aboutsummaryrefslogtreecommitdiff
path: root/Documentation/DocBook/media/v4l/pixfmt.xml
blob: 1ddbfabe31953b34fa8f51a8dc7c515daca39a06 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
  <title>Image Formats</title>

  <para>The V4L2 API was primarily designed for devices exchanging
image data with applications. The
<structname>v4l2_pix_format</structname> and <structname>v4l2_pix_format_mplane
</structname> structures define the format and layout of an image in memory.
The former is used with the single-planar API, while the latter is used with the
multi-planar version (see <xref linkend="planar-apis"/>). Image formats are
negotiated with the &VIDIOC-S-FMT; ioctl. (The explanations here focus on video
capturing and output, for overlay frame buffer formats see also
&VIDIOC-G-FBUF;.)</para>

<section>
  <title>Single-planar format structure</title>
  <table pgwide="1" frame="none" id="v4l2-pix-format">
    <title>struct <structname>v4l2_pix_format</structname></title>
    <tgroup cols="3">
      &cs-str;
      <tbody valign="top">
	<row>
	  <entry>__u32</entry>
	  <entry><structfield>width</structfield></entry>
	  <entry>Image width in pixels.</entry>
	</row>
	<row>
	  <entry>__u32</entry>
	  <entry><structfield>height</structfield></entry>
	  <entry>Image height in pixels.</entry>
	</row>
	<row>
	  <entry spanname="hspan">Applications set these fields to
request an image size, drivers return the closest possible values. In
case of planar formats the <structfield>width</structfield> and
<structfield>height</structfield> applies to the largest plane. To
avoid ambiguities drivers must return values rounded up to a multiple
of the scale factor of any smaller planes. For example when the image
format is YUV 4:2:0, <structfield>width</structfield> and
<structfield>height</structfield> must be multiples of two.</entry>
	</row>
	<row>
	  <entry>__u32</entry>
	  <entry><structfield>pixelformat</structfield></entry>
	  <entry>The pixel format or type of compression, set by the
application. This is a little endian <link
linkend="v4l2-fourcc">four character code</link>. V4L2 defines
standard RGB formats in <xref linkend="rgb-formats" />, YUV formats in <xref
linkend="yuv-formats" />, and reserved codes in <xref
linkend="reserved-formats" /></entry>
	</row>
	<row>
	  <entry>&v4l2-field;</entry>
	  <entry><structfield>field</structfield></entry>
	  <entry>Video images are typically interlaced. Applications
can request to capture or output only the top or bottom field, or both
fields interlaced or sequentially stored in one buffer or alternating
in separate buffers. Drivers return the actual field order selected.
For details see <xref linkend="field-order" />.</entry>
	</row>
	<row>
	  <entry>__u32</entry>
	  <entry><structfield>bytesperline</structfield></entry>
	  <entry>Distance in bytes between the leftmost pixels in two
adjacent lines.</entry>
	</row>
	<row>
	  <entry spanname="hspan"><para>Both applications and drivers
can set this field to request padding bytes at the end of each line.
Drivers however may ignore the value requested by the application,
returning <structfield>width</structfield> times bytes per pixel or a
larger value required by the hardware. That implies applications can
just set this field to zero to get a reasonable
default.</para><para>Video hardware may access padding bytes,
therefore they must reside in accessible memory. Consider cases where
padding bytes after the last line of an image cross a system page
boundary. Input devices may write padding bytes, the value is
undefined. Output devices ignore the contents of padding
bytes.</para><para>When the image format is planar the
<structfield>bytesperline</structfield> value applies to the largest
plane and is divided by the same factor as the
<structfield>width</structfield> field for any smaller planes. For
example the Cb and Cr planes of a YUV 4:2:0 image have half as many
padding bytes following each line as the Y plane. To avoid ambiguities
drivers must return a <structfield>bytesperline</structfield> value
rounded up to a multiple of the scale factor.</para></entry>
	</row>
	<row>
	  <entry>__u32</entry>
	  <entry><structfield>sizeimage</structfield></entry>
	  <entry>Size in bytes of the buffer to hold a complete image,
set by the driver. Usually this is
<structfield>bytesperline</structfield> times
<structfield>height</structfield>. When the image consists of variable
length compressed data this is the maximum number of bytes required to
hold an image.</entry>
	</row>
	<row>
	  <entry>&v4l2-colorspace;</entry>
	  <entry><structfield>colorspace</structfield></entry>
	  <entry>This information supplements the
<structfield>pixelformat</structfield> and must be set by the driver,
see <xref linkend="colorspaces" />.</entry>
	</row>
	<row>
	  <entry>__u32</entry>
	  <entry><structfield>priv</structfield></entry>
	  <entry>Reserved for custom (driver defined) additional
information about formats. When not used drivers and applications must
set this field to zero.</entry>
	</row>
      </tbody>
    </tgroup>
  </table>
</section>

