/* * linux/drivers/video/amba-clcd.c * * Copyright (C) 2001 ARM Limited, by David A Rusling * Updated to 2.5, Deep Blue Solutions Ltd. * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive * for more details. * * ARM PrimeCell PL110 Color LCD Controller */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define to_clcd(info) container_of(info, struct clcd_fb, fb) #ifdef CONFIG_ARM #define clcdfb_dma_alloc dma_alloc_writecombine #define clcdfb_dma_free dma_free_writecombine #define clcdfb_dma_mmap dma_mmap_writecombine #else #define clcdfb_dma_alloc dma_alloc_coherent #define clcdfb_dma_free dma_free_coherent #define clcdfb_dma_mmap dma_mmap_coherent #endif /* This is limited to 16 characters when displayed by X startup */ static const char *clcd_name = "CLCD FB"; static char *def_mode; module_param_named(mode, def_mode, charp, 0); /* * Unfortunately, the enable/disable functions may be called either from * process or IRQ context, and we _need_ to delay. This is _not_ good. */ static inline void clcdfb_sleep(unsigned int ms) { if (in_atomic()) { mdelay(ms); } else { msleep(ms); } } static inline void clcdfb_set_start(struct clcd_fb *fb) { unsigned long ustart = fb->fb.fix.smem_start; unsigned long lstart; ustart += fb->fb.var.yoffset * fb->fb.fix.line_length; lstart = ustart + fb->fb.var.yres * fb->fb.fix.line_length / 2; writel(ustart, fb->regs + CLCD_UBAS); writel(lstart, fb->regs + CLCD_LBAS); } static void clcdfb_disable(struct clcd_fb *fb) { u32 val; if (fb->board->disable) fb->board->disable(fb); val = readl(fb->regs + fb->off_cntl); if (val & CNTL_LCDPWR) { val &= ~CNTL_LCDPWR; writel(val, fb->regs + fb->off_cntl); clcdfb_sleep(20); } if (val & CNTL_LCDEN) { val &= ~CNTL_LCDEN; writel(val, fb->regs + fb->off_cntl); } /* * Disable CLCD clock source. */ if (fb->clk_enabled) { fb->clk_enabled = false; clk_disable(fb->clk); } } static void clcdfb_enable(struct clcd_fb *fb, u32 cntl) { /* * Enable the CLCD clock source. */ if (!fb->clk_enabled) { fb->clk_enabled = true; clk_enable(fb->clk); } /* * Bring up by first enabling.. */ cntl |= CNTL_LCDEN; writel(cntl, fb->regs + fb->off_cntl); clcdfb_sleep(20); /* * and now apply power. */ cntl |= CNTL_LCDPWR; writel(cntl, fb->regs + fb->off_cntl); /* * finally, enable the interface. */ if (fb->board->enable) fb->board->enable(fb); } static int clcdfb_set_bitfields(struct clcd_fb *fb, struct fb_var_screeninfo *var) { u32 caps; int ret = 0; if (fb->panel->caps && fb->board->caps) caps = fb->panel->caps & fb->board->caps; else { /* Old way of specifying what can be used */ caps = fb->panel->cntl & CNTL_BGR ? CLCD_CAP_BGR : CLCD_CAP_RGB; /* But mask out 444 modes as they weren't supported */ caps &= ~CLCD_CAP_444; } /* Only TFT panels can do RGB888/BGR888 */ if (!