/* * VMEbus User access driver * * Author: Martyn Welch * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc. * * Based on work by: * Tom Armistead and Ajit Prem * Copyright 2004 Motorola Inc. * * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../vme.h" #include "vme_user.h" static char driver_name[] = "vme_user"; static int bus[USER_BUS_MAX]; static int bus_num; /* Currently Documentation/devices.txt defines the following for VME: * * 221 char VME bus * 0 = /dev/bus/vme/m0 First master image * 1 = /dev/bus/vme/m1 Second master image * 2 = /dev/bus/vme/m2 Third master image * 3 = /dev/bus/vme/m3 Fourth master image * 4 = /dev/bus/vme/s0 First slave image * 5 = /dev/bus/vme/s1 Second slave image * 6 = /dev/bus/vme/s2 Third slave image * 7 = /dev/bus/vme/s3 Fourth slave image * 8 = /dev/bus/vme/ctl Control * * It is expected that all VME bus drivers will use the * same interface. For interface documentation see * http://www.vmelinux.org/. * * However the VME driver at http://www.vmelinux.org/ is rather old and doesn't * even support the tsi148 chipset (which has 8 master and 8 slave windows). * We'll run with this or now as far as possible, however it probably makes * sense to get rid of the old mappings and just do everything dynamically. * * So for now, we'll restrict the driver to providing 4 masters and 4 slaves as * defined above and try to support at least some of the interface from * http://www.vmelinux.org/ as an alternative drive can be written providing a * saner interface later. * * The vmelinux.org driver never supported slave images, the devices reserved * for slaves were repurposed to support all 8 master images on the UniverseII! * We shall support 4 masters and 4 slaves with this driver. */ #define VME_MAJOR 221 /* VME Major Device Number */ #define VME_DEVS 9 /* Number of dev entries */ #define MASTER_MINOR 0 #define MASTER_MAX 3 #define SLAVE_MINOR 4 #define SLAVE_MAX 7 #define CONTROL_MINOR 8 #define PCI_BUF_SIZE 0x20000 /* Size of one slave image buffer */ /* * Structure to handle image related parameters. */ typedef struct { void __iomem *kern_buf; /* Buffer address in kernel space */ dma_addr_t pci_buf; /* Buffer address in PCI address space */ unsigned long long size_buf; /* Buffer size */ struct semaphore sem; /* Semaphore for locking image */ struct device *device; /* Sysfs device */ struct vme_resource *resource; /* VME resource */ int users; /* Number of current users */ } image_desc_t; static image_desc_t image[VME_DEVS]; typedef struct { unsigned long reads; unsigned long writes; unsigned long ioctls; unsigned long irqs; unsigned long berrs; unsigned long dmaErrors; unsigned long timeouts; unsigned long external; } driver_stats_t; static driver_stats_t statistics; struct cdev *vme_user_cdev; /* Character device */ struct class *vme_user_sysfs_class; /* Sysfs class */ struct device *vme_user_bridge; /* Pointer to the bridge device */ static const int type[VME_DEVS] = { MASTER_MINOR, MASTER_MINOR, MASTER_MINOR, MASTER_MINOR, SLAVE_MINOR, SLAVE_MINOR, SLAVE_MINOR, SLAVE_MINOR, CONTROL_MINOR }; static int vme_user_open(struct inode *, struct file *); static int vme_user_release(struct inode *, struct file *); static ssize_t vme_user_read(struct file *, char *, size_t, loff_t *); static ssize_t vme_user_write(struct file *, const char *, size_t, loff_t *); static loff_t vme_user_llseek(struct file *, loff_t, int); static int vme_user_ioctl(struct inode *, struct file *, unsigned int, unsigned long); static int __init vme_user_probe(struct device *, int, int); static int __exit vme_user_remove(struct device *, int, int); static struct file_operations vme_user_fops = { .open = vme_user_open, .release = vme_user_release, .read = vme_user_read, .write = vme_user_write, .llseek = vme_user_llseek, .ioctl = vme_user_ioctl, }; /* * Reset all the statistic counters */ static void reset_counters(void) { statistics.reads = 0; statistics.writes = 0; statistics.ioctls = 0; statistics.irqs = 0; statistics.berrs = 0; statistics.dmaErrors = 0; statistics.timeouts = 0; } static int vme_user_open(struct inode *inode, struct file *file) { int err; unsigned int minor = MINOR(inode->i_rdev); down(&image[minor].sem); /* Only allow device to be opened if a resource is allocated */ if (image[minor].resource == NULL) { printk(KERN_ERR "No resources allocated for device\n"); err = -EINVAL; goto err_res; } /* Increment user count */ image[minor].users++; up(&image[minor].sem); return 