<section>
  <title>Multi-planar format structures</title>
  <para>The <structname>v4l2_plane_pix_format</structname> structures define
    size and layout for each of the planes in a multi-planar format.
    The <structname>v4l2_pix_format_mplane</structname> structure contains
    information common to all planes (such as image width and height) and
    an array of <structname>v4l2_plane_pix_format</structname> structures,
    describing all planes of that format.</para>
  <table pgwide="1" frame="none" id="v4l2-plane-pix-format">
    <title>struct <structname>v4l2_plane_pix_format</structname></title>
    <tgroup cols="3">
      &cs-str;
      <tbody valign="top">
        <row>
          <entry>__u32</entry>
          <entry><structfield>sizeimage</structfield></entry>
          <entry>Maximum size in bytes required for image data in this plane.
          </entry>
        </row>
        <row>
          <entry>__u16</entry>
          <entry><structfield>bytesperline</structfield></entry>
          <entry>Distance in bytes between the leftmost pixels in two adjacent
            lines.</entry>
        </row>
        <row>
          <entry>__u16</entry>
          <entry><structfield>reserved[7]</structfield></entry>
          <entry>Reserved for future extensions. Should be zeroed by the
           application.</entry>
        </row>
      </tbody>
    </tgroup>
  </table>
  <table pgwide="1" frame="none" id="v4l2-pix-format-mplane">
    <title>struct <structname>v4l2_pix_format_mplane</structname></title>
    <tgroup cols="3">
      &cs-str;
      <tbody valign="top">
        <row>
          <entry>__u32</entry>
          <entry><structfield>width</structfield></entry>
          <entry>Image width in pixels.</entry>
        </row>
        <row>
          <entry>__u32</entry>
          <entry><structfield>height</structfield></entry>
          <entry>Image height in pixels.</entry>
        </row>
        <row>
          <entry>__u32</entry>
          <entry><structfield>pixelformat</structfield></entry>
          <entry>The pixel format. Both single- and multi-planar four character
codes can be used.</entry>
        </row>
        <row>
          <entry>&v4l2-field;</entry>
          <entry><structfield>field</structfield></entry>
          <entry>See &v4l2-pix-format;.</entry>
        </row>
        <row>
          <entry>&v4l2-colorspace;</entry>
          <entry><structfield>colorspace</structfield></entry>
          <entry>See &v4l2-pix-format;.</entry>
        </row>
        <row>
          <entry>&v4l2-plane-pix-format;</entry>
          <entry><structfield>plane_fmt[VIDEO_MAX_PLANES]</structfield></entry>
          <entry>An array of structures describing format of each plane this
          pixel format consists of. The number of valid entries in this array
          has to be put in the <structfield>num_planes</structfield>
          field.</entry>
        </row>
        <row>
          <entry>__u8</entry>
          <entry><structfield>num_planes</structfield></entry>
          <entry>Number of planes (i.e. separate memory buffers) for this format
          and the number of valid entries in the
          <structfield>plane_fmt</structfield> array.</entry>
        </row>
        <row>
          <entry>__u8</entry>
          <entry><structfield>reserved[11]</structfield></entry>
          <entry>Reserved for future extensions. Should be zeroed by the
           application.</entry>
        </row>
      </tbody>
    </tgroup>
  </table>
</section>

  <section>
    <title>Standard Image Formats</title>

    <para>In order to exchange images between drivers and
applications, it is necessary to have standard image data formats
which both sides will interpret the same way. V4L2 includes several
such formats, and this section is intended to be an unambiguous
specification of the standard image data formats in V4L2.</para>

    <para>V4L2 drivers are not limited to these formats, however.
Driver-specific formats are possible. In that case the application may
depend on a codec to convert images to one of the standard formats
when needed. But the data can still be stored and retrieved in the
proprietary format. For example, a device may support a proprietary
compressed format. Applications can still capture and save the data in
the compressed format, saving much disk space, and later use a codec
to convert the images to the X Windows screen format when the video is
to be displayed.</para>

    <para>Even so, ultimately, some standard formats are needed, so
the V4L2 specification would not be complete without well-defined
standard formats.</para>

    <para>The V4L2 standard formats are mainly uncompressed formats. The
pixels are always arranged in memory from left to right, and from top
to bottom. The first byte of data in the image buffer is always for
the leftmost pixel of the topmost row. Following that is the pixel
immediately to its right, and so on until the end of the top row of
pixels. Following the rightmost pixel of the row there may be zero or
more bytes of padding to guarantee that each row of pixel data has a
certain alignment. Following the pad bytes, if any, is data for the
leftmost pixel of the second row from the top, and so on. The last row
has just as many pad bytes after it as the other rows.</para>

    <para>In V4L2 each format has an identifier which looks like
<constant>PIX_FMT_XXX</constant>, defined in the <link
linkend="videodev">videodev.h</link> header file. These identifiers
represent <link linkend="v4l2-fourcc">four character (FourCC) codes</link>
which are also listed below, however they are not the same as those
used in the Windows world.</para>

    <para>For some formats, data is stored in separate, discontiguous
memory buffers. Those formats are identified by a separate set of FourCC codes
and are referred to as "multi-planar formats". For example, a YUV422 frame is
normally stored in one memory buffer, but it can also be placed in two or three
separate buffers, with Y component in one buffer and CbCr components in another
in the 2-planar version or with each component in its own buffer in the
3-planar case. Those sub-buffers are referred to as "planes".</para>
  </section>

  <section id="colorspaces">
    <title>Colorspaces</title>

    <para>[intro]</para>

    <!-- See proposal by Billy Biggs, video4linux-list@redhat.com
on 11 Oct 2002, subject: "Re: [V4L] Re: v4l2 api", and
http://vektor.theorem.ca/graphics/ycbcr/ and
http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.html -->

