for commands and there should be at least
                        1 left for each access category */
                    if ((cfg_data->num_fromhost_data_slots < UNIFI_RESERVED_COMMAND_SLOTS)
                        || (cfg_data->num_fromhost_data_slots - UNIFI_RESERVED_COMMAND_SLOTS) / UNIFI_NO_OF_TX_QS == 0)
                    {
                        unifi_error(card->ospriv, "From host data slots %d\n", cfg_data->num_fromhost_data_slots);
                        unifi_error(card->ospriv, "need to be (queues * x + 2) (UNIFI_RESERVED_COMMAND_SLOTS for commands)\n");
                        func_exit_r(CSR_RESULT_FAILURE);
                        return CSR_RESULT_FAILURE;
                    }

                    /* Configure SDIO to-block-size padding */
                    if (card->sdio_io_block_pad)
                    {
                    /*
                     * Firmware limits the maximum padding size via data_slot_round.
                     * Therefore when padding to whole block sizes, the block size
                     * must be configured correctly by adjusting CSR_WIFI_HIP_SDIO_BLOCK_SIZE.
                     */
                        if (cfg_data->data_slot_round < card->sdio_io_block_size)
                        {
                            unifi_error(card->ospriv,
                                        "Configuration error: Block size of %d exceeds f/w data_slot_round of %d\n",
                                        card->sdio_io_block_size, cfg_data->data_slot_round);
                            return CSR_WIFI_HIP_RESULT_INVALID_VALUE;
                        }

                        /*
                         * To force the To-Host signals to be rounded up to the SDIO block
                         * size, we need to write the To-Host Signal Padding Fragments
                         * field of the SDIO configuration in UniFi.
                         */
                        if ((card->sdio_io_block_size % cfg_data->sig_frag_size) != 0)
                        {
                            unifi_error(card->ospriv, "Configuration error: Can not pad to-host signals.\n");
                            func_exit_r(CSR_WIFI_HIP_RESULT_INVALID_VALUE);
                            return CSR_WIFI_HIP_RESULT_INVALID_VALUE;
                        }
                        cfg_data->tohost_signal_padding = (u16) (card->sdio_io_block_size / cfg_data->sig_frag_size);
                        unifi_info(card->ospriv, "SDIO block size %d requires %d padding chunks\n",
                                   card->sdio_io_block_size, cfg_data->tohost_signal_padding);
                        r = unifi_card_write16(card, slut.obj + SDIO_TO_HOST_SIG_PADDING_OFFSET, cfg_data->tohost_signal_padding);
                        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
                        {
                            return r;
                        }
                        if (r != CSR_RESULT_SUCCESS)
                        {
                            unifi_error(card->ospriv, "Failed to write To-Host Signal Padding Fragments\n");
                            func_exit_r(r);
                            return r;
                        }
                    }

                    /* Reconstruct the Generic Pointer address of the
                     * SDIO Control Data Struct.
                     */
                    card->sdio_ctrl_addr = cfg_data->sdio_ctrl_offset | (UNIFI_SH_DMEM << 24);
                    card->init_flag_addr = slut.obj + SDIO_INIT_FLAG_OFFSET;
                    break;

                case CSR_SLT_BUILD_ID_NUMBER:
                {
                    u32 n;
                    r = unifi_read32(card, slut.obj, &n);
                    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
                    {
                        return r;
                    }
                    if (r != CSR_RESULT_SUCCESS)
                    {
                        unifi_error(card->ospriv, "Failed to read build id\n");
                        func_exit_r(r);
                        return r;
                    }
                    card->build_id = n;
                }
                break;

                case CSR_SLT_BUILD_ID_STRING:
                    r = unifi_readnz(card, slut.obj, card->build_id_string,
                                     sizeof(card->build_id_string));
                    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
                    {
                        return r;
                    }
                    if (r != CSR_RESULT_SUCCESS)
                    {
                        unifi_error(card->ospriv, "Failed to read build string\n");
                        func_exit_r(r);
                        return r;
                    }
                    break;

                case CSR_SLT_PERSISTENT_STORE_DB:
                    break;

                case CSR_SLT_BOOT_LOADER_CONTROL:

                    /* This command copies most of the station firmware
                     * image from ROM into program RAM.  It also clears
                     * out the zerod data and sets up the initialised
                     * data. */
                    r = unifi_do_loader_op(card, slut.obj + 6, UNIFI_BOOT_LOADER_LOAD_STA);
                    if (r != CSR_RESULT_SUCCESS)
                    {
                        unifi_error(card->ospriv, "Failed to write loader load image command\n");
                        func_exit_r(r);
                        return r;
                    }

                    dlpriv = unifi_dl_fw_read_start(card, UNIFI_FW_STA);

                    /* dlpriv might be NULL, we still need to do the do_loader_op step. */
                    if (dlpriv != NULL)
                    {
                    /* Download the firmware. */
                        r = unifi_dl_patch(card, dlpriv, slut.obj);

                    /* Free the firmware file information. */
                        unifi_fw_read_stop(card->ospriv, dlpriv);

                        if (r != CSR_RESULT_SUCCESS)
                        {
                            unifi_error(card->ospriv, "Failed to patch firmware\n");
                            func_exit_r(r);
                            return r;
                        }
                    }

                    /* This command starts the firmware image that we want (the
                    * station by default) with any patches required applied. */
                    r = unifi_do_loader_op(card, slut.obj + 6, UNIFI_BOOT_LOADER_RESTART);
                    if (r != CSR_RESULT_SUCCESS)
                    {
                        unifi_error(card->ospriv, "Failed to write loader restart command\n");
                        func_exit_r(r);
                        return r;
                    }

                    /* The now running patch f/w defines a new SLUT data structure -
                     * the current one is no longer valid. We must drop out of the
                     * processing loop and enumerate the new SLUT (which may appear
                     * at a different offset).
                     */
                    search_4slut_again = 1;
                    break;

                case CSR_SLT_PANIC_DATA_PHY:
                    card->panic_data_phy_addr = slut.obj;
                    break;

                case CSR_SLT_PANIC_DATA_MAC:
                    card->panic_data_mac_addr = slut.obj;
                    break;

                default:
                    /* do nothing */
                    break;
            }
        } /* while */
    } while (search_4slut_again);

    /* Did we find the Config Data ? */
    if (cfg_data == NULL)
    {
        unifi_error(card->ospriv, "Failed to find SDIO_SLOT_CONFIG Symbol\n");
        func_exit_r(CSR_RESULT_FAILURE);
        return CSR_RESULT_FAILURE;
    }

    /*
     * Has ths card already been initialised?
     * If so, return an error so we do a h/w reset and start again.
     */
    r = unifi_card_read16(card, card->init_flag_addr, &initialised);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to read init flag at %08lx\n",
                    card->init_flag_addr);
        func_exit_r(r);
        return r;
    }
    if (initialised != 0)
    {
        func_exit_r(CSR_RESULT_FAILURE);
        return CSR_RESULT_FAILURE;
    }


    /*
     * Now check the UniFi firmware version
     */
    major = (cfg_data->version >> 8) & 0xFF;
    minor = cfg_data->version & 0xFF;
    unifi_info(card->ospriv, "UniFi f/w protocol version %d.%d (driver %d.%d)\n",
               major, minor,
               UNIFI_HIP_MAJOR_VERSION, UNIFI_HIP_MINOR_VERSION);

    unifi_info(card->ospriv, "Firmware build %u: %s\n",
               card->build_id, card->build_id_string);

    if (major != UNIFI_HIP_MAJOR_VERSION)
    {
        unifi_error(card->ospriv, "UniFi f/w protocol major version (%d) is different from driver (v%d.%d)\n",
                    major, UNIFI_HIP_MAJOR_VERSION, UNIFI_HIP_MINOR_VERSION);
#ifndef CSR_WIFI_DISABLE_HIP_VERSION_CHECK
        func_exit_r(CSR_RESULT_FAILURE);
        return CSR_RESULT_FAILURE;
#endif
    }
    if (minor < UNIFI_HIP_MINOR_VERSION)
    {
        unifi_error(card->ospriv, "UniFi f/w protocol version (v%d.%d) is older than minimum required by driver (v%d.%d).\n",
                    major, minor,
                    UNIFI_HIP_MAJOR_VERSION, UNIFI_HIP_MINOR_VERSION);
#ifndef CSR_WIFI_DISABLE_HIP_VERSION_CHECK
        func_exit_r(CSR_RESULT_FAILURE);
        return CSR_RESULT_FAILURE;
#endif
    }

    /* Read panic codes from a previous firmware panic. If the firmware has
     * not panicked since power was applied (e.g. power-off hard reset)
     * the stored panic codes will not be updated.
     */
    unifi_read_panic(card);

    func_exit();
    return CSR_RESULT_SUCCESS;
} /* card_hw_init() */


/*
 * ---------------------------------------------------------------------------
 *  card_wait_for_unifi_to_reset
 *
 *      Waits for a reset to complete by polling the WLAN function enable
 *      bit (which is cleared on reset).
 *
 *  Arguments:
 *      card            Pointer to card struct
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS on success, CSR error code on failure.
 * ---------------------------------------------------------------------------
 */
static CsrResult card_wait_for_unifi_to_reset(card_t *card)
{
    s16 i;
    CsrResult r;
    u8 io_enable;
    CsrResult csrResult;

    func_enter();

    r = CSR_RESULT_SUCCESS;
    for (i = 0; i < MAILBOX2_ATTEMPTS; i++)
    {
        unifi_trace(card->ospriv, UDBG1, "waiting for reset to complete, attempt %d\n", i);
        if (card->chip_id > SDIO_CARD_ID_UNIFI_2)
        {
            /* It's quite likely that this read will timeout for the
             * first few tries - especially if we have reset via
             * DBG_RESET.
             */
#if defined (CSR_WIFI_HIP_DEBUG_OFFLINE) && defined (CSR_WIFI_HIP_SDIO_TRACE)
            unifi_debug_log_to_buf("m0@%02X=", SDIO_IO_READY);
#endif
            csrResult = CsrSdioF0Read8(card->sdio_if, SDIO_IO_READY, &io_enable);
#if defined (CSR_WIFI_HIP_DEBUG_OFFLINE) && defined (CSR_WIFI_HIP_SDIO_TRACE)
            if (csrResult != CSR_RESULT_SUCCESS)
            {
                unifi_debug_log_to_buf("error=%X\n", csrResult);
            }
            else
            {
                unifi_debug_log_to_buf("%X\n", io_enable);
            }
#endif
            if (csrResult == CSR_SDIO_RESULT_NO_DEVICE)
            {
                return CSR_WIFI_HIP_RESULT_NO_DEVICE;
            }
            r = CSR_RESULT_SUCCESS;
            if (csrResult != CSR_RESULT_SUCCESS)
            {
                r = ConvertCsrSdioToCsrHipResult(card, csrResult);
            }
        }
        else
        {
            r = sdio_read_f0(card, SDIO_IO_ENABLE, &io_enable);
        }
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r == CSR_RESULT_SUCCESS)
        {
            u16 mbox2;
            s16 enabled = io_enable & (1 << card->function);

            if (!enabled)
            {
                unifi_trace(card->ospriv, UDBG1,
                            "Reset complete (function %d is disabled) in ~ %u msecs\n",
                            card->function, i * MAILBOX2_TIMEOUT);

                /* Enable WLAN function and verify MAILBOX2 is zero'd */
                csrResult = CsrSdioFunctionEnable(card->sdio_if);
                if (csrResult != CSR_RESULT_SUCCESS)
                {
                    r = ConvertCsrSdioToCsrHipResult(card, csrResult);
                    unifi_error(card->ospriv, "CsrSdioFunctionEnable failed %d\n", r);
                    break;
                }
            }

            r = unifi_read_direct16(card, ChipHelper_SDIO_HIP_HANDSHAKE(card->helper) * 2, &mbox2);
            if (r != CSR_RESULT_SUCCESS)
            {
                unifi_error(card->ospriv, "read HIP_HANDSHAKE failed %d\n", r);
                break;
            }
            if (mbox2 != 0)
            {
                unifi_error(card->ospriv, "MAILBOX2 non-zero after reset (mbox2 = %04x)\n", mbox2);
                r = CSR_RESULT_FAILURE;
            }
            break;
        }
        else
        {
            if (card->chip_id > SDIO_CARD_ID_UNIFI_2)
            {
                /* We ignore read failures for the first few reads,
                 * they are probably benign. */
                if (i > MAILBOX2_ATTEMPTS / 4)
                {
                    unifi_trace(card->ospriv, UDBG1, "Failed to read CCCR IO Ready register while polling for reset\n");
                }
            }
            else
            {
                unifi_trace(card->ospriv, UDBG1, "Failed to read CCCR IO Enable register while polling for reset\n");
            }
        }
        CsrThreadSleep(MAILBOX2_TIMEOUT);
    }

    if (r == CSR_RESULT_SUCCESS && i == MAILBOX2_ATTEMPTS)
    {
        unifi_trace(card->ospriv, UDBG1, "Timeout waiting for UniFi to complete reset\n");
        r = CSR_RESULT_FAILURE;
    }

    func_exit();
    return r;
} /* card_wait_for_unifi_to_reset() */


/*
 * ---------------------------------------------------------------------------
 *  card_wait_for_unifi_to_disable
 *
 *      Waits for the function to become disabled by polling the
 *      IO_READY bit.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS on success, CSR error code on failure.
 *
 *  Notes: This function can only be used with
 *         card->chip_id > SDIO_CARD_ID_UNIFI_2
 * ---------------------------------------------------------------------------
 */
static CsrResult card_wait_for_unifi_to_disable(card_t *card)
{
    s16 i;
    CsrResult r;
    u8 io_enable;
    CsrResult csrResult;

    func_enter();

    if (card->chip_id <= SDIO_CARD_ID_UNIFI_2)
    {
        unifi_error(card->ospriv,
                    "Function reset method not supported for chip_id=%d\n",
                    card->chip_id);
        func_exit();
        return CSR_RESULT_FAILURE;
    }

    r = CSR_RESULT_SUCCESS;
    for (i = 0; i < MAILBOX2_ATTEMPTS; i++)
    {
        unifi_trace(card->ospriv, UDBG1, "waiting for disable to complete, attempt %d\n", i);

