/* comedi/drivers/pcmmio.c Driver for Winsystems PC-104 based multifunction IO board. COMEDI - Linux Control and Measurement Device Interface Copyright (C) 2007 Calin A. Culianu This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Driver: pcmmio Description: A driver for the PCM-MIO multifunction board Devices: [Winsystems] PCM-MIO (pcmmio) Author: Calin Culianu Updated: Wed, May 16 2007 16:21:10 -0500 Status: works A driver for the relatively new PCM-MIO multifunction board from Winsystems. This board is a PC-104 based I/O board. It contains four subdevices: subdevice 0 - 16 channels of 16-bit AI subdevice 1 - 8 channels of 16-bit AO subdevice 2 - first 24 channels of the 48 channel of DIO (with edge-triggered interrupt support) subdevice 3 - last 24 channels of the 48 channel DIO (no interrupt support for this bank of channels) Some notes: Synchronous reads and writes are the only things implemented for AI and AO, even though the hardware itself can do streaming acquisition, etc. Anyone want to add asynchronous I/O for AI/AO as a feature? Be my guest... Asynchronous I/O for the DIO subdevices *is* implemented, however! They are basically edge-triggered interrupts for any configuration of the first 24 DIO-lines. Also note that this interrupt support is untested. A few words about edge-detection IRQ support (commands on DIO): * To use edge-detection IRQ support for the DIO subdevice, pass the IRQ of the board to the comedi_config command. The board IRQ is not jumpered but rather configured through software, so any IRQ from 1-15 is OK. * Due to the genericity of the comedi API, you need to create a special comedi_command in order to use edge-triggered interrupts for DIO. * Use comedi_commands with TRIG_NOW. Your callback will be called each time an edge is detected on the specified DIO line(s), and the data values will be two sample_t's, which should be concatenated to form one 32-bit unsigned int. This value is the mask of channels that had edges detected from your channel list. Note that the bits positions in the mask correspond to positions in your chanlist when you specified the command and *not* channel id's! * To set the polarity of the edge-detection interrupts pass a nonzero value for either CR_RANGE or CR_AREF for edge-up polarity, or a zero value for both CR_RANGE and CR_AREF if you want edge-down polarity. Configuration Options: [0] - I/O port base address [1] - IRQ (optional -- for edge-detect interrupt support only, leave out if you don't need this feature) */ #include #include #include "../comedidev.h" #include "comedi_fc.h" /* This stuff is all from pcmuio.c -- it refers to the DIO subdevices only */ #define CHANS_PER_PORT 8 #define PORTS_PER_ASIC 6 #define INTR_PORTS_PER_ASIC 3 #define MAX_CHANS_PER_SUBDEV 24 /* number of channels per comedi subdevice */ #define PORTS_PER_SUBDEV (MAX_CHANS_PER_SUBDEV/CHANS_PER_PORT) #define CHANS_PER_ASIC (CHANS_PER_PORT*PORTS_PER_ASIC) #define INTR_CHANS_PER_ASIC 24 #define INTR_PORTS_PER_SUBDEV (INTR_CHANS_PER_ASIC/CHANS_PER_PORT) #define MAX_DIO_CHANS (PORTS_PER_ASIC*1*CHANS_PER_PORT) #define MAX_ASICS (MAX_DIO_CHANS/CHANS_PER_ASIC) #define CALC_N_DIO_SUBDEVS(nchans) ((nchans)/MAX_CHANS_PER_SUBDEV + (!!((nchans)%MAX_CHANS_PER_SUBDEV)) /*+ (nchans > INTR_CHANS_PER_ASIC ? 