    <para>
      <variablelist>
	<varlistentry>
	  <term>Gamma Correction</term>
	  <listitem>
	    <para>[to do]</para>
	    <para>E'<subscript>R</subscript> = f(R)</para>
	    <para>E'<subscript>G</subscript> = f(G)</para>
	    <para>E'<subscript>B</subscript> = f(B)</para>
	  </listitem>
	</varlistentry>
	<varlistentry>
	  <term>Construction of luminance and color-difference
signals</term>
	  <listitem>
	    <para>[to do]</para>
	    <para>E'<subscript>Y</subscript> =
Coeff<subscript>R</subscript> E'<subscript>R</subscript>
+ Coeff<subscript>G</subscript> E'<subscript>G</subscript>
+ Coeff<subscript>B</subscript> E'<subscript>B</subscript></para>
	    <para>(E'<subscript>R</subscript> - E'<subscript>Y</subscript>) = E'<subscript>R</subscript>
- Coeff<subscript>R</subscript> E'<subscript>R</subscript>
- Coeff<subscript>G</subscript> E'<subscript>G</subscript>
- Coeff<subscript>B</subscript> E'<subscript>B</subscript></para>
	    <para>(E'<subscript>B</subscript> - E'<subscript>Y</subscript>) = E'<subscript>B</subscript>
- Coeff<subscript>R</subscript> E'<subscript>R</subscript>
- Coeff<subscript>G</subscript> E'<subscript>G</subscript>
- Coeff<subscript>B</subscript> E'<subscript>B</subscript></para>
	  </listitem>
	</varlistentry>
	<varlistentry>
	  <term>Re-normalized color-difference signals</term>
	  <listitem>
	    <para>The color-difference signals are scaled back to unity
range [-0.5;+0.5]:</para>
	    <para>K<subscript>B</subscript> = 0.5 / (1 - Coeff<subscript>B</subscript>)</para>
	    <para>K<subscript>R</subscript> = 0.5 / (1 - Coeff<subscript>R</subscript>)</para>
	    <para>P<subscript>B</subscript> =
K<subscript>B</subscript> (E'<subscript>B</subscript> - E'<subscript>Y</subscript>) =
  0.5 (Coeff<subscript>R</subscript> / Coeff<subscript>B</subscript>) E'<subscript>R</subscript>
+ 0.5 (Coeff<subscript>G</subscript> / Coeff<subscript>B</subscript>) E'<subscript>G</subscript>
+ 0.5 E'<subscript>B</subscript></para>
	    <para>P<subscript>R</subscript> =
K<subscript>R</subscript> (E'<subscript>R</subscript> - E'<subscript>Y</subscript>) =
  0.5 E'<subscript>R</subscript>
+ 0.5 (Coeff<subscript>G</subscript> / Coeff<subscript>R</subscript>) E'<subscript>G</subscript>
+ 0.5 (Coeff<subscript>B</subscript> / Coeff<subscript>R</subscript>) E'<subscript>B</subscript></para>
	  </listitem>
	</varlistentry>
	<varlistentry>
	  <term>Quantization</term>
	  <listitem>
	    <para>[to do]</para>
	    <para>Y' = (Lum. Levels - 1) &middot; E'<subscript>Y</subscript> + Lum. Offset</para>
	    <para>C<subscript>B</subscript> = (Chrom. Levels - 1)
&middot; P<subscript>B</subscript> + Chrom. Offset</para>
	    <para>C<subscript>R</subscript> = (Chrom. Levels - 1)
&middot; P<subscript>R</subscript> + Chrom. Offset</para>
	    <para>Rounding to the nearest integer and clamping to the range
[0;255] finally yields the digital color components Y'CbCr
stored in YUV images.</para>
	  </listitem>
	</varlistentry>
      </variablelist>
    </para>

    <example>
      <title>ITU-R Rec. BT.601 color conversion</title>

      <para>Forward Transformation</para>

      <programlisting>
int ER, EG, EB;         /* gamma corrected RGB input [0;255] */
int Y1, Cb, Cr;         /* output [0;255] */

double r, g, b;         /* temporaries */
double y1, pb, pr;

int
clamp (double x)
{
	int r = x;      /* round to nearest */

	if (r &lt; 0)         return 0;
	else if (r &gt; 255)  return 255;
	else               return r;
}

r = ER / 255.0;
g = EG / 255.0;
b = EB / 255.0;

y1  =  0.299  * r + 0.587 * g + 0.114  * b;
pb  = -0.169  * r - 0.331 * g + 0.5    * b;
pr  =  0.5    * r - 0.419 * g - 0.081  * b;

Y1 = clamp (219 * y1 + 16);
Cb = clamp (224 * pb + 128);
Cr = clamp (224 * pr + 128);

/* or shorter */

y1 = 0.299 * ER + 0.587 * EG + 0.114 * EB;

Y1 = clamp ( (219 / 255.0)                    *       y1  + 16);
Cb = clamp (((224 / 255.0) / (2 - 2 * 0.114)) * (EB - y1) + 128);
Cr = clamp (((224 / 255.0) / (2 - 2 * 0.299)) * (ER - y1) + 128);
      </programlisting>

      <para>Inverse Transformation</para>

      <programlisting>
int Y1, Cb, Cr;         /* gamma pre-corrected input [0;255] */
int ER, EG, EB;         /* output [0;255] */

double r, g, b;         /* temporaries */
double y1, pb, pr;

int
clamp (double x)
{
	int r = x;      /* round to nearest */

	if (r &lt; 0)         return 0;
	else if (r &gt; 255)  return 255;
	else               return r;
}

y1 = (255 / 219.0) * (Y1 - 16);
pb = (255 / 224.0) * (Cb - 128);
pr = (255 / 224.0) * (Cr - 128);

r = 1.0 * y1 + 0     * pb + 1.402 * pr;
g = 1.0 * y1 - 0.344 * pb - 0.714 * pr;
b = 1.0 * y1 + 1.772 * pb + 0     * pr;

ER = clamp (r * 255); /* [ok? one should prob. limit y1,pb,pr] */
EG = clamp (g * 255);
EB = clamp (b * 255);
      </programlisting>
    </example>