        /*
         * It's quite likely that this read will timeout for the
         * first few tries - especially if we have reset via
         * DBG_RESET.
         */
#if defined (CSR_WIFI_HIP_DEBUG_OFFLINE) && defined (CSR_WIFI_HIP_SDIO_TRACE)
        unifi_debug_log_to_buf("r0@%02X=", SDIO_IO_READY);
#endif
        csrResult = CsrSdioF0Read8(card->sdio_if, SDIO_IO_READY, &io_enable);
#if defined (CSR_WIFI_HIP_DEBUG_OFFLINE) && defined (CSR_WIFI_HIP_SDIO_TRACE)
        if (csrResult != CSR_RESULT_SUCCESS)
        {
            unifi_debug_log_to_buf("error=%X\n", csrResult);
        }
        else
        {
            unifi_debug_log_to_buf("%X\n", io_enable);
        }
#endif
        if (csrResult == CSR_SDIO_RESULT_NO_DEVICE)
        {
            return CSR_WIFI_HIP_RESULT_NO_DEVICE;
        }
        if (csrResult == CSR_RESULT_SUCCESS)
        {
            s16 enabled = io_enable & (1 << card->function);
            r = CSR_RESULT_SUCCESS;
            if (!enabled)
            {
                unifi_trace(card->ospriv, UDBG1,
                            "Disable complete (function %d is disabled) in ~ %u msecs\n",
                            card->function, i * MAILBOX2_TIMEOUT);

                break;
            }
        }
        else
        {
            /*
             * We ignore read failures for the first few reads,
             * they are probably benign.
             */
            r = ConvertCsrSdioToCsrHipResult(card, csrResult);
            if (i > (MAILBOX2_ATTEMPTS / 4))
            {
                unifi_trace(card->ospriv, UDBG1,
                            "Failed to read CCCR IO Ready register while polling for disable\n");
            }
        }
        CsrThreadSleep(MAILBOX2_TIMEOUT);
    }

    if ((r == CSR_RESULT_SUCCESS) && (i == MAILBOX2_ATTEMPTS))
    {
        unifi_trace(card->ospriv, UDBG1, "Timeout waiting for UniFi to complete disable\n");
        r = CSR_RESULT_FAILURE;
    }

    func_exit();
    return r;
} /* card_wait_for_unifi_to_reset() */


/*
 * ---------------------------------------------------------------------------
 *  card_wait_for_firmware_to_start
 *
 *      Polls the MAILBOX1 register for a non-zero value.
 *      Then reads MAILBOX0 and forms the two values into a 32-bit address
 *      which is returned to the caller.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *      paddr           Pointer to receive the UniFi address formed
 *                      by concatenating MAILBOX1 and MAILBOX0.
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS on success, CSR error code on failure.
 * ---------------------------------------------------------------------------
 */
CsrResult card_wait_for_firmware_to_start(card_t *card, u32 *paddr)
{
    s32 i;
    u16 mbox0, mbox1;
    CsrResult r;

    func_enter();

    /*
     * Wait for UniFi to initialise its data structures by polling
     * the SHARED_MAILBOX1 register.
     * Experience shows this is typically 120ms.
     */
    CsrThreadSleep(MAILBOX1_TIMEOUT);

    mbox1 = 0;
    unifi_trace(card->ospriv, UDBG1, "waiting for MAILBOX1 to be non-zero...\n");
    for (i = 0; i < MAILBOX1_ATTEMPTS; i++)
    {
        r = unifi_read_direct16(card, ChipHelper_MAILBOX1(card->helper) * 2, &mbox1);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r != CSR_RESULT_SUCCESS)
        {
            /* These reads can fail if UniFi isn't up yet, so try again */
            unifi_warning(card->ospriv, "Failed to read UniFi Mailbox1 register\n");
        }

        if ((r == CSR_RESULT_SUCCESS) && (mbox1 != 0))
        {
            unifi_trace(card->ospriv, UDBG1, "MAILBOX1 ready (0x%04X) in %u millisecs\n",
                        mbox1, i * MAILBOX1_TIMEOUT);

            /* Read the MAILBOX1 again in case we caught the value as it
             * changed. */
            r = unifi_read_direct16(card, ChipHelper_MAILBOX1(card->helper) * 2, &mbox1);
            if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
            {
                return r;
            }
            if (r != CSR_RESULT_SUCCESS)
            {
                unifi_error(card->ospriv, "Failed to read UniFi Mailbox1 register for second time\n");
                func_exit_r(r);
                return r;
            }
            unifi_trace(card->ospriv, UDBG1, "MAILBOX1 value=0x%04X\n", mbox1);

            break;
        }

        CsrThreadSleep(MAILBOX1_TIMEOUT);
        if ((i % 100) == 99)
        {
            unifi_trace(card->ospriv, UDBG2, "MAILBOX1 not ready (0x%X), still trying...\n", mbox1);
        }
    }

    if ((r == CSR_RESULT_SUCCESS) && (mbox1 == 0))
    {
        unifi_trace(card->ospriv, UDBG1, "Timeout waiting for firmware to start, Mailbox1 still 0 after %d ms\n",
                    MAILBOX1_ATTEMPTS * MAILBOX1_TIMEOUT);
        func_exit_r(CSR_RESULT_FAILURE);
        return CSR_RESULT_FAILURE;
    }


    /*
     * Complete the reset handshake by setting MAILBOX2 to 0xFFFF
     */
    r = unifi_write_direct16(card, ChipHelper_SDIO_HIP_HANDSHAKE(card->helper) * 2, 0xFFFF);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to write f/w startup handshake to MAILBOX2\n");
        func_exit_r(r);
        return r;
    }


    /*
     * Read the Symbol Look Up Table (SLUT) offset.
     * Top 16 bits are in mbox1, read the lower 16 bits from mbox0.
     */
    mbox0 = 0;
    r = unifi_read_direct16(card, ChipHelper_MAILBOX0(card->helper) * 2, &mbox0);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to read UniFi Mailbox0 register\n");
        func_exit_r(r);
        return r;
    }

    *paddr = (((u32)mbox1 << 16) | mbox0);

    func_exit();
    return CSR_RESULT_SUCCESS;
} /* card_wait_for_firmware_to_start() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_capture_panic
 *
 *      Attempt to capture panic codes from the firmware. This may involve
 *      warm reset of the chip to regain access following a watchdog reset.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS if panic codes were captured, or none available
 *      CSR_RESULT_FAILURE if the driver could not access function 1
 * ---------------------------------------------------------------------------
 */
CsrResult unifi_capture_panic(card_t *card)
{
    func_enter();

    /* The firmware must have previously initialised to read the panic addresses
     * from the SLUT
     */
    if (!card->panic_data_phy_addr || !card->panic_data_mac_addr)
    {
        func_exit();
        return CSR_RESULT_SUCCESS;
    }

    /* Ensure we can access function 1 following a panic/watchdog reset */
    if (card_access_panic(card) == CSR_RESULT_SUCCESS)
    {
        /* Read the panic codes */
        unifi_read_panic(card);
    }
    else
    {
        unifi_info(card->ospriv, "Unable to read panic codes");
    }

    func_exit();
    return CSR_RESULT_SUCCESS;
}


/*
 * ---------------------------------------------------------------------------
 *  card_access_panic
 *      Attempt to read the WLAN SDIO function in order to read panic codes
 *      and perform various reset steps to regain access if the read fails.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS if panic codes can be read
 *      CSR error code if panic codes can not be read
 * ---------------------------------------------------------------------------
 */
static CsrResult card_access_panic(card_t *card)
{
    u16 data_u16 = 0;
    s32 i;
    CsrResult r, sr;

    func_enter();

    /* A chip version of zero means that the version never got succesfully read
     * during reset. In this case give up because it will not be possible to
     * verify the chip version.
     */
    if (!card->chip_version)
    {
        unifi_info(card->ospriv, "Unknown chip version\n");
        return CSR_RESULT_FAILURE;
    }

    /* Ensure chip is awake or access to function 1 will fail */
    r = unifi_set_host_state(card, UNIFI_HOST_STATE_AWAKE);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "unifi_set_host_state() failed %d\n", r);
        return CSR_RESULT_FAILURE; /* Card is probably unpowered */
    }
    CsrThreadSleep(20);

    for (i = 0; i < 3; i++)
    {
        sr = CsrSdioRead16(card->sdio_if, CHIP_HELPER_UNIFI_GBL_CHIP_VERSION * 2, &data_u16);
        if (sr != CSR_RESULT_SUCCESS || data_u16 != card->chip_version)
        {
            unifi_info(card->ospriv, "Failed to read valid chip version sr=%d (0x%04x want 0x%04x) try %d\n",
                       sr, data_u16, card->chip_version, i);

            /* Set clock speed low */
            sr = CsrSdioMaxBusClockFrequencySet(card->sdio_if, UNIFI_SDIO_CLOCK_SAFE_HZ);
            if (sr != CSR_RESULT_SUCCESS)
            {
                unifi_error(card->ospriv, "CsrSdioMaxBusClockFrequencySet() failed1 %d\n", sr);
                r = ConvertCsrSdioToCsrHipResult(card, sr);
            }
            card->sdio_clock_speed = UNIFI_SDIO_CLOCK_SAFE_HZ;

            /* First try re-enabling function in case a f/w watchdog reset disabled it */
            if (i == 0)
            {
                unifi_info(card->ospriv, "Try function enable\n");
                sr = CsrSdioFunctionEnable(card->sdio_if);
                if (sr != CSR_RESULT_SUCCESS)
                {
                    r = ConvertCsrSdioToCsrHipResult(card, sr);
                    unifi_error(card->ospriv, "CsrSdioFunctionEnable failed %d (HIP %d)\n", sr, r);
                }
                continue;
            }

            /* Second try, set awake */
            unifi_info(card->ospriv, "Try set awake\n");

            /* Ensure chip is awake */
            r = unifi_set_host_state(card, UNIFI_HOST_STATE_AWAKE);
            if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
            {
                return r;
            }
            if (r != CSR_RESULT_SUCCESS)
            {
                unifi_error(card->ospriv, "unifi_set_host_state() failed2 %d\n", r);
            }

            /* Set clock speed low in case setting the host state raised it, which
             * would only happen if host state was previously TORPID
             */
            sr = CsrSdioMaxBusClockFrequencySet(card->sdio_if, UNIFI_SDIO_CLOCK_SAFE_HZ);
            if (sr != CSR_RESULT_SUCCESS)
            {
                unifi_error(card->ospriv, "CsrSdioMaxBusClockFrequencySet() failed2 %d\n", sr);
            }
            card->sdio_clock_speed = UNIFI_SDIO_CLOCK_SAFE_HZ;

            if (i == 1)
            {
                continue;
            }

            /* Perform a s/w reset to preserve as much as the card state as possible,
             * (mainly the preserve RAM). The context will be lost for coredump - but as we
             * were unable to access the WLAN function for panic, the coredump would have
             * also failed without a reset.
             */
            unifi_info(card->ospriv, "Try s/w reset\n");

            r = unifi_card_hard_reset(card);
            if (r != CSR_RESULT_SUCCESS)
            {
                unifi_error(card->ospriv, "unifi_card_hard_reset() failed %d\n", r);
            }
        }
        else
        {
            if (i > 0)
            {
                unifi_info(card->ospriv, "Read chip version 0x%x after %d retries\n", data_u16, i);
            }
            break;
        }
    }

    r = ConvertCsrSdioToCsrHipResult(card, sr);
    func_exit_r(r);
    return r;
}


/*
 * ---------------------------------------------------------------------------
 *  unifi_read_panic
 *      Reads, saves and prints panic codes stored by the firmware in UniFi's
 *      preserve RAM by the last panic that occurred since chip was powered.
 *      Nothing is saved if the panic codes are read as zero.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *
 *  Returns:
 * ---------------------------------------------------------------------------
 */
void unifi_read_panic(card_t *card)
{
    CsrResult r;
    u16 p_code, p_arg;

    func_enter();