(fb->panel->cntl & CNTL_LCDTFT)) caps &= ~CLCD_CAP_888; memset(&var->transp, 0, sizeof(var->transp)); var->red.msb_right = 0; var->green.msb_right = 0; var->blue.msb_right = 0; switch (var->bits_per_pixel) { case 1: case 2: case 4: case 8: /* If we can't do 5551, reject */ caps &= CLCD_CAP_5551; if (!caps) { ret = -EINVAL; break; } var->red.length = var->bits_per_pixel; var->red.offset = 0; var->green.length = var->bits_per_pixel; var->green.offset = 0; var->blue.length = var->bits_per_pixel; var->blue.offset = 0; break; case 16: /* If we can't do 444, 5551 or 565, reject */ if (!(caps & (CLCD_CAP_444 | CLCD_CAP_5551 | CLCD_CAP_565))) { ret = -EINVAL; break; } /* * Green length can be 4, 5 or 6 depending whether * we're operating in 444, 5551 or 565 mode. */ if (var->green.length == 4 && caps & CLCD_CAP_444) caps &= CLCD_CAP_444; if (var->green.length == 5 && caps & CLCD_CAP_5551) caps &= CLCD_CAP_5551; else if (var->green.length == 6 && caps & CLCD_CAP_565) caps &= CLCD_CAP_565; else { /* * PL110 officially only supports RGB555, * but may be wired up to allow RGB565. */ if (caps & CLCD_CAP_565) { var->green.length = 6; caps &= CLCD_CAP_565; } else if (caps & CLCD_CAP_5551) { var->green.length = 5; caps &= CLCD_CAP_5551; } else { var->green.length = 4; caps &= CLCD_CAP_444; } } if (var->green.length >= 5) { var->red.length = 5; var->blue.length = 5; } else { var->red.length = 4; var->blue.length = 4; } break; case 32: /* If we can't do 888, reject */ caps &= CLCD_CAP_888; if (!caps) { ret = -EINVAL; break; } var->red.length = 8; var->green.length = 8; var->blue.length = 8; break; default: ret = -EINVAL; break; } /* * >= 16bpp displays have separate colour component bitfields * encoded in the pixel data. Calculate their position from * the bitfield length defined above. */ if (ret == 0 && var->bits_per_pixel >= 16) { bool bgr, rgb; bgr = caps & CLCD_CAP_BGR && var->blue.offset == 0; rgb = caps & CLCD_CAP_RGB && var->red.offset == 0; if (!bgr && !rgb) /* * The requested format was not possible, try just * our capabilities. One of BGR or RGB must be * supported. */ bgr = caps & CLCD_CAP_BGR; if (bgr) { var->blue.offset = 0; var->green.offset = var->blue.offset + var->blue.length; var->red.offset = var->green.offset + var->green.length; } else { var->red.offset = 0; var->green.offset = var->red.offset + var->red.length; var->blue.offset = var->green.offset + var->green.length; } } return ret; } static int clcdfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) { struct clcd_fb *fb = to_clcd(info); int ret = -EINVAL; if (fb->board->check) ret = fb->board->check(fb, var); if (ret == 0 && var->xres_virtual * var->bits_per_pixel / 8 * var->yres_virtual > fb->fb.fix.smem_len) ret = -EINVAL; if (ret == 0) ret = clcdfb_set_bitfields(fb, var); return ret; } static int clcdfb_set_par(struct fb_info *info) { struct clcd_fb *fb = to_clcd(info); struct clcd_regs regs; fb->fb.fix.line_length = fb->fb.var.xres_virtual * fb->fb.var.bits_per_pixel / 8; if (fb->fb.var.bits_per_pixel <= 8) fb->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR; else fb->fb.fix.visual = FB_VISUAL_TRUECOLOR; fb->board->decode(fb, ®s); clcdfb_disable(fb); writel(regs.tim0, fb->regs + CLCD_TIM0); writel(regs.tim1, fb->regs + CLCD_TIM1); writel(regs.tim2, fb->regs + CLCD_TIM2); writel(regs.tim3, fb->regs + CLCD_TIM3); clcdfb_set_start(fb); clk_set_rate(fb->clk, (1000000000 / regs.pixclock) * 1000); fb->clcd_cntl = regs.cntl; clcdfb_enable(fb, regs.cntl); #ifdef DEBUG printk(KERN_INFO "CLCD: Registers set to\n" " %08x %08x %08x %08x\n" " %08x %08x %08x %08x\n", readl(fb->regs + CLCD_TIM0), readl(fb->regs + CLCD_TIM1), readl(fb->regs + CLCD_TIM2), readl(fb->regs + CLCD_TIM3), readl(fb->regs + CLCD_UBAS), readl(fb->regs + CLCD_LBAS), readl(fb->regs + fb->off_ienb), readl(fb->regs + fb->off_cntl)); #endif return 0; } static inline u32 convert_bitfield(int val, struct fb_bitfield *bf) { unsigned int mask = (1 << bf->length) - 1; return (val >> (16 - bf->length) & mask) << bf->offset; } /* * Set a single color register. The values supplied have a 16 bit * magnitude. Return != 0 for invalid regno. */ static int clcdfb_setcolreg(unsigned int regno, unsigned int red, unsigned int green, unsigned int blue, unsigned int transp, struct fb_info *info) { struct clcd_fb *fb = to_clcd(info); if (regno < 16) fb->cmap[regno] = convert_bitfield(transp, &fb->fb.var.transp) | convert_bitfield(blue, &fb->fb.var.blue) | convert_bitfield(green, &fb->fb.var.green) | convert_bitfield(red, &fb->fb.var.red); if (fb->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR && regno < 256) { int hw_reg = CLCD_PALETTE + ((regno * 2) & ~3); u32 val, mask, newval; newval = (red >> 11) & 0x001f; newval |= (green >> 6) & 0x03e0; newval |= (blue >> 1) & 0x7c00; /* * 3.2.11: if we're configured for big endian * byte order, the palette entries are swapped. */ if (fb->clcd_cntl & CNTL_BEBO) regno ^= 1; if (regno & 1) { newval <<= 16; mask = 0x0000ffff; } else { mask = 0xffff0000; } val = readl(fb->regs + hw_reg) & mask; writel(val | newval, fb->regs + hw_reg); } return regno > 255; } /* * Blank the screen if blank_mode != 0, else unblank. If blank == NULL * then the caller blanks by setting the CLUT (Color Look Up Table) to all * black. Return 0 if blanking succeeded, != 0 if un-/blanking failed due * to e.g. a video mode which doesn't support it. Implements VESA suspend * and powerdown modes on hardware that supports disabling hsync/vsync: * blank_mode == 2: suspend vsync * blank_mode == 3: suspend hsync * blank_mode == 4: powerdown */ static int clcdfb_blank(int blank_mode, struct fb_info *info) { struct clcd_fb *fb = to_clcd(info); if (blank_mode != 0) { clcdfb_disable(fb); } else { clcdfb_enable(fb, fb->clcd_cntl); } return 0; } int clcdfb_mmap_dma(struct clcd_fb *fb, struct vm_area_struct *vma) { return clcdfb_dma_mmap(&fb->dev->dev, vma, fb->fb.screen_base, fb->fb.fix.smem_start, fb->fb.fix.smem_len); } int clcdfb_mmap_io(struct clcd_fb *fb, struct vm_area_struct *vma) { unsigned long user_count, count, pfn, off; user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; count = PAGE_ALIGN(fb->fb.fix.smem_len) >> PAGE_SHIFT; pfn = fb->fb.fix.smem_start >> PAGE_SHIFT; off = vma->vm_pgoff; vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); if (off < count && user_count <= (count - off)) return remap_pfn_range(vma, vma->vm_start, pfn + off, user_count << PAGE_SHIFT, vma->vm_page_prot); return -ENXIO; } void clcdfb_remove_dma(struct clcd_fb *fb) { clcdfb_dma_free(&fb->dev->dev, fb->fb.fix.smem_len, fb->fb.screen_base, fb->fb.fix.smem_start); } void clcdfb_remove_io(struct clcd_fb *fb) { iounmap(fb->fb.screen_base); } static int clcdfb_mmap(struct fb_info *info, struct vm_area_struct *vma) { struct clcd_fb *fb = to_clcd(info); unsigned long len, off = vma->vm_pgoff << PAGE_SHIFT; int ret = -EINVAL; len = info->fix.smem_len; if (off <= len && vma->vm_end - vma->vm_start <= len - off && fb->board->mmap) ret = fb->board->mmap(fb, vma); return ret; } static struct fb_ops clcdfb_ops = { .owner = THIS_MODULE, .fb_check_var = clcdfb_check_var, .fb_set_par = clcdfb_set_par, .fb_setcolreg = clcdfb_setcolreg, .fb_blank = clcdfb_blank, .fb_fillrect = cfb_fillrect, .fb_copyarea = cfb_copyarea, .fb_imageblit = cfb_imageblit, .fb_mmap = clcdfb_mmap, }; static int clcdfb_register(struct clcd_fb *fb) { int ret; /* * ARM PL111 always has IENB at 0x1c; it's only PL110 * which is reversed on some platforms. */ if (amba_manf(fb->dev) == 0x41 && amba_part(fb->dev) == 0x111) { fb->off_ienb = CLCD_PL111_IENB; fb->off_cntl = CLCD_PL111_CNTL; } else { #ifdef CONFIG_ARCH_VERSATILE fb->off_ienb = CLCD_PL111_IENB; fb->off_cntl = CLCD_PL111_CNTL; #else fb->off_ienb = CLCD_PL110_IENB; fb->off_cntl = CLCD_PL110_CNTL; #endif } fb->clk = clk_get(&fb->dev->dev, NULL); if (IS_ERR(fb->clk)) { ret = PTR_ERR(fb->clk); goto out; } ret = clk_prepare(fb->clk); if (ret) goto free_clk; fb->fb.device = &fb->dev->dev; fb->fb.fix.mmio_start = fb->dev->res.start; fb->fb.fix.mmio_len = resource_size(&fb->dev->res); fb->regs = ioremap(fb->fb.fix.mmio_start, fb->fb.fix.mmio_len); if (!fb->regs) { printk(KERN_ERR "CLCD: unable to remap registers\n"); ret = -ENOMEM; goto clk_unprep; } fb->fb.fbops = &clcdfb_ops; fb->fb.flags = FBINFO_FLAG_DEFAULT; fb->fb.pseudo_palette = fb->cmap; strncpy(fb->fb.fix.id, clcd_name, sizeof(fb->fb.fix.id)); fb->fb.fix.type = FB_TYPE_PACKED_PIXELS; fb->fb.fix.type_aux = 0; fb->fb.fix.xpanstep = 0; fb->fb.fix.ypanstep = 0; fb->fb.fix.ywrapstep = 0; fb->fb.fix.accel = FB_ACCEL_NONE; fb->fb.var.xres = fb->panel->mode.xres; fb->fb.var.yres = fb->panel->mode.yres; fb->fb.var.xres_virtual = fb->panel->mode.xres; fb->fb.var.yres_virtual = fb->panel->mode.yres; fb->fb.var.bits_per_pixel = fb->panel->bpp; fb->fb.var.grayscale = fb->panel->grayscale; fb->fb.var.pixclock = fb->panel->mode.pixclock; fb->fb.var.left_margin = fb->panel->mode.left_margin; fb->fb.var.right_margin = fb->panel->mode.right_margin; fb->fb.var.upper_margin = fb->panel->mode.upper_margin; fb->fb.var.lower_margin = fb->panel->mode.lower_margin; fb->fb.var.hsync_len = fb->panel->mode.hsync_len; fb->fb.var.vsync_len = fb->panel->mode.vsync_len; fb->fb.var.sync = fb->panel->mode.sync; fb->fb.var.vmode = fb->panel->mode.vmode; fb->fb.var.activate = FB_ACTIVATE_NOW; fb->fb.var.nonstd = 0; fb->fb.var.height = fb->panel->height; fb->fb.var.width = fb->panel->width; fb->fb.var.accel_flags = 0; fb->fb.monspecs.hfmin = 0; fb->fb.monspecs.hfmax = 100000; fb->fb.monspecs.vfmin = 0; fb->fb.monspecs.vfmax = 400; fb->fb.monspecs.dclkmin = 1000000; fb->fb.monspecs.dclkmax = 100000000; /* * Make sure that the bitfields are set appropriately. */ clcdfb_set_bitfields(fb, &fb->fb.var); /* * Allocate colourmap. */ ret = fb_alloc_cmap(&fb->fb.cmap, 256, 0); if (ret) goto unmap; /* * Ensure interrupts are disabled. */ writel(0, fb->regs + fb->off_ienb); fb_set_var(&fb->fb, &fb->fb.var); dev_info(&fb->dev->dev, "%s hardware, %s display\n", fb->board->name, fb->panel->mode.name); ret = register_framebuffer(&fb->fb); if (ret == 0) goto out; printk(KERN_ERR "CLCD: cannot register framebuffer (%d)\n", ret); fb_dealloc_cmap(&fb->fb.cmap); unmap: iounmap(fb->regs); clk_unprep: clk_unprepare(fb->clk); free_clk: clk_put(fb->clk); out: return ret; } struct string_lookup { const char *string; const u32 val; }; static struct string_lookup vmode_lookups[] = { { "FB_VMODE_NONINTERLACED", FB_VMODE_NONINTERLACED}, { "FB_VMODE_INTERLACED", FB_VMODE_INTERLACED}, { "FB_VMODE_DOUBLE", FB_VMODE_DOUBLE}, { "FB_VMODE_ODD_FLD_FIRST", FB_VMODE_ODD_FLD_FIRST}, { NULL, 0 }, }; static struct string_lookup tim2_lookups[] = { { "TIM2_CLKSEL", TIM2_CLKSEL}, { "TIM2_IVS", TIM2_IVS}, { "TIM2_IHS", TIM2_IHS}, { "TIM2_IPC", TIM2_IPC}, { "TIM2_IOE", TIM2_IOE}, { "TIM2_BCD", TIM2_BCD}, { NULL, 0}, }; static struct string_lookup cntl_lookups[] = { {"CNTL_LCDEN", CNTL_LCDEN}, {"CNTL_LCDBPP1", CNTL_LCDBPP1}, {"CNTL_LCDBPP2", CNTL_LCDBPP2}, {"CNTL_LCDBPP4", CNTL_LCDBPP4}, {"CNTL_LCDBPP8", CNTL_LCDBPP8}, {"CNTL_LCDBPP16", CNTL_LCDBPP16}, {"CNTL_LCDBPP16_565", CNTL_LCDBPP16_565}, {"CNTL_LCDBPP16_444", CNTL_LCDBPP16_444}, {"CNTL_LCDBPP24", CNTL_LCDBPP24}, {"CNTL_LCDBW", CNTL_LCDBW}, {"CNTL_LCDTFT", CNTL_LCDTFT}, {"CNTL_LCDMONO8", CNTL_LCDMONO8}, {"CNTL_LCDDUAL", CNTL_LCDDUAL}, {"CNTL_BGR", CNTL_BGR}, {"CNTL_BEBO", CNTL_BEBO}, {"CNTL_BEPO", CNTL_BEPO}, {"CNTL_LCDPWR", CNTL_LCDPWR}, {"CNTL_LCDVCOMP(1)", CNTL_LCDVCOMP(1)}, {"CNTL_LCDVCOMP(2)", CNTL_LCDVCOMP(2)}, {"CNTL_LCDVCOMP(3)", CNTL_LCDVCOMP(3)}, {"CNTL_LCDVCOMP(4)", CNTL_LCDVCOMP(4)}, {"CNTL_LCDVCOMP(5)", CNTL_LCDVCOMP(5)}, {"CNTL_LCDVCOMP(6)", CNTL_LCDVCOMP(6)}, {"CNTL_LCDVCOMP(7)", CNTL_LCDVCOMP(7)}, {"CNTL_LDMAFIFOTIME", CNTL_LDMAFIFOTIME}, {"CNTL_WATERMARK", CNTL_WATERMARK}, { NULL, 0}, }; static struct string_lookup caps_lookups[] = { {"CLCD_CAP_RGB444", CLCD_CAP_RGB444}, {"CLCD_CAP_RGB5551", CLCD_CAP_RGB5551}, {"CLCD_CAP_RGB565", CLCD_CAP_RGB565}, {"CLCD_CAP_RGB888", CLCD_CAP_RGB888}, {"CLCD_CAP_BGR444", CLCD_CAP_BGR444}, {"CLCD_CAP_BGR5551", CLCD_CAP_BGR5551}, {"CLCD_CAP_BGR565", CLCD_CAP_BGR565}, {"CLCD_CAP_BGR888", CLCD_CAP_BGR888}, {"CLCD_CAP_444", CLCD_CAP_444}, {"CLCD_CAP_5551", CLCD_CAP_5551}, {"CLCD_CAP_565", CLCD_CAP_565}, {"CLCD_CAP_888", CLCD_CAP_888}, {"CLCD_CAP_RGB", CLCD_CAP_RGB}, {"CLCD_CAP_BGR", CLCD_CAP_BGR}, {"CLCD_CAP_ALL", CLCD_CAP_ALL}, { NULL, 