    <table pgwide="1" id="v4l2-colorspace" orient="land">
      <title>enum v4l2_colorspace</title>
      <tgroup cols="11" align="center">
	<colspec align="left" />
	<colspec align="center" />
	<colspec align="left" />
	<colspec colname="cr" />
	<colspec colname="cg" />
	<colspec colname="cb" />
	<colspec colname="wp" />
	<colspec colname="gc" />
	<colspec colname="lum" />
	<colspec colname="qy" />
	<colspec colname="qc" />
	<spanspec namest="cr" nameend="cb" spanname="chrom" />
	<spanspec namest="qy" nameend="qc" spanname="quant" />
	<spanspec namest="lum" nameend="qc" spanname="spam" />
	<thead>
	  <row>
	    <entry morerows="1">Identifier</entry>
	    <entry morerows="1">Value</entry>
	    <entry morerows="1">Description</entry>
	    <entry spanname="chrom">Chromaticities<footnote>
		<para>The coordinates of the color primaries are
given in the CIE system (1931)</para>
	      </footnote></entry>
	    <entry morerows="1">White Point</entry>
	    <entry morerows="1">Gamma Correction</entry>
	    <entry morerows="1">Luminance E'<subscript>Y</subscript></entry>
	    <entry spanname="quant">Quantization</entry>
	  </row>
	  <row>
	    <entry>Red</entry>
	    <entry>Green</entry>
	    <entry>Blue</entry>
	    <entry>Y'</entry>
	    <entry>Cb, Cr</entry>
	  </row>
	</thead>
	<tbody valign="top">
	  <row>
	    <entry><constant>V4L2_COLORSPACE_SMPTE170M</constant></entry>
	    <entry>1</entry>
	    <entry>NTSC/PAL according to <xref linkend="smpte170m" />,
<xref linkend="itu601" /></entry>
	    <entry>x&nbsp;=&nbsp;0.630, y&nbsp;=&nbsp;0.340</entry>
	    <entry>x&nbsp;=&nbsp;0.310, y&nbsp;=&nbsp;0.595</entry>
	    <entry>x&nbsp;=&nbsp;0.155, y&nbsp;=&nbsp;0.070</entry>
	    <entry>x&nbsp;=&nbsp;0.3127, y&nbsp;=&nbsp;0.3290,
	    Illuminant D<subscript>65</subscript></entry>
	    <entry>E' = 4.5&nbsp;I&nbsp;for&nbsp;I&nbsp;&le;0.018,
1.099&nbsp;I<superscript>0.45</superscript>&nbsp;-&nbsp;0.099&nbsp;for&nbsp;0.018&nbsp;&lt;&nbsp;I</entry>
	    <entry>0.299&nbsp;E'<subscript>R</subscript>
+&nbsp;0.587&nbsp;E'<subscript>G</subscript>
+&nbsp;0.114&nbsp;E'<subscript>B</subscript></entry>
	    <entry>219&nbsp;E'<subscript>Y</subscript>&nbsp;+&nbsp;16</entry>
	    <entry>224&nbsp;P<subscript>B,R</subscript>&nbsp;+&nbsp;128</entry>
	  </row>
	  <row>
	    <entry><constant>V4L2_COLORSPACE_SMPTE240M</constant></entry>
	    <entry>2</entry>
	    <entry>1125-Line (US) HDTV, see <xref
linkend="smpte240m" /></entry>
	    <entry>x&nbsp;=&nbsp;0.630, y&nbsp;=&nbsp;0.340</entry>
	    <entry>x&nbsp;=&nbsp;0.310, y&nbsp;=&nbsp;0.595</entry>
	    <entry>x&nbsp;=&nbsp;0.155, y&nbsp;=&nbsp;0.070</entry>
	    <entry>x&nbsp;=&nbsp;0.3127, y&nbsp;=&nbsp;0.3290,
	    Illuminant D<subscript>65</subscript></entry>
	    <entry>E' = 4&nbsp;I&nbsp;for&nbsp;I&nbsp;&le;0.0228,
1.1115&nbsp;I<superscript>0.45</superscript>&nbsp;-&nbsp;0.1115&nbsp;for&nbsp;0.0228&nbsp;&lt;&nbsp;I</entry>
	    <entry>0.212&nbsp;E'<subscript>R</subscript>
+&nbsp;0.701&nbsp;E'<subscript>G</subscript>
+&nbsp;0.087&nbsp;E'<subscript>B</subscript></entry>
	    <entry>219&nbsp;E'<subscript>Y</subscript>&nbsp;+&nbsp;16</entry>
	    <entry>224&nbsp;P<subscript>B,R</subscript>&nbsp;+&nbsp;128</entry>
	  </row>
	  <row>
	    <entry><constant>V4L2_COLORSPACE_REC709</constant></entry>
	    <entry>3</entry>
	    <entry>HDTV and modern devices, see <xref
linkend="itu709" /></entry>
	    <entry>x&nbsp;=&nbsp;0.640, y&nbsp;=&nbsp;0.330</entry>
	    <entry>x&nbsp;=&nbsp;0.300, y&nbsp;=&nbsp;0.600</entry>
	    <entry>x&nbsp;=&nbsp;0.150, y&nbsp;=&nbsp;0.060</entry>
	    <entry>x&nbsp;=&nbsp;0.3127, y&nbsp;=&nbsp;0.3290,
	    Illuminant D<subscript>65</subscript></entry>
	    <entry>E' = 4.5&nbsp;I&nbsp;for&nbsp;I&nbsp;&le;0.018,
1.099&nbsp;I<superscript>0.45</superscript>&nbsp;-&nbsp;0.099&nbsp;for&nbsp;0.018&nbsp;&lt;&nbsp;I</entry>
	    <entry>0.2125&nbsp;E'<subscript>R</subscript>
+&nbsp;0.7154&nbsp;E'<subscript>G</subscript>
+&nbsp;0.0721&nbsp;E'<subscript>B</subscript></entry>
	    <entry>219&nbsp;E'<subscript>Y</subscript>&nbsp;+&nbsp;16</entry>
	    <entry>224&nbsp;P<subscript>B,R</subscript>&nbsp;+&nbsp;128</entry>
	  </row>
	  <row>