    /* The firmware must have previously initialised to read the panic addresses
     * from the SLUT
     */
    if (!card->panic_data_phy_addr || !card->panic_data_mac_addr)
    {
        return;
    }

    /* Get the panic data from PHY */
    r = unifi_card_read16(card, card->panic_data_phy_addr, &p_code);
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "capture_panic: unifi_read16 %08x failed %d\n", card->panic_data_phy_addr, r);
        p_code = 0;
    }
    if (p_code)
    {
        r = unifi_card_read16(card, card->panic_data_phy_addr + 2, &p_arg);
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_error(card->ospriv, "capture_panic: unifi_read16 %08x failed %d\n", card->panic_data_phy_addr + 2, r);
        }
        unifi_error(card->ospriv, "Last UniFi PHY PANIC %04x arg %04x\n", p_code, p_arg);
        card->last_phy_panic_code = p_code;
        card->last_phy_panic_arg = p_arg;
    }

    /* Get the panic data from MAC */
    r = unifi_card_read16(card, card->panic_data_mac_addr, &p_code);
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "capture_panic: unifi_read16 %08x failed %d\n", card->panic_data_mac_addr, r);
        p_code = 0;
    }
    if (p_code)
    {
        r = unifi_card_read16(card, card->panic_data_mac_addr + 2, &p_arg);
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_error(card->ospriv, "capture_panic: unifi_read16 %08x failed %d\n", card->panic_data_mac_addr + 2, r);
        }
        unifi_error(card->ospriv, "Last UniFi MAC PANIC %04x arg %04x\n", p_code, p_arg);
        card->last_mac_panic_code = p_code;
        card->last_mac_panic_arg = p_arg;
    }

    func_exit();
}


/*
 * ---------------------------------------------------------------------------
 *  card_allocate_memory_resources
 *
 *      Allocates memory for the from-host, to-host bulk data slots,
 *      soft queue buffers and bulk data buffers.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS on success, CSR error code on failure.
 * ---------------------------------------------------------------------------
 */
static CsrResult card_allocate_memory_resources(card_t *card)
{
    s16 n, i, k, r;
    sdio_config_data_t *cfg_data;

    func_enter();

    /* Reset any state carried forward from a previous life */
    card->fh_command_queue.q_rd_ptr = 0;
    card->fh_command_queue.q_wr_ptr = 0;
    (void)scnprintf(card->fh_command_queue.name, UNIFI_QUEUE_NAME_MAX_LENGTH,
                      "fh_cmd_q");
    for (i = 0; i < UNIFI_NO_OF_TX_QS; i++)
    {
        card->fh_traffic_queue[i].q_rd_ptr = 0;
        card->fh_traffic_queue[i].q_wr_ptr = 0;
        (void)scnprintf(card->fh_traffic_queue[i].name,
                          UNIFI_QUEUE_NAME_MAX_LENGTH, "fh_data_q%d", i);
    }
#ifndef CSR_WIFI_HIP_TA_DISABLE
    unifi_ta_sampling_init(card);
#endif
    /* Convenience short-cut */
    cfg_data = &card->config_data;

    /*
     * Allocate memory for the from-host and to-host signal buffers.
     */
    card->fh_buffer.buf = kmalloc(UNIFI_FH_BUF_SIZE, GFP_KERNEL);
    if (card->fh_buffer.buf == NULL)
    {
        unifi_error(card->ospriv, "Failed to allocate memory for F-H signals\n");
        func_exit_r(CSR_WIFI_HIP_RESULT_NO_MEMORY);
        return CSR_WIFI_HIP_RESULT_NO_MEMORY;
    }
    card->fh_buffer.bufsize = UNIFI_FH_BUF_SIZE;
    card->fh_buffer.ptr = card->fh_buffer.buf;
    card->fh_buffer.count = 0;

    card->th_buffer.buf = kmalloc(UNIFI_FH_BUF_SIZE, GFP_KERNEL);
    if (card->th_buffer.buf == NULL)
    {
        unifi_error(card->ospriv, "Failed to allocate memory for T-H signals\n");
        func_exit_r(CSR_WIFI_HIP_RESULT_NO_MEMORY);
        return CSR_WIFI_HIP_RESULT_NO_MEMORY;
    }
    card->th_buffer.bufsize = UNIFI_FH_BUF_SIZE;
    card->th_buffer.ptr = card->th_buffer.buf;
    card->th_buffer.count = 0;


    /*
     * Allocate memory for the from-host and to-host bulk data slots.
     * This is done as separate kmallocs because lots of smaller
     * allocations are more likely to succeed than one huge one.
     */

    /* Allocate memory for the array of pointers */
    n = cfg_data->num_fromhost_data_slots;

    unifi_trace(card->ospriv, UDBG3, "Alloc from-host resources, %d slots.\n", n);
    card->from_host_data = kmalloc(n * sizeof(slot_desc_t), GFP_KERNEL);
    if (card->from_host_data == NULL)
    {
        unifi_error(card->ospriv, "Failed to allocate memory for F-H bulk data array\n");
        func_exit_r(CSR_WIFI_HIP_RESULT_NO_MEMORY);
        return CSR_WIFI_HIP_RESULT_NO_MEMORY;
    }

    /* Initialise from-host bulk data slots */
    for (i = 0; i < n; i++)
    {
        UNIFI_INIT_BULK_DATA(&card->from_host_data[i].bd);
    }

    /* Allocate memory for the array used for slot host tag mapping */
    card->fh_slot_host_tag_record = kmalloc(n * sizeof(u32), GFP_KERNEL);

    if (card->fh_slot_host_tag_record == NULL)
    {
        unifi_error(card->ospriv, "Failed to allocate memory for F-H slot host tag mapping array\n");
        func_exit_r(CSR_WIFI_HIP_RESULT_NO_MEMORY);
        return CSR_WIFI_HIP_RESULT_NO_MEMORY;
    }

    /* Initialise host tag entries for from-host bulk data slots */
    for (i = 0; i < n; i++)
    {
        card->fh_slot_host_tag_record[i] = CSR_WIFI_HIP_RESERVED_HOST_TAG;
    }


    /* Allocate memory for the array of pointers */
    n = cfg_data->num_tohost_data_slots;

    unifi_trace(card->ospriv, UDBG3, "Alloc to-host resources, %d slots.\n", n);
    card->to_host_data = kmalloc(n * sizeof(bulk_data_desc_t), GFP_KERNEL);
    if (card->to_host_data == NULL)
    {
        unifi_error(card->ospriv, "Failed to allocate memory for T-H bulk data array\n");
        func_exit_r(CSR_WIFI_HIP_RESULT_NO_MEMORY);
        return CSR_WIFI_HIP_RESULT_NO_MEMORY;
    }

    /* Initialise to-host bulk data slots */
    for (i = 0; i < n; i++)
    {
        UNIFI_INIT_BULK_DATA(&card->to_host_data[i]);
    }

    /*
     * Initialise buffers for soft Q
     */
    for (i = 0; i < UNIFI_SOFT_COMMAND_Q_LENGTH; i++)
    {
        for (r = 0; r < UNIFI_MAX_DATA_REFERENCES; r++)
        {
            UNIFI_INIT_BULK_DATA(&card->fh_command_q_body[i].bulkdata[r]);
        }
    }

    for (k = 0; k < UNIFI_NO_OF_TX_QS; k++)
    {
        for (i = 0; i < UNIFI_SOFT_TRAFFIC_Q_LENGTH; i++)
        {
            for (r = 0; r < UNIFI_MAX_DATA_REFERENCES; r++)
            {
                UNIFI_INIT_BULK_DATA(&card->fh_traffic_q_body[k][i].bulkdata[r]);
            }
        }
    }

    card->memory_resources_allocated = 1;

    func_exit();
    return CSR_RESULT_SUCCESS;
} /* card_allocate_memory_resources() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_free_bulk_data
 *
 *      Free the data associated to a bulk data structure.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *      bulk_data_slot  Pointer to bulk data structure
 *
 *  Returns:
 *      None.
 *
 * ---------------------------------------------------------------------------
 */
static void unifi_free_bulk_data(card_t *card, bulk_data_desc_t *bulk_data_slot)
{
    if (bulk_data_slot->data_length != 0)
    {
        unifi_net_data_free(card->ospriv, bulk_data_slot);
    }
} /* unifi_free_bulk_data() */


/*
 * ---------------------------------------------------------------------------
 *  card_free_memory_resources
 *
 *      Frees memory allocated for the from-host, to-host bulk data slots,
 *      soft queue buffers and bulk data buffers.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *
 *  Returns:
 *      None.
 * ---------------------------------------------------------------------------
 */
static void card_free_memory_resources(card_t *card)
{
    func_enter();

    unifi_trace(card->ospriv, UDBG1, "Freeing card memory resources.\n");

    /* Clear our internal queues */
    unifi_cancel_pending_signals(card);


    kfree(card->to_host_data);
    card->to_host_data = NULL;

    kfree(card->from_host_data);
    card->from_host_data = NULL;

    /* free the memory for slot host tag mapping array */
    kfree(card->fh_slot_host_tag_record);
    card->fh_slot_host_tag_record = NULL;

    kfree(card->fh_buffer.buf);
    card->fh_buffer.ptr = card->fh_buffer.buf = NULL;
    card->fh_buffer.bufsize = 0;
    card->fh_buffer.count = 0;

    kfree(card->th_buffer.buf);
    card->th_buffer.ptr = card->th_buffer.buf = NULL;
    card->th_buffer.bufsize = 0;
    card->th_buffer.count = 0;


    card->memory_resources_allocated = 0;

    func_exit();
} /* card_free_memory_resources() */


static void card_init_soft_queues(card_t *card)
{
    s16 i;

    func_enter();

    unifi_trace(card->ospriv, UDBG1, "Initialising internal signal queues.\n");
    /* Reset any state carried forward from a previous life */
    card->fh_command_queue.q_rd_ptr = 0;
    card->fh_command_queue.q_wr_ptr = 0;
    (void)scnprintf(card->fh_command_queue.name, UNIFI_QUEUE_NAME_MAX_LENGTH,
                      "fh_cmd_q");
    for (i = 0; i < UNIFI_NO_OF_TX_QS; i++)
    {
        card->fh_traffic_queue[i].q_rd_ptr = 0;
        card->fh_traffic_queue[i].q_wr_ptr = 0;
        (void)scnprintf(card->fh_traffic_queue[i].name,
                          UNIFI_QUEUE_NAME_MAX_LENGTH, "fh_data_q%d", i);
    }
#ifndef CSR_WIFI_HIP_TA_DISABLE
    unifi_ta_sampling_init(card);
#endif
    func_exit();
}


/*
 * ---------------------------------------------------------------------------
 *  unifi_cancel_pending_signals
 *
 *      Free the signals and associated bulk data, pending in the core.
 *
 *  Arguments:
 *      card        Pointer to card struct
 *
 *  Returns:
 *      None.
 * ---------------------------------------------------------------------------
 */
void unifi_cancel_pending_signals(card_t *card)
{
    s16 i, n, r;
    func_enter();

    unifi_trace(card->ospriv, UDBG1, "Canceling pending signals.\n");

    if (card->to_host_data)
    {
        /*
         * Free any bulk data buffers allocated for the t-h slots
         * This will clear all buffers that did not make it to
         * unifi_receive_event() before cancel was request.
         */
        n = card->config_data.num_tohost_data_slots;
        unifi_trace(card->ospriv, UDBG3, "Freeing to-host resources, %d slots.\n", n);
        for (i = 0; i < n; i++)
        {
            unifi_free_bulk_data(card, &card->to_host_data[i]);
        }
    }

    /*
     * If any of the from-host bulk data has reached the card->from_host_data
     * but not UniFi, we need to free the buffers here.
     */
    if (card->from_host_data)
    {
        /* Free any bulk data buffers allocated for the f-h slots */
        n = card->config_data.num_fromhost_data_slots;
        unifi_trace(card->ospriv, UDBG3, "Freeing from-host resources, %d slots.\n", n);
        for (i = 0; i < n; i++)
        {
            unifi_free_bulk_data(card, &card->from_host_data[i].bd);
        }

        for (i = 0; i < UNIFI_NO_OF_TX_QS; i++)
        {
            card->dynamic_slot_data.from_host_used_slots[i] = 0;
            card->dynamic_slot_data.from_host_max_slots[i] = 0;
            card->dynamic_slot_data.from_host_reserved_slots[i] = 0;
        }
    }