0; err_res: up(&image[minor].sem); return err; } static int vme_user_release(struct inode *inode, struct file *file) { unsigned int minor = MINOR(inode->i_rdev); down(&image[minor].sem); /* Decrement user count */ image[minor].users--; up(&image[minor].sem); return 0; } /* * We are going ot alloc a page during init per window for small transfers. * Small transfers will go VME -> buffer -> user space. Larger (more than a * page) transfers will lock the user space buffer into memory and then * transfer the data directly into the user space buffers. */ static ssize_t resource_to_user(int minor, char __user *buf, size_t count, loff_t *ppos) { ssize_t retval; ssize_t copied = 0; if (count <= image[minor].size_buf) { /* We copy to kernel buffer */ copied = vme_master_read(image[minor].resource, image[minor].kern_buf, count, *ppos); if (copied < 0) { return (int)copied; } retval = __copy_to_user(buf, image[minor].kern_buf, (unsigned long)copied); if (retval != 0) { copied = (copied - retval); printk("User copy failed\n"); return -EINVAL; } } else { /* XXX Need to write this */ printk("Currently don't support large transfers\n"); /* Map in pages from userspace */ /* Call vme_master_read to do the transfer */ return -EINVAL; } return copied; } /* * We are going ot alloc a page during init per window for small transfers. * Small transfers will go user space -> buffer -> VME. Larger (more than a * page) transfers will lock the user space buffer into memory and then * transfer the data directly from the user space buffers out to VME. */ static ssize_t resource_from_user(unsigned int minor, const char *buf, size_t count, loff_t *ppos) { ssize_t retval; ssize_t copied = 0; if (count <= image[minor].size_buf) { retval = __copy_from_user(image[minor].kern_buf, buf, (unsigned long)count); if (retval != 0) copied = (copied - retval); else copied = count; copied = vme_master_write(image[minor].resource, image[minor].kern_buf, copied, *ppos); } else { /* XXX Need to write this */ printk("Currently don't support large transfers\n"); /* Map in pages from userspace */ /* Call vme_master_write to do the transfer */ return -EINVAL; } return copied; } static ssize_t buffer_to_user(unsigned int minor, char __user *buf, size_t count, loff_t *ppos) { void __iomem *image_ptr; ssize_t retval; image_ptr = image[minor].kern_buf + *ppos; retval = __copy_to_user(buf, image_ptr, (unsigned long)count); if (retval != 0) { retval = (count - retval); printk(KERN_WARNING "Partial copy to userspace\n"); } else retval = count; /* Return number of bytes successfully read */ return retval; } static ssize_t buffer_from_user(unsigned int minor, const char *buf, size_t count, loff_t *ppos) { void __iomem *image_ptr; size_t retval; image_ptr = image[minor].kern_buf + *ppos; retval = __copy_from_user(image_ptr, buf, (unsigned long)count); if (retval != 0) { retval = (count - retval); printk(KERN_WARNING "Partial copy to userspace\n"); } else retval = count; /* Return number of bytes successfully read */ return retval; } static ssize_t vme_user_read(struct file *file, char *buf, size_t count, loff_t * ppos) { unsigned int minor = MINOR(file->f_dentry->d_inode->i_rdev); ssize_t retval; size_t image_size; size_t okcount; down(&image[minor].sem); /* XXX Do we *really* want this helper - we can use vme_*_get ? */ image_size = vme_get_size(image[minor].resource); /* Ensure we are starting at a valid location */ if ((*ppos < 0) || (*ppos > (image_size - 1))) { up(&image[minor].sem); return 0; } /* Ensure not reading past end of the image */ if (*ppos + count > image_size) okcount = image_size - *ppos; else okcount = count; switch (type[minor]){ case MASTER_MINOR: retval = resource_to_user(minor, buf, okcount, ppos); break; case SLAVE_MINOR: retval = buffer_to_user(minor, buf, okcount, ppos); break; default: retval = -EINVAL; } up(&image[minor].sem); if (retval > 0) *ppos += retval; return retval; } static ssize_t vme_user_write(struct file *file, const char *buf, size_t count, loff_t *ppos) { unsigned int minor = MINOR(file->f_dentry->d_inode->i_rdev); ssize_t retval; size_t image_size; size_t okcount; down(&image[minor].sem); image_size = vme_get_size(image[minor].resource); /* Ensure we are starting at a valid location */ if ((*ppos < 0) || (*ppos > (image_size - 1))) { up(&image[minor].sem); return 0; } /* Ensure not reading past end of the image */ if (*ppos + count > image_size) okcount = image_size - *ppos; else