	    <entry><constant>V4L2_COLORSPACE_BT878</constant></entry>
	    <entry>4</entry>
	    <entry>Broken Bt878 extents<footnote>
		<para>The ubiquitous Bt878 video capture chip
quantizes E'<subscript>Y</subscript> to 238 levels, yielding a range
of Y' = 16 &hellip; 253, unlike Rec. 601 Y' = 16 &hellip;
235. This is not a typo in the Bt878 documentation, it has been
implemented in silicon. The chroma extents are unclear.</para>
	      </footnote>, <xref linkend="itu601" /></entry>
	    <entry>?</entry>
	    <entry>?</entry>
	    <entry>?</entry>
	    <entry>?</entry>
	    <entry>?</entry>
	    <entry>0.299&nbsp;E'<subscript>R</subscript>
+&nbsp;0.587&nbsp;E'<subscript>G</subscript>
+&nbsp;0.114&nbsp;E'<subscript>B</subscript></entry>
	    <entry><emphasis>237</emphasis>&nbsp;E'<subscript>Y</subscript>&nbsp;+&nbsp;16</entry>
	    <entry>224&nbsp;P<subscript>B,R</subscript>&nbsp;+&nbsp;128 (probably)</entry>
	  </row>
	  <row>
	    <entry><constant>V4L2_COLORSPACE_470_SYSTEM_M</constant></entry>
	    <entry>5</entry>
	    <entry>M/NTSC<footnote>
		<para>No identifier exists for M/PAL which uses
the chromaticities of M/NTSC, the remaining parameters are equal to B and
G/PAL.</para>
	      </footnote> according to <xref linkend="itu470" />, <xref
		linkend="itu601" /></entry>
	    <entry>x&nbsp;=&nbsp;0.67, y&nbsp;=&nbsp;0.33</entry>
	    <entry>x&nbsp;=&nbsp;0.21, y&nbsp;=&nbsp;0.71</entry>
	    <entry>x&nbsp;=&nbsp;0.14, y&nbsp;=&nbsp;0.08</entry>
	    <entry>x&nbsp;=&nbsp;0.310, y&nbsp;=&nbsp;0.316, Illuminant C</entry>
	    <entry>?</entry>
	    <entry>0.299&nbsp;E'<subscript>R</subscript>
+&nbsp;0.587&nbsp;E'<subscript>G</subscript>
+&nbsp;0.114&nbsp;E'<subscript>B</subscript></entry>
	    <entry>219&nbsp;E'<subscript>Y</subscript>&nbsp;+&nbsp;16</entry>
	    <entry>224&nbsp;P<subscript>B,R</subscript>&nbsp;+&nbsp;128</entry>
	  </row>
	  <row>
	    <entry><constant>V4L2_COLORSPACE_470_SYSTEM_BG</constant></entry>
	    <entry>6</entry>
	    <entry>625-line PAL and SECAM systems according to <xref
linkend="itu470" />, <xref linkend="itu601" /></entry>
	    <entry>x&nbsp;=&nbsp;0.64, y&nbsp;=&nbsp;0.33</entry>
	    <entry>x&nbsp;=&nbsp;0.29, y&nbsp;=&nbsp;0.60</entry>
	    <entry>x&nbsp;=&nbsp;0.15, y&nbsp;=&nbsp;0.06</entry>
	    <entry>x&nbsp;=&nbsp;0.313, y&nbsp;=&nbsp;0.329,
Illuminant D<subscript>65</subscript></entry>
	    <entry>?</entry>
	    <entry>0.299&nbsp;E'<subscript>R</subscript>
+&nbsp;0.587&nbsp;E'<subscript>G</subscript>
+&nbsp;0.114&nbsp;E'<subscript>B</subscript></entry>
	    <entry>219&nbsp;E'<subscript>Y</subscript>&nbsp;+&nbsp;16</entry>
	    <entry>224&nbsp;P<subscript>B,R</subscript>&nbsp;+&nbsp;128</entry>
	  </row>
	  <row>
	    <entry><constant>V4L2_COLORSPACE_JPEG</constant></entry>
	    <entry>7</entry>
	    <entry>JPEG Y'CbCr, see <xref linkend="jfif" />, <xref linkend="itu601" /></entry>
	    <entry>?</entry>
	    <entry>?</entry>
	    <entry>?</entry>
	    <entry>?</entry>
	    <entry>?</entry>
	    <entry>0.299&nbsp;E'<subscript>R</subscript>
+&nbsp;0.587&nbsp;E'<subscript>G</subscript>
+&nbsp;0.114&nbsp;E'<subscript>B</subscript></entry>
	    <entry>256&nbsp;E'<subscript>Y</subscript>&nbsp;+&nbsp;16<footnote>
		<para>Note JFIF quantizes
Y'P<subscript>B</subscript>P<subscript>R</subscript> in range [0;+1] and
[-0.5;+0.5] to <emphasis>257</emphasis> levels, however Y'CbCr signals
are still clamped to [0;255].</para>
	      </footnote></entry>
	    <entry>256&nbsp;P<subscript>B,R</subscript>&nbsp;+&nbsp;128</entry>
	  </row>
	  <row>
	    <entry><constant>V4L2_COLORSPACE_SRGB</constant></entry>
	    <entry>8</entry>
	    <entry>[?]</entry>
	    <entry>x&nbsp;=&nbsp;0.640, y&nbsp;=&nbsp;0.330</entry>
	    <entry>x&nbsp;=&nbsp;0.300, y&nbsp;=&nbsp;0.600</entry>
	    <entry>x&nbsp;=&nbsp;0.150, y&nbsp;=&nbsp;0.060</entry>
	    <entry>x&nbsp;=&nbsp;0.3127, y&nbsp;=&nbsp;0.3290,
	    Illuminant D<subscript>65</subscript></entry>
	    <entry>E' = 4.5&nbsp;I&nbsp;for&nbsp;I&nbsp;&le;0.018,
1.099&nbsp;I<superscript>0.45</superscript>&nbsp;-&nbsp;0.099&nbsp;for&nbsp;0.018&nbsp;&lt;&nbsp;I</entry>
	    <entry spanname="spam">n/a</entry>
	  </row>
	</tbody>
      </tgroup>
    </table>
  </section>