    /*
     * Free any bulk data buffers allocated in the soft queues.
     * This covers the case where a bulk data pointer has reached the soft queue
     * but not the card->from_host_data.
     */
    unifi_trace(card->ospriv, UDBG3, "Freeing cmd q resources.\n");
    for (i = 0; i < UNIFI_SOFT_COMMAND_Q_LENGTH; i++)
    {
        for (r = 0; r < UNIFI_MAX_DATA_REFERENCES; r++)
        {
            unifi_free_bulk_data(card, &card->fh_command_q_body[i].bulkdata[r]);
        }
    }

    unifi_trace(card->ospriv, UDBG3, "Freeing traffic q resources.\n");
    for (n = 0; n < UNIFI_NO_OF_TX_QS; n++)
    {
        for (i = 0; i < UNIFI_SOFT_TRAFFIC_Q_LENGTH; i++)
        {
            for (r = 0; r < UNIFI_MAX_DATA_REFERENCES; r++)
            {
                unifi_free_bulk_data(card, &card->fh_traffic_q_body[n][i].bulkdata[r]);
            }
        }
    }

    card_init_soft_queues(card);

    func_exit();
} /* unifi_cancel_pending_signals() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_free_card
 *
 *      Free the memory allocated for the card structure and buffers.
 *
 *  Notes:
 *      The porting layer is responsible for freeing any mini-coredump buffers
 *      allocated when it called unifi_coredump_init(), by calling
 *      unifi_coredump_free() before calling this function.
 *
 *  Arguments:
 *      card        Pointer to card struct
 *
 *  Returns:
 *      None.
 * ---------------------------------------------------------------------------
 */
void unifi_free_card(card_t *card)
{
    func_enter();
#ifdef CSR_PRE_ALLOC_NET_DATA
    prealloc_netdata_free(card);
#endif
    /* Free any memory allocated. */
    card_free_memory_resources(card);

    /* Warn if caller didn't free coredump buffers */
    if (card->dump_buf)
    {
        unifi_error(card->ospriv, "Caller should call unifi_coredump_free()\n");
        unifi_coredump_free(card); /* free anyway to prevent memory leak */
    }

    kfree(card);

    func_exit();
} /* unifi_free_card() */


/*
 * ---------------------------------------------------------------------------
 *  card_init_slots
 *
 *      Allocate memory for host-side slot data and signal queues.
 *
 * Arguments:
 *      card            Pointer to card object
 *
 * Returns:
 *      CSR error code.
 * ---------------------------------------------------------------------------
 */
static CsrResult card_init_slots(card_t *card)
{
    CsrResult r;
    u8 i;

    func_enter();

    /* Allocate the buffers we need, only once. */
    if (card->memory_resources_allocated == 1)
    {
        card_free_memory_resources(card);
    }
    else
    {
        /* Initialise our internal command and traffic queues */
        card_init_soft_queues(card);
    }

    r = card_allocate_memory_resources(card);
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to allocate card memory resources.\n");
        card_free_memory_resources(card);
        func_exit_r(r);
        return r;
    }

    if (card->sdio_ctrl_addr == 0)
    {
        unifi_error(card->ospriv, "Failed to find config struct!\n");
        func_exit_r(CSR_WIFI_HIP_RESULT_INVALID_VALUE);
        return CSR_WIFI_HIP_RESULT_INVALID_VALUE;
    }

    /*
     * Set initial counts.
     */

    card->from_host_data_head = 0;

    /* Get initial signal counts from UniFi, in case it has not been reset. */
    {
        u16 s;

        /* Get the from-host-signals-written count */
        r = unifi_card_read16(card, card->sdio_ctrl_addr + 0, &s);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_error(card->ospriv, "Failed to read from-host sig written count\n");
            func_exit_r(r);
            return r;
        }
        card->from_host_signals_w = (s16)s;

        /* Get the to-host-signals-written count */
        r = unifi_card_read16(card, card->sdio_ctrl_addr + 6, &s);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_error(card->ospriv, "Failed to read to-host sig read count\n");
            func_exit_r(r);
            return r;
        }
        card->to_host_signals_r = (s16)s;
    }

    /* Set Initialised flag. */
    r = unifi_card_write16(card, card->init_flag_addr, 0x0001);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to write initialised flag\n");
        func_exit_r(r);
        return r;
    }

    /* Dynamic queue reservation */
    memset(&card->dynamic_slot_data, 0, sizeof(card_dynamic_slot_t));

    for (i = 0; i < UNIFI_NO_OF_TX_QS; i++)
    {
        card->dynamic_slot_data.from_host_max_slots[i] = card->config_data.num_fromhost_data_slots -
                                                         UNIFI_RESERVED_COMMAND_SLOTS;
        card->dynamic_slot_data.queue_stable[i] = FALSE;
    }

    card->dynamic_slot_data.packets_interval = UNIFI_PACKETS_INTERVAL;

    func_exit();
    return CSR_RESULT_SUCCESS;
} /* card_init_slots() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_set_udi_hook
 *
 *      Registers the udi hook that reports the sent signals to the core.
 *
 *  Arguments:
 *      card            Pointer to the card context struct
 *      udi_fn          Pointer to the callback function.
 *
 *  Returns:
 *      CSR_WIFI_HIP_RESULT_INVALID_VALUE if the card pointer is invalid,
 *      CSR_RESULT_SUCCESS on success.
 * ---------------------------------------------------------------------------
 */
CsrResult unifi_set_udi_hook(card_t *card, udi_func_t udi_fn)
{
    if (card == NULL)
    {
        return CSR_WIFI_HIP_RESULT_INVALID_VALUE;
    }

    if (card->udi_hook == NULL)
    {
        card->udi_hook = udi_fn;
    }

    return CSR_RESULT_SUCCESS;
} /* unifi_set_udi_hook() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_remove_udi_hook
 *
 *      Removes the udi hook that reports the sent signals from the core.
 *
 *  Arguments:
 *      card            Pointer to the card context struct
 *      udi_fn          Pointer to the callback function.
 *
 *  Returns:
 *      CSR_WIFI_HIP_RESULT_INVALID_VALUE if the card pointer is invalid,
 *      CSR_RESULT_SUCCESS on success.
 * ---------------------------------------------------------------------------
 */
CsrResult unifi_remove_udi_hook(card_t *card, udi_func_t udi_fn)
{
    if (card == NULL)
    {
        return CSR_WIFI_HIP_RESULT_INVALID_VALUE;
    }

    if (card->udi_hook == udi_fn)
    {
        card->udi_hook = NULL;
    }

    return CSR_RESULT_SUCCESS;
} /* unifi_remove_udi_hook() */


static void CardReassignDynamicReservation(card_t *card)
{
    u8 i;

    func_enter();

    unifi_trace(card->ospriv, UDBG5, "Packets Txed %d %d %d %d\n",
                card->dynamic_slot_data.packets_txed[0],
                card->dynamic_slot_data.packets_txed[1],
                card->dynamic_slot_data.packets_txed[2],
                card->dynamic_slot_data.packets_txed[3]);

    /* Clear reservation and recalculate max slots */
    for (i = 0; i < UNIFI_NO_OF_TX_QS; i++)
    {
        card->dynamic_slot_data.queue_stable[i] = FALSE;
        card->dynamic_slot_data.from_host_reserved_slots[i] = 0;
        card->dynamic_slot_data.from_host_max_slots[i] = card->config_data.num_fromhost_data_slots -
                                                         UNIFI_RESERVED_COMMAND_SLOTS;
        card->dynamic_slot_data.packets_txed[i] = 0;

        unifi_trace(card->ospriv, UDBG5, "CardReassignDynamicReservation: queue %d reserved %d Max %d\n", i,
                    card->dynamic_slot_data.from_host_reserved_slots[i],
                    card->dynamic_slot_data.from_host_max_slots[i]);
    }

    card->dynamic_slot_data.total_packets_txed = 0;
    func_exit();
}


/* Algorithm to dynamically reserve slots. The logic is based mainly on the outstanding queue
 * length. Slots are reserved for particular queues during an interval and cleared after the interval.
 * Each queue has three associated variables.. a) used slots - the number of slots currently occupied
 * by the queue b) reserved slots - number of slots reserved specifically for the queue c) max slots - total
 * slots that this queue can actually use (may be higher than reserved slots and is dependent on reserved slots
 * for other queues).
 * This function is called when there are no slots available for a queue. It checks to see if there are enough
 * unreserved slots sufficient for this request. If available these slots are reserved for the queue.
 * If there are not enough unreserved slots, a fair share for each queue is calculated based on the total slots
 * and the number of active queues (any queue with existing reservation is considered active). Queues needing
 * less than their fair share are allowed to have the previously reserved slots. The remaining slots are
 * distributed evenly among queues that need more than the fair share
 *
 * A better scheme would take current bandwidth per AC into consideration when reserving slots. An
 * implementation scheme could consider the relative time/service period for slots in an AC. If the firmware
 * services other ACs faster than a particular AC (packets wait in the slots longer) then it is fair to reserve
 * less slots for the AC
 */
static void CardCheckDynamicReservation(card_t *card, unifi_TrafficQueue queue)
{
    u16 q_len, active_queues = 0, excess_queue_slots, div_extra_slots,
              queue_fair_share, reserved_slots = 0, q, excess_need_queues = 0, unmovable_slots = 0;
    s32 i;
    q_t *sigq;
    u16 num_data_slots = card->config_data.num_fromhost_data_slots - UNIFI_RESERVED_COMMAND_SLOTS;

    func_enter();

    /* Calculate the pending queue length */
    sigq = &card->fh_traffic_queue[queue];
    q_len = CSR_WIFI_HIP_Q_SLOTS_USED(sigq);

    if (q_len <= card->dynamic_slot_data.from_host_reserved_slots[queue])
    {
        unifi_trace(card->ospriv, UDBG5, "queue %d q_len %d already has that many reserved slots, exiting\n", queue, q_len);
        func_exit();
        return;
    }

    /* Upper limit */
    if (q_len > num_data_slots)
    {
        q_len = num_data_slots;
    }

    for (i = 0; i < UNIFI_NO_OF_TX_QS; i++)
    {
        if (i != (s32)queue)
        {
            reserved_slots += card->dynamic_slot_data.from_host_reserved_slots[i];
        }
        if ((i == (s32)queue) || (card->dynamic_slot_data.from_host_reserved_slots[i] > 0))
        {
            active_queues++;
        }
    }

    unifi_trace(card->ospriv, UDBG5, "CardCheckDynamicReservation: queue %d q_len %d\n", queue, q_len);
    unifi_trace(card->ospriv, UDBG5, "Active queues %d reserved slots on other queues %d\n",
                active_queues, reserved_slots);

    if (reserved_slots + q_len <= num_data_slots)
    {
        card->dynamic_slot_data.from_host_reserved_slots[queue] = q_len;
        if (q_len == num_data_slots)
        {
            /* This is the common case when just 1 stream is going */
            card->dynamic_slot_data.queue_stable[queue] = TRUE;
        }
    }
    else
    {
        queue_fair_share = num_data_slots / active_queues;
        unifi_trace(card->ospriv, UDBG5, "queue fair share %d\n", queue_fair_share);

        /* Evenly distribute slots among active queues */
        /* Find out the queues that need excess of fair share. Also find slots allocated
         * to queues less than their fair share, these slots cannot be reallocated (unmovable slots) */

        card->dynamic_slot_data.from_host_reserved_slots[queue] = q_len;

        for (i = 0; i < UNIFI_NO_OF_TX_QS; i++)
        {
            if (card->dynamic_slot_data.from_host_reserved_slots[i] > queue_fair_share)
            {
                excess_need_queues++;
            }
            else
            {
                unmovable_slots += card->dynamic_slot_data.from_host_reserved_slots[i];
            }
        }

        unifi_trace(card->ospriv, UDBG5, "Excess need queues %d\n", excess_need_queues);

        /* Now find the slots per excess demand queue */
        excess_queue_slots = (num_data_slots - unmovable_slots) / excess_need_queues;
        div_extra_slots = (num_data_slots - unmovable_slots) - excess_queue_slots * excess_need_queues;
        for (i = UNIFI_NO_OF_TX_QS - 1; i >= 0; i--)
        {
            if (card->dynamic_slot_data.from_host_reserved_slots[i] > excess_queue_slots)
            {
                card->dynamic_slot_data.from_host_reserved_slots[i] = excess_queue_slots;
                if (div_extra_slots > 0)
                {
                    card->dynamic_slot_data.from_host_reserved_slots[i]++;
                    div_extra_slots--;
                }
                /* No more slots will be allocated to this queue during the current interval */
                card->dynamic_slot_data.queue_stable[i] = TRUE;
                unifi_trace(card->ospriv, UDBG5, "queue stable %d\n", i);
            }
        }
    }

