/* comedi/drivers/ni_atmio16d.c Hardware driver for National Instruments AT-MIO16D board Copyright (C) 2000 Chris R. Baugher This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Driver: ni_atmio16d Description: National Instruments AT-MIO-16D Author: Chris R. Baugher Status: unknown Devices: [National Instruments] AT-MIO-16 (atmio16), AT-MIO-16D (atmio16d) */ /* * I must give credit here to Michal Dobes who * wrote the driver for Advantec's pcl812 boards. I used the interrupt * handling code from his driver as an example for this one. * * Chris Baugher * 5/1/2000 * */ #include #include "../comedidev.h" #include #include "comedi_fc.h" #include "8255.h" /* Configuration and Status Registers */ #define COM_REG_1 0x00 /* wo 16 */ #define STAT_REG 0x00 /* ro 16 */ #define COM_REG_2 0x02 /* wo 16 */ /* Event Strobe Registers */ #define START_CONVERT_REG 0x08 /* wo 16 */ #define START_DAQ_REG 0x0A /* wo 16 */ #define AD_CLEAR_REG 0x0C /* wo 16 */ #define EXT_STROBE_REG 0x0E /* wo 16 */ /* Analog Output Registers */ #define DAC0_REG 0x10 /* wo 16 */ #define DAC1_REG 0x12 /* wo 16 */ #define INT2CLR_REG 0x14 /* wo 16 */ /* Analog Input Registers */ #define MUX_CNTR_REG 0x04 /* wo 16 */ #define MUX_GAIN_REG 0x06 /* wo 16 */ #define AD_FIFO_REG 0x16 /* ro 16 */ #define DMA_TC_INT_CLR_REG 0x16 /* wo 16 */ /* AM9513A Counter/Timer Registers */ #define AM9513A_DATA_REG 0x18 /* rw 16 */ #define AM9513A_COM_REG 0x1A /* wo 16 */ #define AM9513A_STAT_REG 0x1A /* ro 16 */ /* MIO-16 Digital I/O Registers */ #define MIO_16_DIG_IN_REG 0x1C /* ro 16 */ #define MIO_16_DIG_OUT_REG 0x1C /* wo 16 */ /* RTSI Switch Registers */ #define RTSI_SW_SHIFT_REG 0x1E /* wo 8 */ #define RTSI_SW_STROBE_REG 0x1F /* wo 8 */ /* DIO-24 Registers */ #define DIO_24_PORTA_REG 0x00 /* rw 8 */ #define DIO_24_PORTB_REG 0x01 /* rw 8 */ #define DIO_24_PORTC_REG 0x02 /* rw 8 */ #define DIO_24_CNFG_REG 0x03 /* wo 8 */ /* Command Register bits */ #define COMREG1_2SCADC 0x0001 #define COMREG1_1632CNT 0x0002 #define COMREG1_SCANEN 0x0008 #define COMREG1_DAQEN 0x0010 #define COMREG1_DMAEN 0x0020 #define COMREG1_CONVINTEN 0x0080 #define COMREG2_SCN2 0x0010 #define COMREG2_INTEN 0x0080 #define COMREG2_DOUTEN0 0x0100 #define COMREG2_DOUTEN1 0x0200 /* Status Register bits */ #define STAT_AD_OVERRUN 0x0100 #define STAT_AD_OVERFLOW 0x0200 #define STAT_AD_DAQPROG 0x0800 #define STAT_AD_CONVAVAIL 0x2000 #define STAT_AD_DAQSTOPINT 0x4000 /* AM9513A Counter/Timer defines */ #define CLOCK_1_MHZ 0x8B25 #define CLOCK_100_KHZ 0x8C25 #define CLOCK_10_KHZ 0x8D25 #define CLOCK_1_KHZ 0x8E25 #define CLOCK_100_HZ 0x8F25 /* Other miscellaneous defines */ #define ATMIO16D_SIZE 32 /* bus address range */ #define ATMIO16D_TIMEOUT 10 struct atmio16_board_t { const char *name; int has_8255; }; /* range structs */ static const struct comedi_lrange range_atmio16d_ai_10_bipolar = { 4, { BIP_RANGE (10), BIP_RANGE (1), BIP_RANGE (0.1), BIP_RANGE (0.02) } }; static const struct comedi_lrange range_atmio16d_ai_5_bipolar = { 4, { BIP_RANGE (5), BIP_RANGE (0.5), BIP_RANGE (0.05), BIP_RANGE (0.01) } }; static const struct comedi_lrange range_atmio16d_ai_unipolar = { 4, { UNI_RANGE (10), UNI_RANGE (1), UNI_RANGE (0.1), UNI_RANGE (0.02) } }; /* private data struct */ struct