0}, }; u32 parse_setting(struct string_lookup *lookup, const char *name) { int i = 0; while (lookup[i].string != NULL) { if (strcmp(lookup[i].string, name) == 0) return lookup[i].val; ++i; } return -EINVAL; } u32 get_string_lookup(struct device_node *node, const char *name, struct string_lookup *lookup) { const char *string; int count, i, ret = 0; count = of_property_count_strings(node, name); if (count >= 0) for (i = 0; i < count; i++) if (of_property_read_string_index(node, name, i, &string) == 0) ret |= parse_setting(lookup, string); return ret; } int get_val(struct device_node *node, const char *string) { u32 ret = 0; if (of_property_read_u32(node, string, &ret)) ret = -1; return ret; } struct clcd_panel *getPanel(struct device_node *node) { static struct clcd_panel panel; panel.mode.refresh = get_val(node, "refresh"); panel.mode.xres = get_val(node, "xres"); panel.mode.yres = get_val(node, "yres"); panel.mode.pixclock = get_val(node, "pixclock"); panel.mode.left_margin = get_val(node, "left_margin"); panel.mode.right_margin = get_val(node, "right_margin"); panel.mode.upper_margin = get_val(node, "upper_margin"); panel.mode.lower_margin = get_val(node, "lower_margin"); panel.mode.hsync_len = get_val(node, "hsync_len"); panel.mode.vsync_len = get_val(node, "vsync_len"); panel.mode.sync = get_val(node, "sync"); panel.bpp = get_val(node, "bpp"); panel.width = (signed short) get_val(node, "width"); panel.height = (signed short) get_val(node, "height"); panel.mode.vmode = get_string_lookup(node, "vmode", vmode_lookups); panel.tim2 = get_string_lookup(node, "tim2", tim2_lookups); panel.cntl = get_string_lookup(node, "cntl", cntl_lookups); panel.caps = get_string_lookup(node, "caps", caps_lookups); return &panel; } struct clcd_panel *clcdfb_get_panel(const char *name) { struct device_node *node = NULL; const char *mode; struct clcd_panel *panel = NULL; do { node = of_find_compatible_node(node, NULL, "panel"); if (node) if (of_property_read_string(node, "mode", &mode) == 0) if (strcmp(mode, name) == 0) { panel = getPanel(node); panel->mode.name = name; } } while (node != NULL); return panel; } #ifdef CONFIG_OF static int clcdfb_dt_init(struct clcd_fb *fb) { int err = 0; struct device_node *node; const char *mode; dma_addr_t dma; u32 use_dma; const __be32 *prop; int len, na, ns; phys_addr_t fb_base, fb_size; node = fb->dev->dev.of_node; if (!node) return -ENODEV; na = of_n_addr_cells(node); ns = of_n_size_cells(node); if (def_mode && strlen(def_mode) > 0) { fb->panel = clcdfb_get_panel(def_mode); if (!fb->panel) printk(KERN_ERR "CLCD: invalid mode specified on the command line (%s)\n", def_mode); } if (!fb->panel) { if (WARN_ON(of_property_read_string(node, "mode", &mode))) return -ENODEV; fb->panel = clcdfb_get_panel(mode); } if (!fb->panel) return -EINVAL; fb->fb.fix.smem_len = fb->panel->mode.xres * fb->panel->mode.yres * 2; fb->board->name = "Device Tree CLCD PL111"; fb->board->caps = CLCD_CAP_5551 | CLCD_CAP_565; fb->board->check = clcdfb_check; fb->board->decode = clcdfb_decode; if (of_property_read_u32(node, "use_dma", &use_dma)) use_dma = 0; if (use_dma) { fb->fb.screen_base = clcdfb_dma_alloc(&fb->dev->dev, fb->fb.fix.smem_len, &dma, GFP_KERNEL); if (!fb->fb.screen_base) { pr_err("CLCD: unable to map framebuffer\n"); return -ENOMEM; } fb->fb.fix.smem_start = dma; fb->board->mmap = clcdfb_mmap_dma; fb->board->remove = clcdfb_remove_dma; } else { prop = of_get_property(node, "framebuffer", &len); if (WARN_ON(!prop || len < (na + ns) * sizeof(*prop))) return -EINVAL; fb_base = of_read_number(prop, na); fb_size = of_read_number(prop + na, ns); fb->fb.fix.smem_start = fb_base; fb->fb.screen_base = ioremap_wc(fb_base, fb_size); fb->board->mmap = clcdfb_mmap_io; fb->board->remove = clcdfb_remove_io; } return err; } #endif /* CONFIG_OF */ static int clcdfb_probe(struct amba_device *dev, const struct amba_id *id) { struct clcd_board *board = dev->dev.platform_data; struct clcd_fb *fb; int ret; if (!board) { #ifdef CONFIG_OF if (dev->dev.of_node) { board = kzalloc(sizeof(struct clcd_board), GFP_KERNEL); if (!board) return -ENOMEM; board->setup = clcdfb_dt_init; } else #endif return -EINVAL; } ret = amba_request_regions(dev, NULL); if (ret) { printk(KERN_ERR "CLCD: unable to reserve regs region\n"); goto out; } fb = kzalloc(sizeof(struct clcd_fb), GFP_KERNEL); if (!fb) { printk(KERN_INFO "CLCD: could not allocate new clcd_fb struct\n"); ret = -ENOMEM; goto free_region; } fb->dev = dev; fb->board = board; dev_info(&fb->dev->dev, "PL%03x rev%u at 0x%08llx\n", amba_part(dev), amba_rev(dev), (unsigned long long)dev->res.start); ret = fb->board->setup(fb); if (ret) goto free_fb; ret = clcdfb_register(fb); if (ret == 0) { amba_set_drvdata(dev, fb); goto out; } fb->board->remove(fb); free_fb: kfree(fb); free_region: amba_release_regions(dev); out: return ret; } static int clcdfb_remove(struct amba_device *dev) { struct clcd_fb *fb = amba_get_drvdata(dev); amba_set_drvdata(dev, NULL); clcdfb_disable(fb); unregister_framebuffer(&fb->fb); if (fb->fb.cmap.len) fb_dealloc_cmap(&fb->fb.cmap); iounmap(fb->regs); clk_unprepare(fb->clk); clk_put(fb->clk); fb->board->remove(fb); kfree(fb); amba_release_regions(dev); return 0; } static struct amba_id clcdfb_id_table[] = { { .id = 0x00041110, .mask = 0x000ffffe, }, { 0, 0 }, }; MODULE_DEVICE_TABLE(amba, clcdfb_id_table); static struct amba_driver clcd_driver = { .drv = { .name = "clcd-pl11x", }, .probe = clcdfb_probe, .remove = clcdfb_remove, .id_table = clcdfb_id_table, }; static int __init amba_clcdfb_init(void) { if (fb_get_options("ambafb", NULL)) return -ENODEV; return amba_driver_register(&clcd_driver); } module_init(amba_clcdfb_init); static void __exit amba_clcdfb_exit(void) { amba_driver_unregister(&clcd_driver); } module_exit(amba_clcdfb_exit); MODULE_DESCRIPTION("ARM PrimeCell PL110 CLCD core driver"); MODULE_LICENSE("GPL");