    /* Redistribute max slots */
    for (i = 0; i < UNIFI_NO_OF_TX_QS; i++)
    {
        reserved_slots = 0;
        for (q = 0; q < UNIFI_NO_OF_TX_QS; q++)
        {
            if (i != q)
            {
                reserved_slots += card->dynamic_slot_data.from_host_reserved_slots[q];
            }
        }

        card->dynamic_slot_data.from_host_max_slots[i] = num_data_slots - reserved_slots;
        unifi_trace(card->ospriv, UDBG5, "queue %d reserved %d Max %d\n", i,
                    card->dynamic_slot_data.from_host_reserved_slots[i],
                    card->dynamic_slot_data.from_host_max_slots[i]);
    }

    func_exit();
}


/*
 * ---------------------------------------------------------------------------
 *  CardClearFromHostDataSlot
 *
 *      Clear a the given data slot, making it available again.
 *
 *  Arguments:
 *      card            Pointer to Card object
 *      slot            Index of the signal slot to clear.
 *
 *  Returns:
 *      None.
 * ---------------------------------------------------------------------------
 */
void CardClearFromHostDataSlot(card_t *card, const s16 slot)
{
    u8 queue = card->from_host_data[slot].queue;
    const void *os_data_ptr = card->from_host_data[slot].bd.os_data_ptr;

    func_enter();

    if (card->from_host_data[slot].bd.data_length == 0)
    {
        unifi_warning(card->ospriv,
                      "Surprise: request to clear an already free FH data slot: %d\n",
                      slot);
        func_exit();
        return;
    }

    if (os_data_ptr == NULL)
    {
        unifi_warning(card->ospriv,
                      "Clearing FH data slot %d: has null payload, len=%d\n",
                      slot, card->from_host_data[slot].bd.data_length);
    }

    /* Free card->from_host_data[slot].bd.os_net_ptr here. */
    /* Mark slot as free by setting length to 0. */
    unifi_free_bulk_data(card, &card->from_host_data[slot].bd);
    if (queue < UNIFI_NO_OF_TX_QS)
    {
        if (card->dynamic_slot_data.from_host_used_slots[queue] == 0)
        {
            unifi_error(card->ospriv, "Goofed up used slots q = %d used slots = %d\n",
                        queue,
                        card->dynamic_slot_data.from_host_used_slots[queue]);
        }
        else
        {
            card->dynamic_slot_data.from_host_used_slots[queue]--;
        }
        card->dynamic_slot_data.packets_txed[queue]++;
        card->dynamic_slot_data.total_packets_txed++;
        if (card->dynamic_slot_data.total_packets_txed >= card->dynamic_slot_data.packets_interval)
        {
            CardReassignDynamicReservation(card);
        }
    }

    unifi_trace(card->ospriv, UDBG4, "CardClearFromHostDataSlot: slot %d recycled %p\n", slot, os_data_ptr);

    func_exit();
} /* CardClearFromHostDataSlot() */


#ifdef CSR_WIFI_REQUEUE_PACKET_TO_HAL
/*
 * ---------------------------------------------------------------------------
 *  CardClearFromHostDataSlotWithoutFreeingBulkData
 *
 *      Clear the given data slot with out freeing the bulk data.
 *
 *  Arguments:
 *      card            Pointer to Card object
 *      slot            Index of the signal slot to clear.
 *
 *  Returns:
 *      None.
 * ---------------------------------------------------------------------------
 */
void CardClearFromHostDataSlotWithoutFreeingBulkData(card_t *card, const s16 slot)
{
    u8 queue = card->from_host_data[slot].queue;

    /* Initialise the from_host data slot so it can be re-used,
     * Set length field in from_host_data array to 0.
     */
    UNIFI_INIT_BULK_DATA(&card->from_host_data[slot].bd);

    queue = card->from_host_data[slot].queue;

    if (queue < UNIFI_NO_OF_TX_QS)
    {
        if (card->dynamic_slot_data.from_host_used_slots[queue] == 0)
        {
            unifi_error(card->ospriv, "Goofed up used slots q = %d used slots = %d\n",
                        queue,
                        card->dynamic_slot_data.from_host_used_slots[queue]);
        }
        else
        {
            card->dynamic_slot_data.from_host_used_slots[queue]--;
        }
        card->dynamic_slot_data.packets_txed[queue]++;
        card->dynamic_slot_data.total_packets_txed++;
        if (card->dynamic_slot_data.total_packets_txed >=
            card->dynamic_slot_data.packets_interval)
        {
            CardReassignDynamicReservation(card);
        }
    }
} /* CardClearFromHostDataSlotWithoutFreeingBulkData() */


#endif

u16 CardGetDataSlotSize(card_t *card)
{
    return card->config_data.data_slot_size;
} /* CardGetDataSlotSize() */


/*
 * ---------------------------------------------------------------------------
 *  CardGetFreeFromHostDataSlots
 *
 *      Retrieve the number of from-host bulk data slots available.
 *
 *  Arguments:
 *      card            Pointer to the card context struct
 *
 *  Returns:
 *      Number of free from-host bulk data slots.
 * ---------------------------------------------------------------------------
 */
u16 CardGetFreeFromHostDataSlots(card_t *card)
{
    u16 i, n = 0;

    func_enter();

    /* First two slots reserved for MLME */
    for (i = 0; i < card->config_data.num_fromhost_data_slots; i++)
    {
        if (card->from_host_data[i].bd.data_length == 0)
        {
            /* Free slot */
            n++;
        }
    }

    func_exit();
    return n;
} /* CardGetFreeFromHostDataSlots() */


/*
 * ---------------------------------------------------------------------------
 *  CardAreAllFromHostDataSlotsEmpty
 *
 *      Returns the state of from-host bulk data slots.
 *
 *  Arguments:
 *      card            Pointer to the card context struct
 *
 *  Returns:
 *      1       The from-host bulk data slots are all empty (available).
 *      0       Some or all the from-host bulk data slots are in use.
 * ---------------------------------------------------------------------------
 */
u16 CardAreAllFromHostDataSlotsEmpty(card_t *card)
{
    u16 i;

    for (i = 0; i < card->config_data.num_fromhost_data_slots; i++)
    {
        if (card->from_host_data[i].bd.data_length != 0)
        {
            return 0;
        }
    }

    return 1;
} /* CardGetFreeFromHostDataSlots() */


static CsrResult unifi_identify_hw(card_t *card)
{
    func_enter();

    card->chip_id = card->sdio_if->sdioId.cardId;
    card->function = card->sdio_if->sdioId.sdioFunction;
    card->sdio_io_block_size = card->sdio_if->blockSize;

    /* If SDIO controller doesn't support byte mode CMD53, pad transfers to block sizes */
    card->sdio_io_block_pad = (card->sdio_if->features & CSR_SDIO_FEATURE_BYTE_MODE)?FALSE : TRUE;

    /*
     * Setup the chip helper so that we can access the registers (and
     * also tell what sub-type of HIP we should use).
     */
    card->helper = ChipHelper_GetVersionSdio((u8)card->chip_id);
    if (!card->helper)
    {
        unifi_error(card->ospriv, "Null ChipHelper\n");
    }

    unifi_info(card->ospriv, "Chip ID 0x%02X  Function %u  Block Size %u  Name %s(%s)\n",
               card->chip_id, card->function, card->sdio_io_block_size,
               ChipHelper_MarketingName(card->helper),
               ChipHelper_FriendlyName(card->helper));

    func_exit();
    return CSR_RESULT_SUCCESS;
} /* unifi_identify_hw() */


static CsrResult unifi_prepare_hw(card_t *card)
{
    CsrResult r;
    CsrResult csrResult;
    enum unifi_host_state old_state = card->host_state;

    func_enter();

    r = unifi_identify_hw(card);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to identify hw\n");
        func_exit_r(r);
        return r;
    }

    unifi_trace(card->ospriv, UDBG1,
                "%s mode SDIO\n", card->sdio_io_block_pad?"Block" : "Byte");
    /*
     * Chip must be a awake or blocks that are asleep may not get
     * reset.  We can only do this after we have read the chip_id.
     */
    r = unifi_set_host_state(card, UNIFI_HOST_STATE_AWAKE);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }

    if (old_state == UNIFI_HOST_STATE_TORPID)
    {
        /* Ensure the initial clock rate is set; if a reset occured when the chip was
         * TORPID, unifi_set_host_state() may have raised it to MAX.
         */
        csrResult = CsrSdioMaxBusClockFrequencySet(card->sdio_if, UNIFI_SDIO_CLOCK_INIT_HZ);
        if (csrResult != CSR_RESULT_SUCCESS)
        {
            r = ConvertCsrSdioToCsrHipResult(card, csrResult);
            func_exit_r(r);
            return r;
        }
        card->sdio_clock_speed = UNIFI_SDIO_CLOCK_INIT_HZ;
    }

    /*
     * The WLAN function must be enabled to access MAILBOX2 and DEBUG_RST
     * registers.
     */
    csrResult = CsrSdioFunctionEnable(card->sdio_if);
    if (csrResult == CSR_SDIO_RESULT_NO_DEVICE)
    {
        return CSR_WIFI_HIP_RESULT_NO_DEVICE;
    }
    if (csrResult != CSR_RESULT_SUCCESS)
    {
        r = ConvertCsrSdioToCsrHipResult(card, csrResult);
        /* Can't enable WLAN function. Try resetting the SDIO block. */
        unifi_error(card->ospriv, "Failed to re-enable function %d.\n", card->function);
        func_exit_r(r);
        return r;
    }

    /*
     * Poke some registers to make sure the PLL has started,
     * otherwise memory accesses are likely to fail.
     */
    bootstrap_chip_hw(card);

    /* Try to read the chip version from register. */
    r = unifi_read_chip_version(card);
    if (r != CSR_RESULT_SUCCESS)
    {
        func_exit_r(r);
        return r;
    }

    func_exit();
    return CSR_RESULT_SUCCESS;
} /* unifi_prepare_hw() */


static CsrResult unifi_read_chip_version(card_t *card)
{
    u32 gbl_chip_version;
    CsrResult r;
    u16 ver;

    func_enter();

    gbl_chip_version = ChipHelper_GBL_CHIP_VERSION(card->helper);

    /* Try to read the chip version from register. */
    if (gbl_chip_version != 0)
    {
        r = unifi_read_direct16(card, gbl_chip_version * 2, &ver);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_error(card->ospriv, "Failed to read GBL_CHIP_VERSION\n");
            func_exit_r(r);
            return r;
        }
        card->chip_version = ver;
    }
    else
    {
        unifi_info(card->ospriv, "Unknown Chip ID, cannot locate GBL_CHIP_VERSION\n");
        r = CSR_RESULT_FAILURE;
    }

    unifi_info(card->ospriv, "Chip Version 0x%04X\n", card->chip_version);

    func_exit_r(r);
    return r;
} /* unifi_read_chip_version() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_reset_hardware
 *
 *      Execute the UniFi reset sequence.
 *
 *      Note: This may fail if the chip is going TORPID so retry at
 *      least once.
 *
 *  Arguments:
 *      card - pointer to card context structure
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS on success, CSR error otherwise.
 *
 *  Notes:
 *      Some platforms (e.g. Windows Vista) do not allow access to registers
 *      that are necessary for a software soft reset.
 * ---------------------------------------------------------------------------
 */
static CsrResult unifi_reset_hardware(card_t *card)
{
    CsrResult r;
    u16 new_block_size = UNIFI_IO_BLOCK_SIZE;
    CsrResult csrResult;

    func_enter();

    /* Errors returned by unifi_prepare_hw() are not critical at this point */
    r = unifi_prepare_hw(card);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }

    /* First try SDIO controller reset, which may power cycle the UniFi, assert
     * its reset line, or not be implemented depending on the platform.
     */
    unifi_info(card->ospriv, "Calling CsrSdioHardReset\n");
    csrResult = CsrSdioHardReset(card->sdio_if);
    if (csrResult == CSR_RESULT_SUCCESS)
    {
        unifi_info(card->ospriv, "CsrSdioHardReset succeeded on reseting UniFi\n");
        r = unifi_prepare_hw(card);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_error(card->ospriv, "unifi_prepare_hw failed after hard reset\n");
            func_exit_r(r);
            return r;
        }
    }
    else if (csrResult == CSR_SDIO_RESULT_NO_DEVICE)
    {
        return CSR_WIFI_HIP_RESULT_NO_DEVICE;
    }
    else
    {
        /* Falling back to software hard reset methods */
        unifi_info(card->ospriv, "Falling back to software hard reset\n");
        r = unifi_card_hard_reset(card);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_error(card->ospriv, "software hard reset failed\n");
            func_exit_r(r);
            return r;
        }

        /* If we fell back to unifi_card_hard_reset() methods, chip version may
         * not have been read. (Note in the unlikely event that it is zero,
         * it will be harmlessly read again)
         */
        if (card->chip_version == 0)
        {
            r = unifi_read_chip_version(card);
            if (r != CSR_RESULT_SUCCESS)
            {
                func_exit_r(r);
                return r;
            }
        }
    }

#ifdef CSR_WIFI_HIP_SDIO_BLOCK_SIZE
    new_block_size = CSR_WIFI_HIP_SDIO_BLOCK_SIZE;
#endif