atmio16d_private { enum { adc_diff, adc_singleended } adc_mux; enum { adc_bipolar10, adc_bipolar5, adc_unipolar10 } adc_range; enum { adc_2comp, adc_straight } adc_coding; enum { dac_bipolar, dac_unipolar } dac0_range, dac1_range; enum { dac_internal, dac_external } dac0_reference, dac1_reference; enum { dac_2comp, dac_straight } dac0_coding, dac1_coding; const struct comedi_lrange *ao_range_type_list[2]; unsigned int ao_readback[2]; unsigned int com_reg_1_state; /* current state of command register 1 */ unsigned int com_reg_2_state; /* current state of command register 2 */ }; static void reset_counters(struct comedi_device *dev) { /* Counter 2 */ outw(0xFFC2, dev->iobase + AM9513A_COM_REG); outw(0xFF02, dev->iobase + AM9513A_COM_REG); outw(0x4, dev->iobase + AM9513A_DATA_REG); outw(0xFF0A, dev->iobase + AM9513A_COM_REG); outw(0x3, dev->iobase + AM9513A_DATA_REG); outw(0xFF42, dev->iobase + AM9513A_COM_REG); outw(0xFF42, dev->iobase + AM9513A_COM_REG); /* Counter 3 */ outw(0xFFC4, dev->iobase + AM9513A_COM_REG); outw(0xFF03, dev->iobase + AM9513A_COM_REG); outw(0x4, dev->iobase + AM9513A_DATA_REG); outw(0xFF0B, dev->iobase + AM9513A_COM_REG); outw(0x3, dev->iobase + AM9513A_DATA_REG); outw(0xFF44, dev->iobase + AM9513A_COM_REG); outw(0xFF44, dev->iobase + AM9513A_COM_REG); /* Counter 4 */ outw(0xFFC8, dev->iobase + AM9513A_COM_REG); outw(0xFF04, dev->iobase + AM9513A_COM_REG); outw(0x4, dev->iobase + AM9513A_DATA_REG); outw(0xFF0C, dev->iobase + AM9513A_COM_REG); outw(0x3, dev->iobase + AM9513A_DATA_REG); outw(0xFF48, dev->iobase + AM9513A_COM_REG); outw(0xFF48, dev->iobase + AM9513A_COM_REG); /* Counter 5 */ outw(0xFFD0, dev->iobase + AM9513A_COM_REG); outw(0xFF05, dev->iobase + AM9513A_COM_REG); outw(0x4, dev->iobase + AM9513A_DATA_REG); outw(0xFF0D, dev->iobase + AM9513A_COM_REG); outw(0x3, dev->iobase + AM9513A_DATA_REG); outw(0xFF50, dev->iobase + AM9513A_COM_REG); outw(0xFF50, dev->iobase + AM9513A_COM_REG); outw(0, dev->iobase + AD_CLEAR_REG); } static void reset_atmio16d(struct comedi_device *dev) { struct atmio16d_private *devpriv = dev->private; int i; /* now we need to initialize the board */ outw(0, dev->iobase + COM_REG_1); outw(0, dev->iobase + COM_REG_2); outw(0, dev->iobase + MUX_GAIN_REG); /* init AM9513A timer */ outw(0xFFFF, dev->iobase + AM9513A_COM_REG); outw(0xFFEF, dev->iobase + AM9513A_COM_REG); outw(0xFF17, dev->iobase + AM9513A_COM_REG); outw(0xF000, dev->iobase + AM9513A_DATA_REG); for (i = 1; i <= 5; ++i) { outw(0xFF00 + i, dev->iobase + AM9513A_COM_REG); outw(0x0004, dev->iobase + AM9513A_DATA_REG); outw(0xFF08 + i, dev->iobase + AM9513A_COM_REG); outw(0x3, dev->iobase + AM9513A_DATA_REG); } outw(0xFF5F, dev->iobase + AM9513A_COM_REG); /* timer init done */ outw(0, dev->iobase + AD_CLEAR_REG); outw(0, dev->iobase + INT2CLR_REG); /* select straight binary mode for Analog Input */ devpriv->com_reg_1_state |= 1; outw(devpriv->com_reg_1_state, dev->iobase + COM_REG_1); devpriv->adc_coding = adc_straight; /* zero the analog outputs */ outw(2048, dev->iobase + DAC0_REG); outw(2048, dev->iobase + DAC1_REG); } static irqreturn_t atmio16d_interrupt(int irq, void *d) { struct comedi_device *dev = d; struct comedi_subdevice *s = &dev->subdevices[0]; comedi_buf_put(s->async, inw(dev->iobase + AD_FIFO_REG)); comedi_event(dev, s); return IRQ_HANDLED; } static int atmio16d_ai_cmdtest(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_cmd *cmd) { int err = 0; /* Step 1 : check if triggers are trivially valid */ err |= cfc_check_trigger_src(&cmd->start_src, TRIG_NOW); err |= cfc_check_trigger_src(&cmd->scan_begin_src, TRIG_FOLLOW | TRIG_TIMER); err |= cfc_check_trigger_src(&cmd->convert_src, TRIG_TIMER); err |= cfc_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT); err |= cfc_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE); if (err) return 1; /* Step 2a : make sure trigger sources are unique */ err |= cfc_check_trigger_is_unique(cmd->scan_begin_src); err |= cfc_check_trigger_is_unique(cmd->stop_src); /* Step 2b : and mutually compatible */ if (err) return 2; /* Step 3: check if arguments are trivially valid */ err |= cfc_check_trigger_arg_is(&cmd->start_arg, 0); if (cmd->scan_begin_src == TRIG_FOLLOW) { /* internal trigger */ err |= cfc_check_trigger_arg_is(&cmd->scan_begin_arg, 0); } else { #if 0 /* external trigger */ /* should be level/edge, hi/lo specification here */ err |= cfc_check_trigger_arg_is(&cmd->scan_begin_arg, 0); #endif } err |= cfc_check_trigger_arg_min(&cmd->convert_arg, 10000); #if 0 err |= cfc_check_trigger_arg_max(&cmd->convert_arg, SLOWEST_TIMER); #endif err |= cfc_check_trigger_arg_is(&cmd->scan_end_arg, cmd->chanlist_len); if (cmd->stop_src == TRIG_COUNT) { /* any count is allowed */ } else { /* TRIG_NONE */ err |= cfc_check_trigger_arg_is(&cmd->stop_arg, 0); } if (err) return 3; return 0; } static int atmio16d_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s) { struct atmio16d_private *devpriv = dev->private; struct comedi_cmd *cmd = &s->async->cmd; unsigned int timer, base_clock; unsigned int sample_count, tmp, chan, gain; int i; /* This is slowly becoming a working command interface. * * It is still uber-experimental */ reset_counters(dev); s->async->cur_chan = 0; /* check if scanning multiple channels */ if (cmd->chanlist_len < 2) { devpriv->com_reg_1_state &= ~COMREG1_SCANEN; outw(devpriv->com_reg_1_state, dev->iobase + COM_REG_1); } else { devpriv->com_reg_1_state |= COMREG1_SCANEN; devpriv->com_reg_2_state |= COMREG2_SCN2; outw(devpriv->com_reg_1_state, dev->iobase + COM_REG_1); outw(devpriv->com_reg_2_state, dev->iobase + COM_REG_2); } /* Setup the Mux-Gain Counter */ for (i = 0; i < cmd->chanlist_len; ++i) { chan = CR_CHAN(cmd->chanlist[i]); gain = CR_RANGE(cmd->chanlist[i]); outw(i, dev->iobase + MUX_CNTR_REG); tmp = chan | (gain << 6); if (i == cmd->scan_end_arg - 1) tmp |= 0x0010; /* set LASTONE bit */ outw(tmp, dev->iobase + MUX_GAIN_REG); } /* Now program the sample interval timer */ /* Figure out which clock to use then get an * appropriate timer value */ if (cmd->convert_arg < 65536000) { base_clock = CLOCK_1_MHZ; timer = cmd->convert_arg / 1000; } else if (cmd->convert_arg < 655360000) { base_clock = CLOCK_100_KHZ; timer = cmd->convert_arg / 10000; } else if (cmd->convert_arg <= 0xffffffff /* 6553600000 */) { base_clock = CLOCK_10_KHZ; timer = cmd->convert_arg / 100000; } else if (cmd->convert_arg <= 0xffffffff /* 65536000000 */) { base_clock = CLOCK_1_KHZ; timer = cmd->convert_arg / 1000000; } outw(0xFF03, dev->iobase + AM9513A_COM_REG); outw(base_clock, dev->iobase + AM9513A_DATA_REG); outw(0xFF0B, dev->iobase + AM9513A_COM_REG); outw(0x2, dev->iobase + AM9513A_DATA_REG); outw(0xFF44, dev->iobase + AM9513A_COM_REG); outw(0xFFF3, dev->iobase + AM9513A_COM_REG); outw(timer, dev->iobase + AM9513A_DATA_REG); outw(0xFF24, dev->iobase + AM9513A_COM_REG); /* Now figure out how many samples to get */ /* and program the sample counter */ sample_count = cmd->stop_arg * cmd->scan_end_arg; outw(0xFF04, dev->iobase + AM9513A_COM_REG); outw(0x1025, dev->iobase + AM9513A_DATA_REG); outw(0xFF0C, dev->iobase + AM9513A_COM_REG); if (sample_count < 65536) { /* use only Counter 4 */ outw(sample_count, dev->iobase + AM9513A_DATA_REG); outw(0xFF48, dev->iobase + AM9513A_COM_REG); outw(0xFFF4, dev->iobase + AM9513A_COM_REG); outw(0xFF28, dev->iobase + AM9513A_COM_REG); devpriv->com_reg_1_state &= ~COMREG1_1632CNT; outw(devpriv->com_reg_1_state, dev->iobase + COM_REG_1); } else { /* Counter 4 and 5 are needed */ tmp = sample_count & 0xFFFF; if (tmp) outw(tmp - 1, dev->iobase + AM9513A_DATA_REG); else outw(0xFFFF, dev->iobase + AM9513A_DATA_REG); outw(0xFF48, dev->iobase + AM9513A_COM_REG); outw(0, dev->iobase + AM9513A_DATA_REG); outw(0xFF28, dev->iobase + AM9513A_COM_REG); outw(0xFF05, dev->iobase + AM9513A_COM_REG); outw(0x25, dev->iobase + AM9513A_DATA_REG); outw(0xFF0D, dev->iobase + AM9513A_COM_REG); tmp = sample_count & 0xFFFF; if ((tmp == 0) || (tmp == 1)) { outw((sample_count >> 16) & 0xFFFF, dev->iobase + AM9513A_DATA_REG); } else { outw(((sample_count >> 16) & 0xFFFF) + 1, dev->iobase + AM9513A_DATA_REG); } outw(0xFF70, dev->iobase + AM9513A_COM_REG); devpriv->com_reg_1_state |= COMREG1_1632CNT; outw(devpriv->com_reg_1_state, dev->iobase + COM_REG_1); } /* Program the scan interval timer ONLY IF SCANNING IS ENABLED */ /* Figure out which clock to use then get an * appropriate timer value */ if (cmd->chanlist_len > 1) { if (cmd->scan_begin_arg < 65536000) { base_clock = CLOCK_1_MHZ; timer = cmd->scan_begin_arg / 1000; } else if (cmd->scan_begin_arg < 655360000) { base_clock = CLOCK_100_KHZ; timer = cmd->scan_begin_arg / 10000; } else if (cmd->scan_begin_arg < 0xffffffff /* 6553600000 */) { base_clock = CLOCK_10_KHZ; timer = cmd->scan_begin_arg / 100000; } else if (cmd->scan_begin_arg < 0xffffffff /* 65536000000 */) { base_clock = CLOCK_1_KHZ; timer = cmd->scan_begin_arg / 1000000; } outw(0xFF02, dev->iobase + AM9513A_COM_REG); outw(base_clock, dev->iobase + AM9513A_DATA_REG); outw(0xFF0A, dev->iobase + AM9513A_COM_REG); outw(0x2, dev->iobase + AM9513A_DATA_REG); outw(0xFF42, dev->iobase + AM9513A_COM_REG); outw(0xFFF2, dev->iobase + AM9513A_COM_REG); outw(timer, dev->iobase + AM9513A_DATA_REG); outw(0xFF22, dev->iobase + AM9513A_COM_REG); } /* Clear the A/D FIFO and reset the MUX counter */ outw(0, dev->iobase + AD_CLEAR_REG); outw(0, dev->iobase + MUX_CNTR_REG); outw(0, dev->iobase + INT2CLR_REG); /* enable this acquisition operation */ devpriv->com_reg_1_state |= COMREG1_DAQEN; outw(devpriv->com_reg_1_state, dev->iobase + COM_REG_1); /* enable interrupts for conversion completion */ devpriv->com_reg_1_state |= COMREG1_CONVINTEN; devpriv->com_reg_2_state |= COMREG2_INTEN; outw(devpriv->com_reg_1_state, dev->iobase + COM_REG_1); outw(devpriv->com_reg_2_state, dev->iobase + COM_REG_2); /* apply a trigger. this starts the counters! */ outw(0, dev->iobase + START_DAQ_REG); return 0; } /* This will cancel a running acquisition operation */ static int atmio16d_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s) { reset_atmio16d(dev); return 0; } /* Mode 0 is used to get a single conversion on demand */ static int atmio16d_ai_insn_read(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { struct atmio16d_private *devpriv = dev->private; int i, t; int chan; int gain; int status; chan = CR_CHAN(insn->chanspec); gain = CR_RANGE(insn->chanspec); /* reset the Analog input circuitry */ /* outw( 0, dev->iobase+AD_CLEAR_REG ); */ /* reset the Analog Input MUX Counter to 0 */ /* outw( 0, dev->iobase+MUX_CNTR_REG ); */ /* set the Input MUX gain */ outw(chan | (gain << 6), dev->iobase + MUX_GAIN_REG); for (i = 0; i < insn->n; i++) { /* start the conversion */ outw(0, dev->iobase + START_CONVERT_REG); /* wait for it to finish */ for (t = 0; t < ATMIO16D_TIMEOUT; t++) { /* check conversion status */ status = inw(dev->iobase + STAT_REG); if (status & STAT_AD_CONVAVAIL) { /* read the data now */ data[i] = inw(dev->iobase + AD_FIFO_REG); /* change to two's complement if need be */ if (devpriv->adc_coding == adc_2comp) data[i] ^= 0x800; break; } if (status & STAT_AD_OVERFLOW) { printk(KERN_INFO "atmio16d: a/d FIFO overflow\n"); outw(0, dev->iobase + AD_CLEAR_REG); return -ETIME; } } /* end waiting, now check if it timed out */ if (t == ATMIO16D_TIMEOUT) { printk(KERN_INFO "atmio16d: timeout\n"); return -ETIME; } } return i; } static int atmio16d_ao_insn_read(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { struct atmio16d_private *devpriv = dev->private; int i; for (i = 0; i < insn->n; i++) data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)]; return i; } static int atmio16d_ao_insn_write(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { struct atmio16d_private *devpriv = dev->private; int i; int chan; int d; chan = CR_CHAN(insn->chanspec); for (i = 0; i < insn->n; i++) { d = data[i]; switch (chan) { case 0: if (devpriv->dac0_coding == dac_2comp) d ^= 0x800; outw(d, dev->iobase + DAC0_REG); break; case 1: if (devpriv->dac1_coding == dac_2comp) d ^= 0x800; outw(d, dev->iobase + DAC1_REG); break; default: return -EINVAL; } devpriv->ao_readback[chan] = data[i]; } return i; } static int atmio16d_dio_insn_bits(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { if (data[0]) { s->state &= ~data[0]; s->state |= (data[0] | data[1]); outw(s->state, dev->iobase + MIO_16_DIG_OUT_REG); } data[1] = inw(dev->iobase + MIO_16_DIG_IN_REG); return insn->n; } static int atmio16d_dio_insn_config(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { struct atmio16d_private *devpriv = dev->private; int i; int mask; for (i = 0; i < insn->n; i++) { mask = (CR_CHAN(insn->chanspec) < 4) ? 