2 : 1)*/) /* IO Memory sizes */ #define ASIC_IOSIZE (0x0B) #define PCMMIO48_IOSIZE ASIC_IOSIZE /* Some offsets - these are all in the 16byte IO memory offset from the base address. Note that there is a paging scheme to swap out offsets 0x8-0xA using the PAGELOCK register. See the table below. Register(s) Pages R/W? Description -------------------------------------------------------------- REG_PORTx All R/W Read/Write/Configure IO REG_INT_PENDING All ReadOnly Quickly see which INT_IDx has int. REG_PAGELOCK All WriteOnly Select a page REG_POLx Pg. 1 only WriteOnly Select edge-detection polarity REG_ENABx Pg. 2 only WriteOnly Enable/Disable edge-detect. int. REG_INT_IDx Pg. 3 only R/W See which ports/bits have ints. */ #define REG_PORT0 0x0 #define REG_PORT1 0x1 #define REG_PORT2 0x2 #define REG_PORT3 0x3 #define REG_PORT4 0x4 #define REG_PORT5 0x5 #define REG_INT_PENDING 0x6 #define REG_PAGELOCK 0x7 /* * page selector register, upper 2 bits select * a page and bits 0-5 are used to 'lock down' * a particular port above to make it readonly. */ #define REG_POL0 0x8 #define REG_POL1 0x9 #define REG_POL2 0xA #define REG_ENAB0 0x8 #define REG_ENAB1 0x9 #define REG_ENAB2 0xA #define REG_INT_ID0 0x8 #define REG_INT_ID1 0x9 #define REG_INT_ID2 0xA #define NUM_PAGED_REGS 3 #define NUM_PAGES 4 #define FIRST_PAGED_REG 0x8 #define REG_PAGE_BITOFFSET 6 #define REG_LOCK_BITOFFSET 0 #define REG_PAGE_MASK (~((0x1<private) /* DIO devices are slightly special. Although it is possible to * implement the insn_read/insn_write interface, it is much more * useful to applications if you implement the insn_bits interface. * This allows packed reading/writing of the DIO channels. The * comedi core can convert between insn_bits and insn_read/write */ static int pcmmio_dio_insn_bits(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { int byte_no; /* NOTE: reading a 0 means this channel was high writine a 0 sets the channel high reading a 1 means this channel was low writing a 1 means set this channel low Therefore everything is always inverted. */ /* The insn data is a mask in data[0] and the new data * in data[1], each channel cooresponding to a bit. */ #ifdef DAMMIT_ITS_BROKEN /* DEBUG */ printk(KERN_DEBUG "write mask: %08x data: %08x\n", data[0], data[1]); #endif s->state = 0; for (byte_no = 0; byte_no < s->n_chan / CHANS_PER_PORT; ++byte_no) { /* address of 8-bit port */ unsigned long ioaddr = subpriv->iobases[byte_no], /* bit offset of port in 32-bit doubleword */ offset = byte_no * 8; /* this 8-bit port's data */ unsigned char byte = 0, /* The write mask for this port (if any) */ write_mask_byte = (data[0] >> offset) & 0xff, /* The data byte for this port */ data_byte = (data[1] >> offset) & 0xff; byte = inb(ioaddr); /* read all 8-bits for this port */ #ifdef DAMMIT_ITS_BROKEN /* DEBUG */ printk (KERN_DEBUG "byte %d wmb %02x db %02x offset %02d io %04x," " data_in %02x ", byte_no, (unsigned)write_mask_byte, (unsigned)data_byte, offset, ioaddr, (unsigned)byte); #endif if (write_mask_byte) { /* * this byte has some write_bits * -- so set the output lines */ /* clear bits for write mask */ byte &= ~write_mask_byte; /* set to inverted data_byte */ byte |= ~data_byte & write_mask_byte; /* Write out the new digital output state */ outb(byte, ioaddr); } #ifdef DAMMIT_ITS_BROKEN /* DEBUG */ printk(KERN_DEBUG "data_out_byte %02x\n", (unsigned)byte); #endif /* save the digital input lines for this byte.. */ s->state |= ((unsigned int)byte) << offset; } /* now return the DIO lines to data[1] - note they came inverted! */ data[1] = ~s->state; #ifdef DAMMIT_ITS_BROKEN /* DEBUG */ printk(KERN_DEBUG "s->state %08x data_out %08x\n", s->state, data[1]); #endif return insn->n; } /* The input or output configuration of each digital line is * configured by a special insn_config instruction. chanspec * contains the channel to be changed, and data[0] contains the * value COMEDI_INPUT or COMEDI_OUTPUT. */ static int pcmmio_dio_insn_config(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { int chan = CR_CHAN(insn->chanspec), byte_no = chan / 8, bit_no = chan % 8; unsigned long ioaddr; unsigned char byte; /* Compute ioaddr for this channel */ ioaddr = subpriv->iobases[byte_no]; /* NOTE: writing a 0 an IO channel's bit sets the channel to INPUT and pulls the line high as well writing a 1 to an IO channel's bit pulls the line low All channels are implicitly always in OUTPUT mode -- but when they are high they can be considered to be in INPUT mode.. Thus, we only force channels low if the config request was INPUT, otherwise we do nothing to the hardware. */ switch (data[0]) { case INSN_CONFIG_DIO_OUTPUT: /* save to io_bits -- don't actually do anything since all input channels are also output channels... */ s->io_bits |= 1 << chan; break; case INSN_CONFIG_DIO_INPUT: /* write a 0 to the actual register representing the channel to set it to 'input'. 0 means "float high". */ byte = inb(ioaddr); byte &= ~(1 << bit_no); /**< set input channel to '0' */ /* * write out byte -- this is the only time we actually affect * the hardware as all channels are implicitly output * -- but input channels are set to float-high */ outb(byte, ioaddr); /* save to io_bits */ s->io_bits &= ~(1 << chan); break; case INSN_CONFIG_DIO_QUERY: /* retrieve from shadow register */ data[1] = (s->io_bits & (1 << chan)) ? COMEDI_OUTPUT : COMEDI_INPUT; return insn->n; break; default: return -EINVAL; break; } return insn->n; } static void switch_page(struct comedi_device *dev, int asic, int page) { struct pcmmio_private *devpriv = dev->private; if (asic < 0 || asic >= 1) return; /* paranoia */ if (page < 0 || page >= NUM_PAGES) return; /* more paranoia */ devpriv->asics[asic].pagelock &= ~REG_PAGE_MASK; devpriv->asics[asic].pagelock |= page << REG_PAGE_BITOFFSET; /* now write out the shadow register */ outb(devpriv->asics[asic].pagelock, devpriv->asics[asic].iobase + REG_PAGELOCK); } static void init_asics(struct comedi_device *dev) { /* sets up an ASIC chip to defaults */ struct pcmmio_private *devpriv = dev->private; int asic; for (asic = 0; asic < 1; ++asic) { int port, page; unsigned long baseaddr = devpriv->asics[asic].iobase; switch_page(dev, asic, 0); /* switch back to page 0 */ /* first, clear all the DIO port bits */ for (port = 0; port < PORTS_PER_ASIC; ++port) outb(0, baseaddr + REG_PORT0 + port); /* Next, clear all the paged registers for each page */ for (page = 1; page < NUM_PAGES; ++page) { int reg; /* now clear all the paged registers */ switch_page(dev, asic, page); for (reg = FIRST_PAGED_REG; reg < FIRST_PAGED_REG + NUM_PAGED_REGS; ++reg) outb(0, baseaddr + reg); } /* DEBUG set rising edge interrupts on port0 of both asics */ /*switch_page(dev, asic, PAGE_POL); outb(0xff, baseaddr + REG_POL0); switch_page(dev, asic, PAGE_ENAB); outb(0xff, baseaddr + REG_ENAB0); */ /* END DEBUG */ /* switch back to default page 0 */ switch_page(dev, asic, 0); } } #ifdef notused static void lock_port(struct comedi_device *dev, int asic, int port) { struct pcmmio_private *devpriv = dev->private; if (asic < 0 || asic >= 1) return; /* paranoia */ if (port < 0 || port >= PORTS_PER_ASIC) return; /* more