    /* After hard reset, we need to restore the SDIO block size */
    csrResult = CsrSdioBlockSizeSet(card->sdio_if, new_block_size);
    r = ConvertCsrSdioToCsrHipResult(card, csrResult);

    /* Warn if a different block size was achieved by the transport */
    if (card->sdio_if->blockSize != new_block_size)
    {
        unifi_info(card->ospriv,
                   "Actually got block size %d\n", card->sdio_if->blockSize);
    }

    /* sdio_io_block_size always needs be updated from the achieved block size,
     * as it is used by the OS layer to allocate memory in unifi_net_malloc().
     * Controllers which don't support block mode (e.g. CSPI) will report a
     * block size of zero.
     */
    if (card->sdio_if->blockSize == 0)
    {
        unifi_info(card->ospriv, "Block size 0, block mode not available\n");

        /* Set sdio_io_block_size to 1 so that unifi_net_data_malloc() has a
         * sensible rounding value. Elsewhere padding will already be
         * disabled because the controller supports byte mode.
         */
        card->sdio_io_block_size = 1;

        /* Controller features must declare support for byte mode */
        if (!(card->sdio_if->features & CSR_SDIO_FEATURE_BYTE_MODE))
        {
            unifi_error(card->ospriv, "Requires byte mode\n");
            r = CSR_WIFI_HIP_RESULT_INVALID_VALUE;
        }
    }
    else
    {
        /* Padding will be enabled if CSR_SDIO_FEATURE_BYTE_MODE isn't set */
        card->sdio_io_block_size = card->sdio_if->blockSize;
    }


    func_exit_r(r);
    return r;
} /* unifi_reset_hardware() */


/*
 * ---------------------------------------------------------------------------
 *  card_reset_method_io_enable
 *
 *      Issue a hard reset to the hw writing the IO_ENABLE.
 *
 *  Arguments:
 *      card            Pointer to Card object
 *
 *  Returns:
 *      0 on success,
 *      CSR_WIFI_HIP_RESULT_NO_DEVICE   if the card was ejected
 *      CSR_RESULT_FAILURE         if an SDIO error occurred or if a response
 *                                 was not seen in the expected time
 * ---------------------------------------------------------------------------
 */
static CsrResult card_reset_method_io_enable(card_t *card)
{
    CsrResult r;
    CsrResult csrResult;

    func_enter();

    /*
     * This resets only function 1, so should be used in
     * preference to the method below (CSR_FUNC_EN)
     */
    unifi_trace(card->ospriv, UDBG1, "Hard reset (IO_ENABLE)\n");

    csrResult = CsrSdioFunctionDisable(card->sdio_if);
    if (csrResult == CSR_SDIO_RESULT_NO_DEVICE)
    {
        return CSR_WIFI_HIP_RESULT_NO_DEVICE;
    }
    if (csrResult != CSR_RESULT_SUCCESS)
    {
        r = ConvertCsrSdioToCsrHipResult(card, csrResult);
        unifi_warning(card->ospriv, "SDIO error writing IO_ENABLE: %d\n", r);
    }
    else
    {
        /* Delay here to let the reset take affect. */
        CsrThreadSleep(RESET_SETTLE_DELAY);

        r = card_wait_for_unifi_to_disable(card);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }

        if (r == CSR_RESULT_SUCCESS)
        {
            r = card_wait_for_unifi_to_reset(card);
            if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
            {
                return r;
            }
        }
    }

    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_trace(card->ospriv, UDBG1, "Hard reset (CSR_FUNC_EN)\n");

        r = sdio_write_f0(card, SDIO_CSR_FUNC_EN, 0);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_warning(card->ospriv, "SDIO error writing SDIO_CSR_FUNC_EN: %d\n", r);
            func_exit_r(r);
            return r;
        }
        else
        {
            /* Delay here to let the reset take affect. */
            CsrThreadSleep(RESET_SETTLE_DELAY);

            r = card_wait_for_unifi_to_reset(card);
            if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
            {
                return r;
            }
        }
    }

    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_warning(card->ospriv, "card_reset_method_io_enable failed to reset UniFi\n");
    }

    func_exit();
    return r;
} /* card_reset_method_io_enable() */


/*
 * ---------------------------------------------------------------------------
 *  card_reset_method_dbg_reset
 *
 *      Issue a hard reset to the hw writing the DBG_RESET.
 *
 *  Arguments:
 *      card            Pointer to Card object
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS         on success,
 *      CSR_WIFI_HIP_RESULT_NO_DEVICE   if the card was ejected
 *      CSR_RESULT_FAILURE         if an SDIO error occurred or if a response
 *                                 was not seen in the expected time
 * ---------------------------------------------------------------------------
 */
static CsrResult card_reset_method_dbg_reset(card_t *card)
{
    CsrResult r;

    func_enter();

    /*
     * Prepare UniFi for h/w reset
     */
    if (card->host_state == UNIFI_HOST_STATE_TORPID)
    {
        r = unifi_set_host_state(card, UNIFI_HOST_STATE_DROWSY);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_error(card->ospriv, "Failed to set UNIFI_HOST_STATE_DROWSY\n");
            func_exit_r(r);
            return r;
        }
        CsrThreadSleep(5);
    }

    r = unifi_card_stop_processor(card, UNIFI_PROC_BOTH);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Can't stop processors\n");
        func_exit();
        return r;
    }

    unifi_trace(card->ospriv, UDBG1, "Hard reset (DBG_RESET)\n");

    /*
     * This register write may fail. The debug reset resets
     * parts of the Function 0 sections of the chip, and
     * therefore the response cannot be sent back to the host.
     */
    r = unifi_write_direct_8_or_16(card, ChipHelper_DBG_RESET(card->helper) * 2, 1);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_warning(card->ospriv, "SDIO error writing DBG_RESET: %d\n", r);
        func_exit_r(r);
        return r;
    }

    /* Delay here to let the reset take affect. */
    CsrThreadSleep(RESET_SETTLE_DELAY);

    r = card_wait_for_unifi_to_reset(card);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_warning(card->ospriv, "card_reset_method_dbg_reset failed to reset UniFi\n");
    }

    func_exit();
    return r;
} /* card_reset_method_dbg_reset() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_card_hard_reset
 *
 *      Issue reset to hardware, by writing to registers on the card.
 *      Power to the card is preserved.
 *
 *  Arguments:
 *      card            Pointer to Card object
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS         on success,
 *      CSR_WIFI_HIP_RESULT_NO_DEVICE   if the card was ejected
 *      CSR_RESULT_FAILURE         if an SDIO error occurred or if a response
 *                                 was not seen in the expected time
 * ---------------------------------------------------------------------------
 */
CsrResult unifi_card_hard_reset(card_t *card)
{
    CsrResult r;
    const struct chip_helper_reset_values *init_data;
    u32 chunks;

    func_enter();

    /* Clear cache of page registers */
    card->proc_select = (u32)(-1);
    card->dmem_page = (u32)(-1);
    card->pmem_page = (u32)(-1);

    /*
     * We need to have a valid card->helper before we use software hard reset.
     * If unifi_identify_hw() fails to get the card ID, it probably means
     * that there is no way to talk to the h/w.
     */
    r = unifi_identify_hw(card);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "unifi_card_hard_reset failed to identify h/w\n");
        func_exit();
        return r;
    }

    /* Search for some reset code. */
    chunks = ChipHelper_HostResetSequence(card->helper, &init_data);
    if (chunks != 0)
    {
        unifi_error(card->ospriv,
                    "Hard reset (Code download) is unsupported\n");

        func_exit_r(CSR_RESULT_FAILURE);
        return CSR_RESULT_FAILURE;
    }

    if (card->chip_id > SDIO_CARD_ID_UNIFI_2)
    {
        /* The HIP spec considers this a bus-specific reset.
         * This resets only function 1, so should be used in
         * preference to the method below (CSR_FUNC_EN)
         * If this method fails, it means that the f/w is probably
         * not running. In this case, try the DBG_RESET method.
         */
        r = card_reset_method_io_enable(card);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r == CSR_RESULT_SUCCESS)
        {
            func_exit();
            return r;
        }
    }

    /* Software hard reset */
    r = card_reset_method_dbg_reset(card);

    func_exit_r(r);
    return r;
} /* unifi_card_hard_reset() */


/*
 * ---------------------------------------------------------------------------
 *
 *  CardGenInt
 *
 *      Prod the card.
 *      This function causes an internal interrupt to be raised in the
 *      UniFi chip. It is used to signal the firmware that some action has
 *      been completed.
 *      The UniFi Host Interface asks that the value used increments for
 *      debugging purposes.
 *
 *  Arguments:
 *      card            Pointer to Card object
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS         on success,
 *      CSR_WIFI_HIP_RESULT_NO_DEVICE   if the card was ejected
 *      CSR_RESULT_FAILURE         if an SDIO error occurred or if a response
 *                                 was not seen in the expected time
 * ---------------------------------------------------------------------------
 */
CsrResult CardGenInt(card_t *card)
{
    CsrResult r;

    func_enter();

    if (card->chip_id > SDIO_CARD_ID_UNIFI_2)
    {
        r = sdio_write_f0(card, SDIO_CSR_FROM_HOST_SCRATCH0,
                          (u8)card->unifi_interrupt_seq);
    }
    else
    {
        r = unifi_write_direct_8_or_16(card,
                                       ChipHelper_SHARED_IO_INTERRUPT(card->helper) * 2,
                                       (u8)card->unifi_interrupt_seq);
    }
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "SDIO error writing UNIFI_SHARED_IO_INTERRUPT: %d\n", r);
        func_exit_r(r);
        return r;
    }

    card->unifi_interrupt_seq++;

    func_exit();
    return CSR_RESULT_SUCCESS;
} /* CardGenInt() */


/*
 * ---------------------------------------------------------------------------
 *  CardEnableInt
 *
 *      Enable the outgoing SDIO interrupt from UniFi to the host.
 *
 *  Arguments:
 *      card            Pointer to Card object
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS            on success,
 *      CSR_WIFI_HIP_RESULT_NO_DEVICE      if the card was ejected
 *      CSR_RESULT_FAILURE            if an SDIO error occurred,
 * ---------------------------------------------------------------------------
 */
CsrResult CardEnableInt(card_t *card)
{
    CsrResult r;
    u8 int_enable;

    r = sdio_read_f0(card, SDIO_INT_ENABLE, &int_enable);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "SDIO error reading SDIO_INT_ENABLE\n");
        return r;
    }

    int_enable |= (1 << card->function) | UNIFI_SD_INT_ENABLE_IENM;

    r = sdio_write_f0(card, SDIO_INT_ENABLE, int_enable);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "SDIO error writing SDIO_INT_ENABLE\n");
        return r;
    }

    return CSR_RESULT_SUCCESS;
} /* CardEnableInt() */


/*
 * ---------------------------------------------------------------------------
 *  CardDisableInt
 *
 *      Disable the outgoing SDIO interrupt from UniFi to the host.
 *
 *  Arguments:
 *      card            Pointer to Card object
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS            on success,
 *      CSR_WIFI_HIP_RESULT_NO_DEVICE      if the card was ejected
 *      CSR_RESULT_FAILURE            if an SDIO error occurred,
 * ---------------------------------------------------------------------------
 */
CsrResult CardDisableInt(card_t *card)
{
    CsrResult r;
    u8 int_enable;

    r = sdio_read_f0(card, SDIO_INT_ENABLE, &int_enable);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "SDIO error reading SDIO_INT_ENABLE\n");
        return r;
    }

    int_enable &= ~(1 << card->function);

    r = sdio_write_f0(card, SDIO_INT_ENABLE, int_enable);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "SDIO error writing SDIO_INT_ENABLE\n");
        return r;
    }

    return CSR_RESULT_SUCCESS;
} /* CardDisableInt() */


/*
 * ---------------------------------------------------------------------------
 *  CardPendingInt
 *
 *      Determine whether UniFi is currently asserting the SDIO interrupt
 *      request.
 *
 *  Arguments:
 *      card            Pointer to Card object
 *      pintr           Pointer to location to write interrupt status,
 *                          TRUE if interrupt pending,
 *                          FALSE if no interrupt pending.
 *  Returns:
 *      CSR_RESULT_SUCCESS            interrupt status read successfully
 *      CSR_WIFI_HIP_RESULT_NO_DEVICE      if the card was ejected
 *      CSR_RESULT_FAILURE            if an SDIO error occurred,
 * ---------------------------------------------------------------------------
 */
CsrResult CardPendingInt(card_t *card, u8 *pintr)
{
    CsrResult r;
    u8 pending;

    *pintr = FALSE;

    r = sdio_read_f0(card, SDIO_INT_PENDING, &pending);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "SDIO error reading SDIO_INT_PENDING\n");
        return r;
    }