  <section id="pixfmt-indexed">
    <title>Indexed Format</title>

    <para>In this format each pixel is represented by an 8 bit index
into a 256 entry ARGB palette. It is intended for <link
linkend="osd">Video Output Overlays</link> only. There are no ioctls to
access the palette, this must be done with ioctls of the Linux framebuffer API.</para>

    <table pgwide="0" frame="none">
      <title>Indexed Image Format</title>
      <tgroup cols="37" align="center">
	<colspec colname="id" align="left" />
	<colspec colname="fourcc" />
	<colspec colname="bit" />

	<colspec colnum="4" colname="b07" align="center" />
	<colspec colnum="5" colname="b06" align="center" />
	<colspec colnum="6" colname="b05" align="center" />
	<colspec colnum="7" colname="b04" align="center" />
	<colspec colnum="8" colname="b03" align="center" />
	<colspec colnum="9" colname="b02" align="center" />
	<colspec colnum="10" colname="b01" align="center" />
	<colspec colnum="11" colname="b00" align="center" />

	<spanspec namest="b07" nameend="b00" spanname="b0" />
	<spanspec namest="b17" nameend="b10" spanname="b1" />
	<spanspec namest="b27" nameend="b20" spanname="b2" />
	<spanspec namest="b37" nameend="b30" spanname="b3" />
	<thead>
	  <row>
	    <entry>Identifier</entry>
	    <entry>Code</entry>
	    <entry>&nbsp;</entry>
	    <entry spanname="b0">Byte&nbsp;0</entry>
	  </row>
	  <row>
	    <entry>&nbsp;</entry>
	    <entry>&nbsp;</entry>
	    <entry>Bit</entry>
	    <entry>7</entry>
	    <entry>6</entry>
	    <entry>5</entry>
	    <entry>4</entry>
	    <entry>3</entry>
	    <entry>2</entry>
	    <entry>1</entry>
	    <entry>0</entry>
	  </row>
	</thead>
	<tbody valign="top">
	  <row id="V4L2-PIX-FMT-PAL8">
	    <entry><constant>V4L2_PIX_FMT_PAL8</constant></entry>
	    <entry>'PAL8'</entry>
	    <entry></entry>
	    <entry>i<subscript>7</subscript></entry>
	    <entry>i<subscript>6</subscript></entry>
	    <entry>i<subscript>5</subscript></entry>
	    <entry>i<subscript>4</subscript></entry>
	    <entry>i<subscript>3</subscript></entry>
	    <entry>i<subscript>2</subscript></entry>
	    <entry>i<subscript>1</subscript></entry>
	    <entry>i<subscript>0</subscript></entry>
	  </row>
	</tbody>
      </tgroup>
    </table>
  </section>

  <section id="pixfmt-rgb">
    <title>RGB Formats</title>

    &sub-packed-rgb;
    &sub-sbggr8;
    &sub-sgbrg8;
    &sub-sgrbg8;
    &sub-srggb8;
    &sub-sbggr16;
    &sub-srggb10;
    &sub-srggb10dpcm8;
    &sub-srggb12;
  </section>

  <section id="yuv-formats">
    <title>YUV Formats</title>

    <para>YUV is the format native to TV broadcast and composite video
signals. It separates the brightness information (Y) from the color
information (U and V or Cb and Cr). The color information consists of
red and blue <emphasis>color difference</emphasis> signals, this way
the green component can be reconstructed by subtracting from the
brightness component. See <xref linkend="colorspaces" /> for conversion
examples. YUV was chosen because early television would only transmit
brightness information. To add color in a way compatible with existing
receivers a new signal carrier was added to transmit the color
difference signals. Secondary in the YUV format the U and V components
usually have lower resolution than the Y component. This is an analog
video compression technique taking advantage of a property of the
human visual system, being more sensitive to brightness
information.</para>

    &sub-packed-yuv;
    &sub-grey;
    &sub-y10;
    &sub-y12;
    &sub-y10b;
    &sub-y16;
    &sub-yuyv;
    &sub-uyvy;
    &sub-yvyu;
    &sub-vyuy;
    &sub-y41p;
    &sub-yuv420;
    &sub-yuv420m;
    &sub-yvu420m;
    &sub-yuv410;
    &sub-yuv422p;
    &sub-yuv411p;
    &sub-nv12;
    &sub-nv12m;
    &sub-nv12mt;
    &sub-nv16;
    &sub-nv24;
    &sub-m420;
  </section>