okcount = count; switch (type[minor]){ case MASTER_MINOR: retval = resource_from_user(minor, buf, okcount, ppos); break; case SLAVE_MINOR: retval = buffer_from_user(minor, buf, okcount, ppos); break; default: retval = -EINVAL; } up(&image[minor].sem); if (retval > 0) *ppos += retval; return retval; } static loff_t vme_user_llseek(struct file *file, loff_t off, int whence) { loff_t absolute = -1; unsigned int minor = MINOR(file->f_dentry->d_inode->i_rdev); size_t image_size; down(&image[minor].sem); image_size = vme_get_size(image[minor].resource); switch (whence) { case SEEK_SET: absolute = off; break; case SEEK_CUR: absolute = file->f_pos + off; break; case SEEK_END: absolute = image_size + off; break; default: up(&image[minor].sem); return -EINVAL; break; } if ((absolute < 0) || (absolute >= image_size)) { up(&image[minor].sem); return -EINVAL; } file->f_pos = absolute; up(&image[minor].sem); return absolute; } /* * The ioctls provided by the old VME access method (the one at vmelinux.org) * are most certainly wrong as the effectively push the registers layout * through to user space. Given that the VME core can handle multiple bridges, * with different register layouts this is most certainly not the way to go. * * We aren't using the structures defined in the Motorola driver either - these * are also quite low level, however we should use the definitions that have * already been defined. */ static int vme_user_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { struct vme_master master; struct vme_slave slave; unsigned long copied; unsigned int minor = MINOR(inode->i_rdev); int retval; dma_addr_t pci_addr; statistics.ioctls++; switch (type[minor]) { case CONTROL_MINOR: break; case MASTER_MINOR: switch (cmd) { case VME_GET_MASTER: memset(&master, 0, sizeof(struct vme_master)); /* XXX We do not want to push aspace, cycle and width * to userspace as they are */ retval = vme_master_get(image[minor].resource, &(master.enable), &(master.vme_addr), &(master.size), &(master.aspace), &(master.cycle), &(master.dwidth)); copied = copy_to_user((char *)arg, &master, sizeof(struct vme_master)); if (copied != 0) { printk(KERN_WARNING "Partial copy to " "userspace\n"); return -EFAULT; } return retval; break; case VME_SET_MASTER: copied = copy_from_user(&master, (char *)arg, sizeof(master)); if (copied != 0) { printk(KERN_WARNING "Partial copy from " "userspace\n"); return -EFAULT; } /* XXX We do not want to push aspace, cycle and width * to userspace as they are */ return vme_master_set(image[minor].resource, master.enable, master.vme_addr, master.size, master.aspace, master.cycle, master.dwidth); break; } break; case SLAVE_MINOR: switch (cmd) { case VME_GET_SLAVE: memset(&slave, 0, sizeof(struct vme_slave)); /* XXX We do not want to push aspace, cycle and width * to userspace as they are */ retval = vme_slave_get(image[minor].resource, &(slave.enable), &(slave.vme_addr), &(slave.size), &pci_addr, &(slave.aspace), &(slave.cycle)); copied = copy_to_user((char *)arg, &slave, sizeof(struct vme_slave)); if (copied != 0) { printk(KERN_WARNING "Partial copy to " "userspace\n"); return -EFAULT; } return retval; break; case VME_SET_SLAVE: copied = copy_from_user(&slave, (char *)arg, sizeof(slave)); if (copied != 0) { printk(KERN_WARNING "Partial copy from " "userspace\n"); return -EFAULT; } /* XXX We do not want to push aspace, cycle and width * to userspace as they are */ return vme_slave_set(image[minor].resource, slave.enable, slave.vme_addr, slave.size, image[minor].pci_buf, slave.aspace, slave.cycle); break; } break; } return -EINVAL; } /* * Unallocate a previously allocated buffer */ static void buf_unalloc (int num) { if (image[num].kern_buf) { #ifdef VME_DEBUG printk(KERN_DEBUG "UniverseII:Releasing buffer at %p\n", image[num].pci_buf); #endif vme_free_consistent(image[num].resource, image[num].size_buf, image[num].kern_buf, image[num].pci_buf); image[num].kern_buf = NULL; image[num].pci_buf = 0; image[num].size_buf = 0; #ifdef VME_DEBUG } else { printk(KERN_DEBUG "UniverseII: Buffer not allocated\n"); #endif } } static struct vme_driver vme_user_driver = { .name = driver_name, .probe = vme_user_probe, .remove = vme_user_remove, }; static int __init vme_user_init(void) { int retval = 0; int i; struct vme_device_id *ids; printk(KERN_INFO "VME User Space Access Driver\n"); if (bus_num == 0) { printk(KERN_ERR "%s: No cards, skipping registration\n", driver_name); goto err_nocard; } /* Let's