    *pintr = (pending & (1 << card->function))?TRUE : FALSE;

    return CSR_RESULT_SUCCESS;
} /* CardPendingInt() */


/*
 * ---------------------------------------------------------------------------
 *  CardClearInt
 *
 *      Clear the UniFi SDIO interrupt request.
 *
 *  Arguments:
 *      card            Pointer to Card object
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS          if pending interrupt was cleared, or no pending interrupt.
 *      CSR_WIFI_HIP_RESULT_NO_DEVICE    if the card was ejected
 *      CSR_RESULT_FAILURE          if an SDIO error occurred,
 * ---------------------------------------------------------------------------
 */
CsrResult CardClearInt(card_t *card)
{
    CsrResult r;
    u8 intr;

    if (card->chip_id > SDIO_CARD_ID_UNIFI_2)
    {
        /* CardPendingInt() sets intr, if there is a pending interrupt */
        r = CardPendingInt(card, &intr);
        if (intr == FALSE)
        {
            return r;
        }

        r = sdio_write_f0(card, SDIO_CSR_HOST_INT_CLEAR, 1);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_error(card->ospriv, "SDIO error writing SDIO_CSR_HOST_INT_CLEAR\n");
        }
    }
    else
    {
        r = unifi_write_direct_8_or_16(card,
                                       ChipHelper_SDIO_HOST_INT(card->helper) * 2,
                                       0);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_error(card->ospriv, "SDIO error writing UNIFI_SDIO_HOST_INT\n");
        }
    }

    return r;
} /* CardClearInt() */


/*
 * ---------------------------------------------------------------------------
 *  CardIntEnabled
 *
 *      Determine whether UniFi is currently asserting the SDIO interrupt
 *      request.
 *
 *  Arguments:
 *      card            Pointer to Card object
 *      enabled         Pointer to location to write interrupt enable status,
 *                          TRUE if interrupts enabled,
 *                          FALSE if interupts disabled.
 *
 *  Returns:
 *      CSR_WIFI_HIP_RESULT_NO_DEVICE      if the card was ejected
 *      CSR_RESULT_FAILURE            if an SDIO error occurred,
 * ---------------------------------------------------------------------------
 */
CsrResult CardIntEnabled(card_t *card, u8 *enabled)
{
    CsrResult r;
    u8 int_enable;

    r = sdio_read_f0(card, SDIO_INT_ENABLE, &int_enable);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "SDIO error reading SDIO_INT_ENABLE\n");
        return r;
    }

    *enabled = (int_enable & (1 << card->function))?TRUE : FALSE;

    return CSR_RESULT_SUCCESS;
} /* CardIntEnabled() */


/*
 * ---------------------------------------------------------------------------
 *  CardWriteBulkData
 *      Allocate slot in the pending bulkdata arrays and assign it to a signal's
 *      bulkdata reference. The slot is then ready for UniFi's bulkdata commands
 *      to transfer the data to/from the host.
 *
 *  Arguments:
 *      card            Pointer to Card object
 *      csptr           Pending signal pointer, including bulkdata ref
 *      queue           Traffic queue that this signal is using
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS if a free slot was assigned
 *      CSR_RESULT_FAILURE if no slot was available
 * ---------------------------------------------------------------------------
 */
CsrResult CardWriteBulkData(card_t *card, card_signal_t *csptr, unifi_TrafficQueue queue)
{
    u16 i, slots[UNIFI_MAX_DATA_REFERENCES], j = 0;
    u8 *packed_sigptr, num_slots_required = 0;
    bulk_data_desc_t *bulkdata = csptr->bulkdata;
    s16 h, nslots;

    func_enter();

    /* Count the number of slots required */
    for (i = 0; i < UNIFI_MAX_DATA_REFERENCES; i++)
    {
        if (bulkdata[i].data_length != 0)
        {
            num_slots_required++;
        }
    }

    /* Get the slot numbers */
    if (num_slots_required != 0)
    {
        /* Last 2 slots for MLME */
        if (queue == UNIFI_TRAFFIC_Q_MLME)
        {
            h = card->config_data.num_fromhost_data_slots - UNIFI_RESERVED_COMMAND_SLOTS;
            for (i = 0; i < card->config_data.num_fromhost_data_slots; i++)
            {
                if (card->from_host_data[h].bd.data_length == 0)
                {
                    /* Free data slot, claim it */
                    slots[j++] = h;
                    if (j == num_slots_required)
                    {
                        break;
                    }
                }

                if (++h >= card->config_data.num_fromhost_data_slots)
                {
                    h = 0;
                }
            }
        }
        else
        {
            if (card->dynamic_slot_data.from_host_used_slots[queue]
                < card->dynamic_slot_data.from_host_max_slots[queue])
            {
                /* Data commands get a free slot only after a few checks */
                nslots = card->config_data.num_fromhost_data_slots - UNIFI_RESERVED_COMMAND_SLOTS;

                h = card->from_host_data_head;

                for (i = 0; i < nslots; i++)
                {
                    if (card->from_host_data[h].bd.data_length == 0)
                    {
                        /* Free data slot, claim it */
                        slots[j++] = h;
                        if (j == num_slots_required)
                        {
                            break;
                        }
                    }

                    if (++h >= nslots)
                    {
                        h = 0;
                    }
                }
                card->from_host_data_head = h;
            }
        }

        /* Required number of slots are not available, bail out */
        if (j != num_slots_required)
        {
            unifi_trace(card->ospriv, UDBG5, "CardWriteBulkData: didn't find free slot/s\n");

            /* If we haven't already reached the stable state we can ask for reservation */
            if ((queue != UNIFI_TRAFFIC_Q_MLME) && (card->dynamic_slot_data.queue_stable[queue] == FALSE))
            {
                CardCheckDynamicReservation(card, queue);
            }

            for (i = 0; i < card->config_data.num_fromhost_data_slots; i++)
            {
                unifi_trace(card->ospriv, UDBG5, "fh data slot %d: %d\n", i, card->from_host_data[i].bd.data_length);
            }
            func_exit();
            return CSR_RESULT_FAILURE;
        }
    }

    packed_sigptr = csptr->sigbuf;

    /* Fill in the slots with data */
    j = 0;
    for (i = 0; i < UNIFI_MAX_DATA_REFERENCES; i++)
    {
        if (bulkdata[i].data_length == 0)
        {
            /* Zero-out the DATAREF in the signal */
            SET_PACKED_DATAREF_SLOT(packed_sigptr, i, 0);
            SET_PACKED_DATAREF_LEN(packed_sigptr, i, 0);
        }
        else
        {
            /*
             * Fill in the slot number in the SIGNAL structure but
             * preserve the offset already in there
             */
            SET_PACKED_DATAREF_SLOT(packed_sigptr, i, slots[j] | (((u16)packed_sigptr[SIZEOF_SIGNAL_HEADER + (i * SIZEOF_DATAREF) + 1]) << 8));
            SET_PACKED_DATAREF_LEN(packed_sigptr, i, bulkdata[i].data_length);

            /* Do not copy the data, just store the information to them */
            card->from_host_data[slots[j]].bd.os_data_ptr = bulkdata[i].os_data_ptr;
            card->from_host_data[slots[j]].bd.os_net_buf_ptr = bulkdata[i].os_net_buf_ptr;
            card->from_host_data[slots[j]].bd.data_length = bulkdata[i].data_length;
            card->from_host_data[slots[j]].bd.net_buf_length = bulkdata[i].net_buf_length;
            card->from_host_data[slots[j]].queue = queue;

            unifi_trace(card->ospriv, UDBG4, "CardWriteBulkData sig=0x%x, fh slot %d = %p\n",
                        GET_SIGNAL_ID(packed_sigptr), i, bulkdata[i].os_data_ptr);

            /* Sanity-check that the bulk data desc being assigned to the slot
             * actually has a payload.
             */
            if (!bulkdata[i].os_data_ptr)
            {
                unifi_error(card->ospriv, "Assign null os_data_ptr (len=%d) fh slot %d, i=%d, q=%d, sig=0x%x",
                            bulkdata[i].data_length, slots[j], i, queue, GET_SIGNAL_ID(packed_sigptr));
            }

            j++;
            if (queue < UNIFI_NO_OF_TX_QS)
            {
                card->dynamic_slot_data.from_host_used_slots[queue]++;
            }
        }
    }

    func_exit();

    return CSR_RESULT_SUCCESS;
} /*  CardWriteBulkData() */


/*
 * ---------------------------------------------------------------------------
 *  card_find_data_slot
 *
 *      Dereference references to bulk data slots into pointers to real data.
 *
 *  Arguments:
 *      card            Pointer to the card struct.
 *      slot            Slot number from a signal structure
 *
 *  Returns:
 *      Pointer to entry in bulk_data_slot array.
 * ---------------------------------------------------------------------------
 */
bulk_data_desc_t* card_find_data_slot(card_t *card, s16 slot)
{
    s16 sn;
    bulk_data_desc_t *bd;

    sn = slot & 0x7FFF;

    /* ?? check sanity of slot number ?? */

    if (slot & SLOT_DIR_TO_HOST)
    {
        bd = &card->to_host_data[sn];
    }
    else
    {
        bd = &card->from_host_data[sn].bd;
    }

    return bd;
} /* card_find_data_slot() */


/*
 * ---------------------------------------------------------------------------
 *  firmware_present_in_flash
 *
 *      Probe for external Flash that looks like it might contain firmware.
 *
 *      If Flash is not present, reads always return 0x0008.
 *      If Flash is present, but empty, reads return 0xFFFF.
 *      Anything else is considered to be firmware.
 *
 *  Arguments:
 *      card        Pointer to card struct
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS                 firmware is present in ROM or flash
 *      CSR_WIFI_HIP_RESULT_NOT_FOUND      firmware is not present in ROM or flash
 *      CSR_WIFI_HIP_RESULT_NO_DEVICE      if the card was ejected
 *      CSR_RESULT_FAILURE                 if an SDIO error occurred
 * ---------------------------------------------------------------------------
 */
static CsrResult firmware_present_in_flash(card_t *card)
{
    CsrResult r;
    u16 m1, m5;

    if (ChipHelper_HasRom(card->helper))
    {
        return CSR_RESULT_SUCCESS;
    }
    if (!ChipHelper_HasFlash(card->helper))
    {
        return CSR_WIFI_HIP_RESULT_NOT_FOUND;
    }

    /*
     * Examine the Flash locations that are the power-on default reset
     * vectors of the XAP processors.
     * These are words 1 and 5 in Flash.
     */
    r = unifi_card_read16(card, UNIFI_MAKE_GP(EXT_FLASH, 2), &m1);
    if (r != CSR_RESULT_SUCCESS)
    {
        return r;
    }

    r = unifi_card_read16(card, UNIFI_MAKE_GP(EXT_FLASH, 10), &m5);
    if (r != CSR_RESULT_SUCCESS)
    {
        return r;
    }

    /* Check for uninitialised/missing flash */
    if ((m1 == 0x0008) || (m1 == 0xFFFF) ||
        (m1 == 0x0004) || (m5 == 0x0004) ||
        (m5 == 0x0008) || (m5 == 0xFFFF))
    {
        return CSR_WIFI_HIP_RESULT_NOT_FOUND;
    }

    return CSR_RESULT_SUCCESS;
} /* firmware_present_in_flash() */


/*
 * ---------------------------------------------------------------------------
 *  bootstrap_chip_hw
 *
 *      Perform chip specific magic to "Get It Working" TM.  This will
 *      increase speed of PLLs in analogue and maybe enable some
 *      on-chip regulators.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *
 *  Returns:
 *      None.
 * ---------------------------------------------------------------------------
 */
static void bootstrap_chip_hw(card_t *card)
{
    const struct chip_helper_init_values *vals;
    u32 i, len;
    void *sdio = card->sdio_if;
    CsrResult csrResult;

    len = ChipHelper_ClockStartupSequence(card->helper, &vals);
    if (len != 0)
    {
        for (i = 0; i < len; i++)
        {
            csrResult = CsrSdioWrite16(sdio, vals[i].addr * 2, vals[i].value);
            if (csrResult != CSR_RESULT_SUCCESS)
            {
                unifi_warning(card->ospriv, "Failed to write bootstrap value %d\n", i);
                /* Might not be fatal */
            }

            CsrThreadSleep(1);
        }
    }
} /* bootstrap_chip_hw() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_card_stop_processor
 *
 *      Stop the UniFi XAP processors.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *      which           One of UNIFI_PROC_MAC, UNIFI_PROC_PHY, UNIFI_PROC_BOTH
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS if successful, or CSR error code
 * ---------------------------------------------------------------------------
 */
CsrResult unifi_card_stop_processor(card_t *card, enum unifi_dbg_processors_select which)
{
    CsrResult r = CSR_RESULT_SUCCESS;
    u8 status;
    s16 retry = 100;

    while (retry--)
    {
        /* Select both XAPs */
        r = unifi_set_proc_select(card, which);
        if (r != CSR_RESULT_SUCCESS)
        {
            break;
        }