  <section>
    <title>Compressed Formats</title>

    <table pgwide="1" frame="none" id="compressed-formats">
      <title>Compressed Image Formats</title>
      <tgroup cols="3" align="left">
	&cs-def;
	<thead>
	  <row>
	    <entry>Identifier</entry>
	    <entry>Code</entry>
	    <entry>Details</entry>
	  </row>
	</thead>
	<tbody valign="top">
	 <row id="V4L2-PIX-FMT-JPEG">
	    <entry><constant>V4L2_PIX_FMT_JPEG</constant></entry>
	    <entry>'JPEG'</entry>
	    <entry>TBD. See also &VIDIOC-G-JPEGCOMP;,
	    &VIDIOC-S-JPEGCOMP;.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-MPEG">
	    <entry><constant>V4L2_PIX_FMT_MPEG</constant></entry>
	    <entry>'MPEG'</entry>
	    <entry>MPEG multiplexed stream. The actual format is determined by
extended control <constant>V4L2_CID_MPEG_STREAM_TYPE</constant>, see
<xref linkend="mpeg-control-id" />.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-H264">
		<entry><constant>V4L2_PIX_FMT_H264</constant></entry>
		<entry>'H264'</entry>
		<entry>H264 video elementary stream with start codes.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-H264-NO-SC">
		<entry><constant>V4L2_PIX_FMT_H264_NO_SC</constant></entry>
		<entry>'AVC1'</entry>
		<entry>H264 video elementary stream without start codes.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-H263">
		<entry><constant>V4L2_PIX_FMT_H263</constant></entry>
		<entry>'H263'</entry>
		<entry>H263 video elementary stream.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-MPEG1">
		<entry><constant>V4L2_PIX_FMT_MPEG1</constant></entry>
		<entry>'MPG1'</entry>
		<entry>MPEG1 video elementary stream.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-MPEG2">
		<entry><constant>V4L2_PIX_FMT_MPEG2</constant></entry>
		<entry>'MPG2'</entry>
		<entry>MPEG2 video elementary stream.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-MPEG4">
		<entry><constant>V4L2_PIX_FMT_MPEG4</constant></entry>
		<entry>'MPG4'</entry>
		<entry>MPEG4 video elementary stream.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-XVID">
		<entry><constant>V4L2_PIX_FMT_XVID</constant></entry>
		<entry>'XVID'</entry>
		<entry>Xvid video elementary stream.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-VC1-ANNEX-G">
		<entry><constant>V4L2_PIX_FMT_VC1_ANNEX_G</constant></entry>
		<entry>'VC1G'</entry>
		<entry>VC1, SMPTE 421M Annex G compliant stream.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-VC1-ANNEX-L">
		<entry><constant>V4L2_PIX_FMT_VC1_ANNEX_L</constant></entry>
		<entry>'VC1L'</entry>
		<entry>VC1, SMPTE 421M Annex L compliant stream.</entry>
	  </row>
	</tbody>
      </tgroup>
    </table>
  </section>

  <section id="pixfmt-reserved">
    <title>Reserved Format Identifiers</title>

    <para>These formats are not defined by this specification, they
are just listed for reference and to avoid naming conflicts. If you
want to register your own format, send an e-mail to the linux-media mailing
list &v4l-ml; for inclusion in the <filename>videodev2.h</filename>
file. If you want to share your format with other developers add a
link to your documentation and send a copy to the linux-media mailing list
for inclusion in this section. If you think your format should be listed
in a standard format section please make a proposal on the linux-media mailing
list.</para>