start by supporting one bus, we can support more than one * in future revisions if that ever becomes necessary. */ if (bus_num > USER_BUS_MAX) { printk(KERN_ERR "%s: Driver only able to handle %d buses\n", driver_name, USER_BUS_MAX); bus_num = USER_BUS_MAX; } /* Dynamically create the bind table based on module parameters */ ids = kmalloc(sizeof(struct vme_device_id) * (bus_num + 1), GFP_KERNEL); if (ids == NULL) { printk(KERN_ERR "%s: Unable to allocate ID table\n", driver_name); goto err_id; } memset(ids, 0, (sizeof(struct vme_device_id) * (bus_num + 1))); for (i = 0; i < bus_num; i++) { ids[i].bus = bus[i]; /* * We register the driver against the slot occupied by *this* * card, since it's really a low level way of controlling * the VME bridge */ ids[i].slot = VME_SLOT_CURRENT; } vme_user_driver.bind_table = ids; retval = vme_register_driver(&vme_user_driver); if (retval != 0) goto err_reg; return retval; vme_unregister_driver(&vme_user_driver); err_reg: kfree(ids); err_id: err_nocard: return retval; } /* * In this simple access driver, the old behaviour is being preserved as much * as practical. We will therefore reserve the buffers and request the images * here so that we don't have to do it later. */ static int __init vme_user_probe(struct device *dev, int cur_bus, int cur_slot) { int i, err; char name[12]; /* Save pointer to the bridge device */ if (vme_user_bridge != NULL) { printk(KERN_ERR "%s: Driver can only be loaded for 1 device\n", driver_name); err = -EINVAL; goto err_dev; } vme_user_bridge = dev; /* Initialise descriptors */ for (i = 0; i < VME_DEVS; i++) { image[i].kern_buf = NULL; image[i].pci_buf = 0; init_MUTEX(&(image[i].sem)); image[i].device = NULL; image[i].resource = NULL; image[i].users = 0; } /* Initialise statistics counters */ reset_counters(); /* Assign major and minor numbers for the driver */ err = register_chrdev_region(MKDEV(VME_MAJOR, 0), VME_DEVS, driver_name); if (err) { printk(KERN_WARNING "%s: Error getting Major Number %d for " "driver.\n", driver_name, VME_MAJOR); goto err_region; } /* Register the driver as a char device */ vme_user_cdev = cdev_alloc(); vme_user_cdev->ops = &vme_user_fops; vme_user_cdev->owner = THIS_MODULE; err = cdev_add(vme_user_cdev, MKDEV(VME_MAJOR, 0), VME_DEVS); if (err) { printk(KERN_WARNING "%s: cdev_all failed\n", driver_name); goto err_char; } /* Request slave resources and allocate buffers (128kB wide) */ for (i = SLAVE_MINOR; i < (SLAVE_MAX + 1); i++) { /* XXX Need to properly request attributes */ image[i].resource = vme_slave_request(vme_user_bridge, VME_A16, VME_SCT); if (image[i].resource == NULL) { printk(KERN_WARNING "Unable to allocate slave " "resource\n"); goto err_slave; } image[i].size_buf = PCI_BUF_SIZE; image[i].kern_buf = vme_alloc_consistent(image[i].resource, image[i].size_buf, &(image[i].pci_buf)); if (image[i].kern_buf == NULL) { printk(KERN_WARNING "Unable to allocate memory for " "buffer\n"); image[i].pci_buf = 0; vme_slave_free(image[i].resource); err = -ENOMEM; goto err_slave; } } /* * Request master resources allocate page sized buffers for small * reads and writes */ for (i = MASTER_MINOR; i < (MASTER_MAX + 1); i++) { /* XXX Need to properly request attributes */ image[i].resource = vme_master_request(vme_user_bridge, VME_A32, VME_SCT, VME_D32); if (image[i].resource == NULL) { printk(KERN_WARNING "Unable to allocate master " "resource\n"); goto err_master; } } /* Create sysfs entries - on udev systems this creates the dev files */ vme_user_sysfs_class = class_create(THIS_MODULE, driver_name); if (IS_ERR(vme_user_sysfs_class)) { printk(KERN_ERR "Error creating vme_user class.\n"); err = PTR_ERR(vme_user_sysfs_class); goto err_class; } /* Add sysfs Entries */ for (i=0; i 0){ i--; device_destroy(vme_user_sysfs_class, MKDEV(VME_MAJOR, i)); } class_destroy(vme_user_sysfs_class); /* Ensure counter set correcty to unalloc all master windows */ i = MASTER_MAX + 1; err_master: while (i > MASTER_MINOR) { i--; vme_master_free(image[i].resource); } /* * Ensure counter set correcty to unalloc all slave windows and buffers */ i = SLAVE_MAX + 1; err_slave: while (i > SLAVE_MINOR) { i--; vme_slave_free(image[i].resource); buf_unalloc(i); } err_class: cdev_del(vme_user_cdev); err_char: unregister_chrdev_region(MKDEV(VME_MAJOR, 0), VME_DEVS); err_region: err_dev: return err; } static int __exit vme_user_remove(struct device *dev, int cur_bus, int cur_slot) { int i; /* Remove sysfs Entries */ for(i=0; i