paranoia */ devpriv->asics[asic].pagelock |= 0x1 << port; /* now write out the shadow register */ outb(devpriv->asics[asic].pagelock, devpriv->asics[asic].iobase + REG_PAGELOCK); return; } static void unlock_port(struct comedi_device *dev, int asic, int port) { struct pcmmio_private *devpriv = dev->private; if (asic < 0 || asic >= 1) return; /* paranoia */ if (port < 0 || port >= PORTS_PER_ASIC) return; /* more paranoia */ devpriv->asics[asic].pagelock &= ~(0x1 << port) | REG_LOCK_MASK; /* now write out the shadow register */ outb(devpriv->asics[asic].pagelock, devpriv->asics[asic].iobase + REG_PAGELOCK); } #endif /* notused */ static void pcmmio_stop_intr(struct comedi_device *dev, struct comedi_subdevice *s) { struct pcmmio_private *devpriv = dev->private; int nports, firstport, asic, port; asic = subpriv->dio.intr.asic; if (asic < 0) return; /* not an interrupt subdev */ subpriv->dio.intr.enabled_mask = 0; subpriv->dio.intr.active = 0; s->async->inttrig = NULL; nports = subpriv->dio.intr.num_asic_chans / CHANS_PER_PORT; firstport = subpriv->dio.intr.asic_chan / CHANS_PER_PORT; switch_page(dev, asic, PAGE_ENAB); for (port = firstport; port < firstport + nports; ++port) { /* disable all intrs for this subdev.. */ outb(0, devpriv->asics[asic].iobase + REG_ENAB0 + port); } } static irqreturn_t interrupt_pcmmio(int irq, void *d) { int asic, got1 = 0; struct comedi_device *dev = (struct comedi_device *)d; struct pcmmio_private *devpriv = dev->private; int i; for (asic = 0; asic < MAX_ASICS; ++asic) { if (irq == devpriv->asics[asic].irq) { unsigned long flags; unsigned triggered = 0; unsigned long iobase = devpriv->asics[asic].iobase; /* it is an interrupt for ASIC #asic */ unsigned char int_pend; spin_lock_irqsave(&devpriv->asics[asic].spinlock, flags); int_pend = inb(iobase + REG_INT_PENDING) & 0x07; if (int_pend) { int port; for (port = 0; port < INTR_PORTS_PER_ASIC; ++port) { if (int_pend & (0x1 << port)) { unsigned char io_lines_with_edges = 0; switch_page(dev, asic, PAGE_INT_ID); io_lines_with_edges = inb(iobase + REG_INT_ID0 + port); if (io_lines_with_edges) /* * clear pending * interrupt */ outb(0, iobase + REG_INT_ID0 + port); triggered |= io_lines_with_edges << port * 8; } } ++got1; } spin_unlock_irqrestore(&devpriv->asics[asic].spinlock, flags); if (triggered) { struct comedi_subdevice *s; /* * TODO here: dispatch io lines to subdevs * with commands.. */ printk (KERN_DEBUG "got edge detect interrupt %d asic %d which_chans: %06x\n", irq, asic, triggered); for (i = 2; i < dev->n_subdevices; i++) { s = &dev->subdevices[i]; /* * this is an interrupt subdev, * and it matches this asic! */ if (subpriv->dio.intr.asic == asic) { unsigned long flags; unsigned oldevents; spin_lock_irqsave(&subpriv->dio. intr.spinlock, flags); oldevents = s->async->events; if (subpriv->dio.intr.active) { unsigned mytrig = ((triggered >> subpriv->dio.intr.asic_chan) & ((0x1 << subpriv-> dio.intr. num_asic_chans) - 1)) << subpriv-> dio.intr.first_chan; if (mytrig & subpriv->dio. intr.enabled_mask) { unsigned int val = 0; unsigned int n, ch, len; len = s-> async->cmd.chanlist_len; for (n = 0; n < len; n++) { ch = CR_CHAN(s->async->cmd.chanlist[n]); if (mytrig & (1U << ch)) val |= (1U << n); } /* Write the scan to the buffer. */ if (comedi_buf_put(s->async, ((short *)&val)[0]) && comedi_buf_put (s->async, ((short *) &val)[1])) { s->async->events |= (COMEDI_CB_BLOCK | COMEDI_CB_EOS); } else { /* Overflow! Stop acquisition!! */ /* TODO: STOP_ACQUISITION_CALL_HERE!! */ pcmmio_stop_intr (dev, s); } /* Check for end of acquisition. */ if (!subpriv->dio.intr.continuous) { /* stop_src == TRIG_COUNT */ if (subpriv->dio.intr.stop_count > 0) { subpriv->dio.intr.stop_count--; if (subpriv->dio.intr.stop_count == 0) { s->async->events |= COMEDI_CB_EOA; /* TODO: STOP_ACQUISITION_CALL_HERE!! */ pcmmio_stop_intr (dev, s); } } } } } spin_unlock_irqrestore (&subpriv->dio.intr. spinlock, flags); if (oldevents != s->async->events) { comedi_event(dev, s); } } } } } } if (!got1) return IRQ_NONE; /* interrupt from other source */ return IRQ_HANDLED; } static int pcmmio_start_intr(struct comedi_device *dev, struct comedi_subdevice *s) { struct pcmmio_private *devpriv = dev->private; if (!subpriv->dio.intr.continuous && subpriv->dio.intr.stop_count == 0) { /* An empty acquisition! */ s->async->events |= COMEDI_CB_EOA; subpriv->dio.intr.active = 0; return 1; } else { unsigned bits = 0, pol_bits = 0, n; int nports, firstport, asic, port; struct comedi_cmd *cmd = &s->async->cmd; asic = subpriv->dio.intr.asic; if (asic < 0) return 1; /* not an interrupt subdev */ subpriv->dio.intr.enabled_mask = 0; subpriv->dio.intr.active = 1; nports = subpriv->dio.intr.num_asic_chans / CHANS_PER_PORT; firstport = subpriv->dio.intr.asic_chan / CHANS_PER_PORT; if (cmd->chanlist) { for (n = 0; n < cmd->chanlist_len; n++) { bits |= (1U << CR_CHAN(cmd->chanlist[n])); pol_bits |= (CR_AREF(cmd->chanlist[n]) || CR_RANGE(cmd-> chanlist[n]) ? 1U : 0U) << CR_CHAN(cmd->chanlist[n]); } } bits &= ((0x1 << subpriv->dio.intr.num_asic_chans) - 1) << subpriv->dio.intr.first_chan; subpriv->dio.intr.enabled_mask = bits; { /* * the below code configures the board * to use a specific IRQ from 0-15. */ unsigned char b; /* * set resource enable register * to enable IRQ operation */ outb(1 << 4, dev->iobase + 3); /* set bits 0-3 of b to the irq number from 0-15 */ b = dev->irq & ((1 << 4) - 1); outb(b, dev->iobase + 2); /* done, we told the board what irq to use */ } switch_page(dev, asic, PAGE_ENAB); for (port = firstport; port < firstport + nports; ++port) { unsigned enab = bits >> (subpriv->dio.intr.first_chan + (port - firstport) * 8) & 0xff, pol = pol_bits >> (subpriv->dio.intr.first_chan + (port - firstport) * 8) & 0xff; /* set enab intrs for this subdev.. */ outb(enab, devpriv->asics[asic].iobase + REG_ENAB0 + port); switch_page(dev, asic, PAGE_POL); outb(pol, devpriv->asics[asic].iobase + REG_ENAB0 + port); } } return 0; } static int pcmmio_cancel(struct comedi_device *dev, struct comedi_subdevice *s) { unsigned long flags; spin_lock_irqsave(&subpriv->dio.intr.spinlock, flags); if (subpriv->dio.intr.active) pcmmio_stop_intr(dev, s); spin_unlock_irqrestore(&subpriv->dio.intr.spinlock, flags); return 0; } /* * Internal trigger function to start acquisition for an 'INTERRUPT' subdevice. */ static int pcmmio_inttrig_start_intr(struct comedi_device *dev, struct comedi_subdevice *s, unsigned int trignum) { unsigned long flags; int event = 0; if (trignum != 0) return -EINVAL; spin_lock_irqsave(&subpriv->dio.intr.spinlock, flags); s->async->inttrig = NULL; if (subpriv->dio.intr.active) event = pcmmio_start_intr(dev, s); spin_unlock_irqrestore(&subpriv->dio.intr.spinlock, flags); if (event) comedi_event(dev, s); return 1; } /* * 'do_cmd' function for an 'INTERRUPT' subdevice. */ static int pcmmio_cmd(struct comedi_device *dev, struct comedi_subdevice *s) { struct comedi_cmd *cmd = &s->async->cmd; unsigned