    <table pgwide="1" frame="none" id="reserved-formats">
      <title>Reserved Image Formats</title>
      <tgroup cols="3" align="left">
	&cs-def;
	<thead>
	  <row>
	    <entry>Identifier</entry>
	    <entry>Code</entry>
	    <entry>Details</entry>
	  </row>
	</thead>
	<tbody valign="top">
	  <row id="V4L2-PIX-FMT-DV">
	    <entry><constant>V4L2_PIX_FMT_DV</constant></entry>
	    <entry>'dvsd'</entry>
	    <entry>unknown</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-ET61X251">
	    <entry><constant>V4L2_PIX_FMT_ET61X251</constant></entry>
	    <entry>'E625'</entry>
	    <entry>Compressed format of the ET61X251 driver.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-HI240">
	    <entry><constant>V4L2_PIX_FMT_HI240</constant></entry>
	    <entry>'HI24'</entry>
	    <entry><para>8 bit RGB format used by the BTTV driver.</para></entry>
	  </row>
	  <row id="V4L2-PIX-FMT-HM12">
	    <entry><constant>V4L2_PIX_FMT_HM12</constant></entry>
	    <entry>'HM12'</entry>
	    <entry><para>YUV 4:2:0 format used by the
IVTV driver, <ulink url="http://www.ivtvdriver.org/">
http://www.ivtvdriver.org/</ulink></para><para>The format is documented in the
kernel sources in the file <filename>Documentation/video4linux/cx2341x/README.hm12</filename>
</para></entry>
	  </row>
	  <row id="V4L2-PIX-FMT-CPIA1">
	    <entry><constant>V4L2_PIX_FMT_CPIA1</constant></entry>
	    <entry>'CPIA'</entry>
	    <entry>YUV format used by the gspca cpia1 driver.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-JPGL">
	    <entry><constant>V4L2_PIX_FMT_JPGL</constant></entry>
	    <entry>'JPGL'</entry>
	    <entry>JPEG-Light format (Pegasus Lossless JPEG)
			used in Divio webcams NW 80x.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-SPCA501">
	    <entry><constant>V4L2_PIX_FMT_SPCA501</constant></entry>
	    <entry>'S501'</entry>
	    <entry>YUYV per line used by the gspca driver.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-SPCA505">
	    <entry><constant>V4L2_PIX_FMT_SPCA505</constant></entry>
	    <entry>'S505'</entry>
	    <entry>YYUV per line used by the gspca driver.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-SPCA508">
	    <entry><constant>V4L2_PIX_FMT_SPCA508</constant></entry>
	    <entry>'S508'</entry>
	    <entry>YUVY per line used by the gspca driver.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-SPCA561">
	    <entry><constant>V4L2_PIX_FMT_SPCA561</constant></entry>
	    <entry>'S561'</entry>
	    <entry>Compressed GBRG Bayer format used by the gspca driver.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-PAC207">
	    <entry><constant>V4L2_PIX_FMT_PAC207</constant></entry>
	    <entry>'P207'</entry>
	    <entry>Compressed BGGR Bayer format used by the gspca driver.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-MR97310A">
	    <entry><constant>V4L2_PIX_FMT_MR97310A</constant></entry>
	    <entry>'M310'</entry>
	    <entry>Compressed BGGR Bayer format used by the gspca driver.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-JL2005BCD">
	    <entry><constant>V4L2_PIX_FMT_JL2005BCD</constant></entry>
	    <entry>'JL20'</entry>
	    <entry>JPEG compressed RGGB Bayer format used by the gspca driver.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-OV511">
	    <entry><constant>V4L2_PIX_FMT_OV511</constant></entry>
	    <entry>'O511'</entry>
	    <entry>OV511 JPEG format used by the gspca driver.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-OV518">
	    <entry><constant>V4L2_PIX_FMT_OV518</constant></entry>
	    <entry>'O518'</entry>
	    <entry>OV518 JPEG format used by the gspca driver.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-PJPG">
	    <entry><constant>V4L2_PIX_FMT_PJPG</constant></entry>
	    <entry>'PJPG'</entry>
	    <entry>Pixart 73xx JPEG format used by the gspca driver.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-SE401">
	    <entry><constant>V4L2_PIX_FMT_SE401</constant></entry>
	    <entry>'S401'</entry>
	    <entry>Compressed RGB format used by the gspca se401 driver</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-SQ905C">
	    <entry><constant>V4L2_PIX_FMT_SQ905C</constant></entry>
	    <entry>'905C'</entry>
	    <entry>Compressed RGGB bayer format used by the gspca driver.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-MJPEG">
	    <entry><constant>V4L2_PIX_FMT_MJPEG</constant></entry>
	    <entry>'MJPG'</entry>
	    <entry>Compressed format used by the Zoran driver</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-PWC1">
	    <entry><constant>V4L2_PIX_FMT_PWC1</constant></entry>
	    <entry>'PWC1'</entry>
	    <entry>Compressed format of the PWC driver.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-PWC2">
	    <entry><constant>V4L2_PIX_FMT_PWC2</constant></entry>
	    <entry>'PWC2'</entry>
	    <entry>Compressed format of the PWC driver.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-SN9C10X">
	    <entry><constant>V4L2_PIX_FMT_SN9C10X</constant></entry>
	    <entry>'S910'</entry>
	    <entry>Compressed format of the SN9C102 driver.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-SN9C20X-I420">
	    <entry><constant>V4L2_PIX_FMT_SN9C20X_I420</constant></entry>
	    <entry>'S920'</entry>
	    <entry>YUV 4:2:0 format of the gspca sn9c20x driver.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-SN9C2028">
	    <entry><constant>V4L2_PIX_FMT_SN9C2028</constant></entry>
	    <entry>'SONX'</entry>
	    <entry>Compressed GBRG bayer format of the gspca sn9c2028 driver.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-STV0680">
	    <entry><constant>V4L2_PIX_FMT_STV0680</constant></entry>
	    <entry>'S680'</entry>
	    <entry>Bayer format of the gspca stv0680 driver.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-WNVA">
	    <entry><constant>V4L2_PIX_FMT_WNVA</constant></entry>
	    <entry>'WNVA'</entry>
	    <entry><para>Used by the Winnov Videum driver, <ulink
url="http://www.thedirks.org/winnov/">
http://www.thedirks.org/winnov/</ulink></para></entry>
	  </row>
	  <row id="V4L2-PIX-FMT-TM6000">
	    <entry><constant>V4L2_PIX_FMT_TM6000</constant></entry>
	    <entry>'TM60'</entry>
	    <entry><para>Used by Trident tm6000</para></entry>
	  </row>
	  <row id="V4L2-PIX-FMT-CIT-YYVYUY">
	    <entry><constant>V4L2_PIX_FMT_CIT_YYVYUY</constant></entry>
	    <entry>'CITV'</entry>
	    <entry><para>Used by xirlink CIT, found at IBM webcams.</para>
	           <para>Uses one line of Y then 1 line of VYUY</para>
	    </entry>
	  </row>
	  <row id="V4L2-PIX-FMT-KONICA420">
	    <entry><constant>V4L2_PIX_FMT_KONICA420</constant></entry>
	    <entry>'KONI'</entry>
	    <entry><para>Used by Konica webcams.</para>
	           <para>YUV420 planar in blocks of 256 pixels.</para>
	    </entry>
	  </row>
	  <row id="V4L2-PIX-FMT-YYUV">
	    <entry><constant>V4L2_PIX_FMT_YYUV</constant></entry>
	    <entry>'YYUV'</entry>
	    <entry>unknown</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-Y4">
	    <entry><constant>V4L2_PIX_FMT_Y4</constant></entry>
	    <entry>'Y04 '</entry>
	    <entry>Old 4-bit greyscale format. Only the most significant 4 bits of each byte are used,
the other bits are set to 0.</entry>
	  </row>
	  <row id="V4L2-PIX-FMT-Y6">
	    <entry><constant>V4L2_PIX_FMT_Y6</constant></entry>
	    <entry>'Y06 '</entry>
	    <entry>Old 6-bit greyscale format. Only the most significant 6 bits of each byte are used,
the other bits are set to 0.</entry>
	  </row>
	</tbody>
      </tgroup>
    </table>
  </section>