        /* Stop processors */
        r = unifi_write_direct16(card, ChipHelper_DBG_EMU_CMD(card->helper) * 2, 2);
        if (r != CSR_RESULT_SUCCESS)
        {
            break;
        }

        /* Read status */
        r = unifi_read_direct_8_or_16(card,
                                      ChipHelper_DBG_HOST_STOP_STATUS(card->helper) * 2,
                                      &status);
        if (r != CSR_RESULT_SUCCESS)
        {
            break;
        }

        if ((status & 1) == 1)
        {
            /* Success! */
            return CSR_RESULT_SUCCESS;
        }

        /* Processors didn't stop, try again */
    }

    if (r != CSR_RESULT_SUCCESS)
    {
        /* An SDIO error occurred */
        unifi_error(card->ospriv, "Failed to stop processors: SDIO error\n");
    }
    else
    {
        /* If we reach here, we didn't the status in time. */
        unifi_error(card->ospriv, "Failed to stop processors: timeout waiting for stopped status\n");
        r = CSR_RESULT_FAILURE;
    }

    return r;
} /* unifi_card_stop_processor() */


/*
 * ---------------------------------------------------------------------------
 *  card_start_processor
 *
 *      Start the UniFi XAP processors.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *      which           One of UNIFI_PROC_MAC, UNIFI_PROC_PHY, UNIFI_PROC_BOTH
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS or CSR error code
 * ---------------------------------------------------------------------------
 */
CsrResult card_start_processor(card_t *card, enum unifi_dbg_processors_select which)
{
    CsrResult r;

    /* Select both XAPs */
    r = unifi_set_proc_select(card, which);
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "unifi_set_proc_select failed: %d.\n", r);
        return r;
    }


    r = unifi_write_direct_8_or_16(card,
                                   ChipHelper_DBG_EMU_CMD(card->helper) * 2, 8);
    if (r != CSR_RESULT_SUCCESS)
    {
        return r;
    }

    r = unifi_write_direct_8_or_16(card,
                                   ChipHelper_DBG_EMU_CMD(card->helper) * 2, 0);
    if (r != CSR_RESULT_SUCCESS)
    {
        return r;
    }

    return CSR_RESULT_SUCCESS;
} /* card_start_processor() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_set_interrupt_mode
 *
 *      Configure the interrupt processing mode used by the HIP
 *
 *  Arguments:
 *      card            Pointer to card struct
 *      mode            Interrupt mode to apply
 *
 *  Returns:
 *      None
 * ---------------------------------------------------------------------------
 */
void unifi_set_interrupt_mode(card_t *card, u32 mode)
{
    if (mode == CSR_WIFI_INTMODE_RUN_BH_ONCE)
    {
        unifi_info(card->ospriv, "Scheduled interrupt mode");
    }
    card->intmode = mode;
} /* unifi_set_interrupt_mode() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_start_processors
 *
 *      Start all UniFi XAP processors.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS on success, CSR error code on error
 * ---------------------------------------------------------------------------
 */
CsrResult unifi_start_processors(card_t *card)
{
    return card_start_processor(card, UNIFI_PROC_BOTH);
} /* unifi_start_processors() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_request_max_sdio_clock
 *
 *      Requests that the maximum SDIO clock rate is set at the next suitable
 *      opportunity (e.g. when the BH next runs, so as not to interfere with
 *      any current operation).
 *
 *  Arguments:
 *      card            Pointer to card struct
 *
 *  Returns:
 *      None
 * ---------------------------------------------------------------------------
 */
void unifi_request_max_sdio_clock(card_t *card)
{
    card->request_max_clock = 1;
} /* unifi_request_max_sdio_clock() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_set_host_state
 *
 *      Set the host deep-sleep state.
 *
 *      If transitioning to TORPID, the SDIO driver will be notified
 *      that the SD bus will be unused (idle) and conversely, when
 *      transitioning from TORPID that the bus will be used (active).
 *
 *  Arguments:
 *      card            Pointer to card struct
 *      state           New deep-sleep state.
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS            on success
 *      CSR_WIFI_HIP_RESULT_NO_DEVICE      if the card was ejected
 *      CSR_RESULT_FAILURE            if an SDIO error occurred
 *
 *  Notes:
 *      We need to reduce the SDIO clock speed before trying to wake up the
 *      chip. Actually, in the implementation below we reduce the clock speed
 *      not just before we try to wake up the chip, but when we put the chip to
 *      deep sleep. This means that if the f/w wakes up on its' own, we waste
 *      a reduce/increace cycle. However, trying to eliminate this overhead is
 *      proved difficult, as the current state machine in the HIP lib does at
 *      least a CMD52 to disable the interrupts before we configure the host
 *      state.
 * ---------------------------------------------------------------------------
 */
CsrResult unifi_set_host_state(card_t *card, enum unifi_host_state state)
{
    CsrResult r = CSR_RESULT_SUCCESS;
    CsrResult csrResult;
    static const char *const states[] = {
        "AWAKE", "DROWSY", "TORPID"
    };
    static const u8 state_csr_host_wakeup[] = {
        1, 3, 0
    };
    static const u8 state_io_abort[] = {
        0, 2, 3
    };

    unifi_trace(card->ospriv, UDBG4, "State %s to %s\n",
                states[card->host_state], states[state]);

    if (card->host_state == UNIFI_HOST_STATE_TORPID)
    {
        CsrSdioFunctionActive(card->sdio_if);
    }

    /* Write the new state to UniFi. */
    if (card->chip_id > SDIO_CARD_ID_UNIFI_2)
    {
        r = sdio_write_f0(card, SDIO_CSR_HOST_WAKEUP,
                          (u8)((card->function << 4) | state_csr_host_wakeup[state]));
    }
    else
    {
        r = sdio_write_f0(card, SDIO_IO_ABORT, state_io_abort[state]);
    }

    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to write UniFi deep sleep state\n");
    }
    else
    {
        /*
         * If the chip was in state TORPID then we can now increase
         * the maximum bus clock speed.
         */
        if (card->host_state == UNIFI_HOST_STATE_TORPID)
        {
            csrResult = CsrSdioMaxBusClockFrequencySet(card->sdio_if,
                                                       UNIFI_SDIO_CLOCK_MAX_HZ);
            r = ConvertCsrSdioToCsrHipResult(card, csrResult);
            /* Non-fatal error */
            if (r != CSR_RESULT_SUCCESS && r != CSR_WIFI_HIP_RESULT_NO_DEVICE)
            {
                unifi_warning(card->ospriv,
                              "Failed to increase the SDIO clock speed\n");
            }
            else
            {
                card->sdio_clock_speed = UNIFI_SDIO_CLOCK_MAX_HZ;
            }
        }

        /*
         * Cache the current state in the card structure to avoid
         * unnecessary SDIO reads.
         */
        card->host_state = state;

        if (state == UNIFI_HOST_STATE_TORPID)
        {
            /*
             * If the chip is now in state TORPID then we must now decrease
             * the maximum bus clock speed.
             */
            csrResult = CsrSdioMaxBusClockFrequencySet(card->sdio_if,
                                                       UNIFI_SDIO_CLOCK_SAFE_HZ);
            r = ConvertCsrSdioToCsrHipResult(card, csrResult);
            if (r != CSR_RESULT_SUCCESS && r != CSR_WIFI_HIP_RESULT_NO_DEVICE)
            {
                unifi_warning(card->ospriv,
                              "Failed to decrease the SDIO clock speed\n");
            }
            else
            {
                card->sdio_clock_speed = UNIFI_SDIO_CLOCK_SAFE_HZ;
            }
            CsrSdioFunctionIdle(card->sdio_if);
        }
    }

    return r;
} /* unifi_set_host_state() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_card_info
 *
 *      Update the card information data structure
 *
 *  Arguments:
 *      card            Pointer to card struct
 *      card_info       Pointer to info structure to update
 *
 *  Returns:
 *      None
 * ---------------------------------------------------------------------------
 */
void unifi_card_info(card_t *card, card_info_t *card_info)
{
    card_info->chip_id = card->chip_id;
    card_info->chip_version = card->chip_version;
    card_info->fw_build = card->build_id;
    card_info->fw_hip_version = card->config_data.version;
    card_info->sdio_block_size = card->sdio_io_block_size;
} /* unifi_card_info() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_check_io_status
 *
 *      Check UniFi for spontaneous reset and pending interrupt.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *      status          Pointer to location to write chip status:
 *                        0 if UniFi is running, and no interrupt pending
 *                        1 if UniFi has spontaneously reset
 *                        2 if there is a pending interrupt
 *  Returns:
 *      CSR_RESULT_SUCCESS if OK, or CSR error
 * ---------------------------------------------------------------------------
 */
CsrResult unifi_check_io_status(card_t *card, s32 *status)
{
    u8 io_en;
    CsrResult r;
    u8 pending;

    *status = 0;

    r = sdio_read_f0(card, SDIO_IO_ENABLE, &io_en);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to read SDIO_IO_ENABLE to check for spontaneous reset\n");
        return r;
    }

    if ((io_en & (1 << card->function)) == 0)
    {
        s32 fw_count;
        *status = 1;
        unifi_error(card->ospriv, "UniFi has spontaneously reset.\n");

        /*
         * These reads are very likely to fail. We want to know if the function is really
         * disabled or the SDIO driver just returns rubbish.
         */
        fw_count = unifi_read_shared_count(card, card->sdio_ctrl_addr + 4);
        if (fw_count < 0)
        {
            unifi_error(card->ospriv, "Failed to read to-host sig written count\n");
        }
        else
        {
            unifi_error(card->ospriv, "thsw: %u (driver thinks is %u)\n",
                        fw_count, card->to_host_signals_w);
        }
        fw_count = unifi_read_shared_count(card, card->sdio_ctrl_addr + 2);
        if (fw_count < 0)
        {
            unifi_error(card->ospriv, "Failed to read from-host sig read count\n");
        }
        else
        {
            unifi_error(card->ospriv, "fhsr: %u (driver thinks is %u)\n",
                        fw_count, card->from_host_signals_r);
        }

        return r;
    }

    unifi_info(card->ospriv, "UniFi function %d is enabled.\n", card->function);

    /* See if we missed an SDIO interrupt */
    r = CardPendingInt(card, &pending);
    if (pending)
    {
        unifi_error(card->ospriv, "There is an unhandled pending interrupt.\n");
        *status = 2;
        return r;
    }

    return r;
} /* unifi_check_io_status() */


void unifi_get_hip_qos_info(card_t *card, unifi_HipQosInfo *hipqosinfo)
{
    s32 count_fhr;
    s16 t;
    u32 occupied_fh;

    q_t *sigq;
    u16 nslots, i;

    memset(hipqosinfo, 0, sizeof(unifi_HipQosInfo));

    nslots = card->config_data.num_fromhost_data_slots;

    for (i = 0; i < nslots; i++)
    {
        if (card->from_host_data[i].bd.data_length == 0)
        {
            hipqosinfo->free_fh_bulkdata_slots++;
        }
    }

    for (i = 0; i < UNIFI_NO_OF_TX_QS; i++)
    {
        sigq = &card->fh_traffic_queue[i];
        t = sigq->q_wr_ptr - sigq->q_rd_ptr;
        if (t < 0)
        {
            t += sigq->q_length;
        }
        hipqosinfo->free_fh_sig_queue_slots[i] = (sigq->q_length - t) - 1;
    }

    count_fhr = unifi_read_shared_count(card, card->sdio_ctrl_addr + 2);
    if (count_fhr < 0)
    {
        unifi_error(card->ospriv, "Failed to read from-host sig read count - %d\n", count_fhr);
        hipqosinfo->free_fh_fw_slots = 0xfa;
        return;
    }

    occupied_fh = (card->from_host_signals_w - count_fhr) % 128;

    hipqosinfo->free_fh_fw_slots = (u16)(card->config_data.num_fromhost_sig_frags - occupied_fh);
}



CsrResult ConvertCsrSdioToCsrHipResult(card_t *card, CsrResult csrResult)
{
    CsrResult r = CSR_RESULT_FAILURE;

    switch (csrResult)
    {
        case CSR_RESULT_SUCCESS:
            r = CSR_RESULT_SUCCESS;
            break;
        /* Timeout errors */
        case CSR_SDIO_RESULT_TIMEOUT:
        /* Integrity errors */
        case CSR_SDIO_RESULT_CRC_ERROR:
            r = CSR_RESULT_FAILURE;
            break;
        case CSR_SDIO_RESULT_NO_DEVICE:
            r = CSR_WIFI_HIP_RESULT_NO_DEVICE;
            break;
        case CSR_SDIO_RESULT_INVALID_VALUE:
            r = CSR_WIFI_HIP_RESULT_INVALID_VALUE;
            break;
        case CSR_RESULT_FAILURE:
            r = CSR_RESULT_FAILURE;
            break;
        default:
            unifi_warning(card->ospriv, "Unrecognised csrResult error code: %d\n", csrResult);
            break;
    }

    return r;
} /* ConvertCsrSdioToCsrHipResult() */