long flags; int event = 0; spin_lock_irqsave(&subpriv->dio.intr.spinlock, flags); subpriv->dio.intr.active = 1; /* Set up end of acquisition. */ switch (cmd->stop_src) { case TRIG_COUNT: subpriv->dio.intr.continuous = 0; subpriv->dio.intr.stop_count = cmd->stop_arg; break; default: /* TRIG_NONE */ subpriv->dio.intr.continuous = 1; subpriv->dio.intr.stop_count = 0; break; } /* Set up start of acquisition. */ switch (cmd->start_src) { case TRIG_INT: s->async->inttrig = pcmmio_inttrig_start_intr; break; default: /* TRIG_NOW */ event = pcmmio_start_intr(dev, s); break; } spin_unlock_irqrestore(&subpriv->dio.intr.spinlock, flags); if (event) comedi_event(dev, s); return 0; } static int pcmmio_cmdtest(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_cmd *cmd) { int err = 0; /* Step 1 : check if triggers are trivially valid */ err |= cfc_check_trigger_src(&cmd->start_src, TRIG_NOW | TRIG_INT); err |= cfc_check_trigger_src(&cmd->scan_begin_src, TRIG_EXT); err |= cfc_check_trigger_src(&cmd->convert_src, TRIG_NOW); err |= cfc_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT); err |= cfc_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE); if (err) return 1; /* Step 2a : make sure trigger sources are unique */ err |= cfc_check_trigger_is_unique(cmd->start_src); err |= cfc_check_trigger_is_unique(cmd->stop_src); /* Step 2b : and mutually compatible */ if (err) return 2; /* Step 3: check if arguments are trivially valid */ err |= cfc_check_trigger_arg_is(&cmd->start_arg, 0); err |= cfc_check_trigger_arg_is(&cmd->scan_begin_arg, 0); err |= cfc_check_trigger_arg_is(&cmd->convert_arg, 0); err |= cfc_check_trigger_arg_is(&cmd->scan_end_arg, cmd->chanlist_len); switch (cmd->stop_src) { case TRIG_COUNT: /* any count allowed */ break; case TRIG_NONE: err |= cfc_check_trigger_arg_is(&cmd->stop_arg, 0); break; default: break; } if (err) return 3; /* step 4: fix up any arguments */ /* if (err) return 4; */ return 0; } static int adc_wait_ready(unsigned long iobase) { unsigned long retry = 100000; while (retry--) if (inb(iobase + 3) & 0x80) return 0; return 1; } /* All this is for AI and AO */ static int ai_rinsn(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { int n; unsigned long iobase = subpriv->iobase; /* 1. write the CMD byte (to BASE+2) 2. read junk lo byte (BASE+0) 3. read junk hi byte (BASE+1) 4. (mux settled so) write CMD byte again (BASE+2) 5. read valid lo byte(BASE+0) 6. read valid hi byte(BASE+1) Additionally note that the BASE += 4 if the channel >= 8 */ /* convert n samples */ for (n = 0; n < insn->n; n++) { unsigned chan = CR_CHAN(insn->chanspec), range = CR_RANGE(insn->chanspec), aref = CR_AREF(insn->chanspec); unsigned char command_byte = 0; unsigned iooffset = 0; short sample, adc_adjust = 0; if (chan > 7) chan -= 8, iooffset = 4; /* * use the second dword * for channels > 7 */ if (aref != AREF_DIFF) { aref = AREF_GROUND; command_byte |= 1 << 7; /* * set bit 7 to indicate * single-ended */ } if (range < 2) adc_adjust = 0x8000; /* * bipolar ranges * (-5,5 .. -10,10 need to be * adjusted -- that is.. they * need to wrap around by * adding 0x8000 */ if (chan % 2) { command_byte |= 1 << 6; /* * odd-numbered channels * have bit 6 set */ } /* select the channel, bits 4-5 == chan/2 */ command_byte |= ((chan / 2) & 0x3) << 4; /* set the range, bits 2-3 */ command_byte |= (range & 0x3) << 2; /* need to do this twice to make sure mux settled */ /* chan/range/aref select */ outb(command_byte, iobase + iooffset + 2); /* wait for the adc to say it finised the conversion */ adc_wait_ready(iobase + iooffset); /* select the chan/range/aref AGAIN */ outb(command_byte, iobase + iooffset + 2); adc_wait_ready(iobase + iooffset); /* read data lo byte */ sample = inb(iobase + iooffset + 0); /* read data hi byte */ sample |= inb(iobase + iooffset + 1) << 8; sample += adc_adjust; /* adjustment .. munge data */ data[n] = sample; } /* return the number of samples read/written */ return n; } static int ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { int n; for (n = 0; n < insn->n; n++) { unsigned chan = CR_CHAN(insn->chanspec); if (chan < s->n_chan) data[n] = subpriv->ao.shadow_samples[chan]; } return n; } static int wait_dac_ready(unsigned long iobase) { unsigned long retry = 100000L; /* This may seem like an absurd way to handle waiting and violates the "no busy waiting" policy. The fact is that the hardware is normally so fast that we usually only need one time through the loop anyway. The longer timeout is for rare occasions and for detecting non-existent hardware. */ while (retry--) { if (inb(iobase + 3) & 0x80) return 0; } return 1; } static int ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { int n; unsigned iobase = subpriv->iobase, iooffset = 0; for (n = 0; n < insn->n; n++) { unsigned chan = CR_CHAN(insn->chanspec), range = CR_RANGE(insn->chanspec); if (chan < s->n_chan) { unsigned char command_byte = 0, range_byte = range & ((1 << 4) - 1); if (chan >= 4) chan -= 4, iooffset += 4; /* set the range.. */ outb(range_byte, iobase + iooffset + 0); outb(0, iobase + iooffset + 1); /* tell it to begin */ command_byte = (chan << 1) | 0x60; outb(command_byte, iobase + iooffset + 2); wait_dac_ready(iobase + iooffset); /* low order byte */ outb(data[n] & 0xff, iobase + iooffset + 0); /* high order byte */ outb((data[n] >> 8) & 0xff, iobase + iooffset + 1); /* * set bit 4 of command byte to indicate * data is loaded and trigger conversion */ command_byte = 0x70 | (chan << 1); /* trigger converion */ outb(command_byte, iobase + iooffset + 2); wait_dac_ready(iobase + iooffset); /* save to shadow register for ao_rinsn */ subpriv->ao.shadow_samples[chan] = data[n]; } } return n; } static int pcmmio_attach(struct comedi_device *dev, struct comedi_devconfig *it) { struct pcmmio_private *devpriv; struct comedi_subdevice *s; int sdev_no, chans_left, n_dio_subdevs, n_subdevs, port, asic, thisasic_chanct = 0; unsigned int irq[MAX_ASICS]; int ret; irq[0] = it->options[1]; ret = comedi_request_region(dev, it->options[0], 32); if (ret) return ret; devpriv = kzalloc(sizeof(*devpriv), GFP_KERNEL); if (!devpriv) return -ENOMEM; dev->private = devpriv; for (asic = 0; asic < MAX_ASICS; ++asic) { devpriv->asics[asic].num = asic; devpriv->asics[asic].iobase = dev->iobase + 16 + asic * ASIC_IOSIZE; /* * this gets actually set at the end of this function when we * request_irqs */ devpriv->asics[asic].irq = 0; spin_lock_init(&devpriv->asics[asic].spinlock); } chans_left = CHANS_PER_ASIC * 1; n_dio_subdevs = CALC_N_DIO_SUBDEVS(chans_left); n_subdevs = n_dio_subdevs + 2; devpriv->sprivs = kcalloc(n_subdevs, sizeof(struct pcmmio_subdev_private), GFP_KERNEL); if (!devpriv->sprivs) { printk(KERN_ERR "comedi%d: cannot allocate subdevice private data structures\n", dev->minor); return -ENOMEM; } ret = comedi_alloc_subdevices(dev, n_subdevs); if (ret) return ret; /* First, AI */ s = &dev->subdevices[0]; s->private = &devpriv->sprivs[0]; s->maxdata = 0xffff; s->range_table = &ranges_ai; s->subdev_flags = SDF_READABLE | SDF_GROUND | SDF_DIFF; s->type = COMEDI_SUBD_AI; s->n_chan = 16; s->len_chanlist = s->n_chan; s->insn_read = ai_rinsn; subpriv->iobase = dev->iobase + 0; /* initialize the resource enable register by clearing it */ outb(0, subpriv->iobase + 3); outb(0, subpriv->iobase + 4 + 3); /* Next, AO */ s = &dev->subdevices[1]; s->private = &devpriv->sprivs[1]; s->maxdata = 0xffff; s->range_table = &ranges_ao; s->subdev_flags = SDF_READABLE; s->type = COMEDI_SUBD_AO; s->n_chan = 8; s->len_chanlist = s->n_chan; s->insn_read = ao_rinsn; s->insn_write = ao_winsn; subpriv->iobase = dev->iobase + 8; /* initialize the resource enable register by clearing it */ outb(0, subpriv->iobase + 3); outb(0, subpriv->iobase + 4 + 3); port = 0; asic = 0; for (sdev_no = 2; sdev_no < dev->n_subdevices; ++sdev_no) { int byte_no; s = &dev->subdevices[sdev_no]; s->private = &devpriv->sprivs[sdev_no]; s->maxdata = 1; s->range_table = &range_digital; s->subdev_flags = SDF_READABLE | SDF_WRITABLE; s->type = COMEDI_SUBD_DIO; s->insn_bits = pcmmio_dio_insn_bits; s->insn_config = pcmmio_dio_insn_config; s->n_chan = min(chans_left, MAX_CHANS_PER_SUBDEV); subpriv->dio.intr.asic = -1; subpriv->dio.intr.first_chan = -1; subpriv->dio.intr.asic_chan = -1; subpriv->dio.intr.num_asic_chans = -1; subpriv->dio.intr.active = 0; s->len_chanlist = 1; /* save the ioport address for each 'port' of 8 channels in the subdevice */ for (byte_no = 0; byte_no < PORTS_PER_SUBDEV; ++byte_no, ++port) { if (port >= PORTS_PER_ASIC) { port = 0; ++asic; thisasic_chanct = 0; } subpriv->iobases[byte_no] = devpriv->asics[asic].iobase + port; if (thisasic_chanct < CHANS_PER_PORT * INTR_PORTS_PER_ASIC && subpriv->dio.intr.asic < 0) { /* * this is an interrupt subdevice, * so setup the struct */ subpriv->dio.intr.asic = asic; subpriv->dio.intr.active = 0; subpriv->dio.intr.stop_count = 0; subpriv->dio.intr.first_chan = byte_no * 8; subpriv->dio.intr.asic_chan = thisasic_chanct; subpriv->dio.intr.num_asic_chans = s->n_chan - subpriv->dio.intr.first_chan; s->cancel = pcmmio_cancel; s->do_cmd = pcmmio_cmd; s->do_cmdtest = pcmmio_cmdtest; s->len_chanlist = subpriv->dio.intr.num_asic_chans; } thisasic_chanct += CHANS_PER_PORT; } spin_lock_init(&subpriv->dio.intr.spinlock); chans_left -= s->n_chan; if (!chans_left) { /* * reset the asic to our first asic, * to do intr subdevs */ asic = 0; port = 0; } } init_asics(dev); /* clear out all the registers, basically */ for (asic = 0; irq[0] && asic < MAX_ASICS; ++asic) { if (irq[asic] && request_irq(irq[asic], interrupt_pcmmio, IRQF_SHARED, dev->board_name, dev)) { int i; /* unroll the allocated irqs.. */ for (i = asic - 1; i >= 0; --i) { free_irq(irq[i], dev); devpriv->asics[i].irq = irq[i] = 0; } irq[asic] = 0; } devpriv->asics[asic].irq = irq[asic]; } return 1; } static void pcmmio_detach(struct comedi_device *dev) { struct pcmmio_private *devpriv = dev->private; int i; for (i = 0; i < MAX_ASICS; ++i) { if (devpriv && devpriv->asics[i].irq) free_irq(devpriv->asics[i].irq, dev); } if (devpriv && devpriv->sprivs) kfree(devpriv->sprivs); comedi_legacy_detach(dev); } static struct comedi_driver pcmmio_driver = { .driver_name = "pcmmio", .module = THIS_MODULE, .attach = pcmmio_attach, .detach = pcmmio_detach, }; module_comedi_driver(pcmmio_driver); MODULE_AUTHOR("Comedi http://www.comedi.org"); MODULE_DESCRIPTION("Comedi low-level driver"); MODULE_LICENSE("GPL");