0x0f : 0xf0; s->io_bits &= ~mask; if (data[i]) s->io_bits |= mask; } devpriv->com_reg_2_state &= ~(COMREG2_DOUTEN0 | COMREG2_DOUTEN1); if (s->io_bits & 0x0f) devpriv->com_reg_2_state |= COMREG2_DOUTEN0; if (s->io_bits & 0xf0) devpriv->com_reg_2_state |= COMREG2_DOUTEN1; outw(devpriv->com_reg_2_state, dev->iobase + COM_REG_2); return i; } /* options[0] - I/O port options[1] - MIO irq 0 == no irq N == irq N {3,4,5,6,7,9,10,11,12,14,15} options[2] - DIO irq 0 == no irq N == irq N {3,4,5,6,7,9} options[3] - DMA1 channel 0 == no DMA N == DMA N {5,6,7} options[4] - DMA2 channel 0 == no DMA N == DMA N {5,6,7} options[5] - a/d mux 0=differential, 1=single options[6] - a/d range 0=bipolar10, 1=bipolar5, 2=unipolar10 options[7] - dac0 range 0=bipolar, 1=unipolar options[8] - dac0 reference 0=internal, 1=external options[9] - dac0 coding 0=2's comp, 1=straight binary options[10] - dac1 range options[11] - dac1 reference options[12] - dac1 coding */ static int atmio16d_attach(struct comedi_device *dev, struct comedi_devconfig *it) { const struct atmio16_board_t *board = comedi_board(dev); struct atmio16d_private *devpriv; struct comedi_subdevice *s; unsigned int irq; int ret; ret = comedi_request_region(dev, it->options[0], ATMIO16D_SIZE); if (ret) return ret; ret = comedi_alloc_subdevices(dev, 4); if (ret) return ret; devpriv = kzalloc(sizeof(*devpriv), GFP_KERNEL); if (!devpriv) return -ENOMEM; dev->private = devpriv; /* reset the atmio16d hardware */ reset_atmio16d(dev); /* check if our interrupt is available and get it */ irq = it->options[1]; if (irq) { ret = request_irq(irq, atmio16d_interrupt, 0, "atmio16d", dev); if (ret < 0) { printk(KERN_INFO "failed to allocate irq %u\n", irq); return ret; } dev->irq = irq; printk(KERN_INFO "( irq = %u )\n", irq); } else { printk(KERN_INFO "( no irq )"); } /* set device options */ devpriv->adc_mux = it->options[5]; devpriv->adc_range = it->options[6]; devpriv->dac0_range = it->options[7]; devpriv->dac0_reference = it->options[8]; devpriv->dac0_coding = it->options[9]; devpriv->dac1_range = it->options[10]; devpriv->dac1_reference = it->options[11]; devpriv->dac1_coding = it->options[12]; /* setup sub-devices */ s = &dev->subdevices[0]; dev->read_subdev = s; /* ai subdevice */ s->type = COMEDI_SUBD_AI; s->subdev_flags = SDF_READABLE | SDF_GROUND | SDF_CMD_READ; s->n_chan = (devpriv->adc_mux ? 16 : 8); s->len_chanlist = 16; s->insn_read = atmio16d_ai_insn_read; s->do_cmdtest = atmio16d_ai_cmdtest; s->do_cmd = atmio16d_ai_cmd; s->cancel = atmio16d_ai_cancel; s->maxdata = 0xfff; /* 4095 decimal */ switch (devpriv->adc_range) { case adc_bipolar10: s->range_table = &range_atmio16d_ai_10_bipolar; break; case adc_bipolar5: s->range_table = &range_atmio16d_ai_5_bipolar; break; case adc_unipolar10: s->range_table = &range_atmio16d_ai_unipolar; break; } /* ao subdevice */ s = &dev->subdevices[1]; s->type = COMEDI_SUBD_AO; s->subdev_flags = SDF_WRITABLE; s->n_chan = 2; s->insn_read = atmio16d_ao_insn_read; s->insn_write = atmio16d_ao_insn_write; s->maxdata = 0xfff; /* 4095 decimal */ s->range_table_list = devpriv->ao_range_type_list; switch (devpriv->dac0_range) { case dac_bipolar: devpriv->ao_range_type_list[0] = &range_bipolar10; break; case dac_unipolar: devpriv->ao_range_type_list[0] = &range_unipolar10; break; } switch (devpriv->dac1_range) { case dac_bipolar: devpriv->ao_range_type_list[1] = &range_bipolar10; break; case dac_unipolar: devpriv->ao_range_type_list[1] = &range_unipolar10; break; } /* Digital I/O */ s = &dev->subdevices[2]; s->type = COMEDI_SUBD_DIO; s->subdev_flags = SDF_WRITABLE | SDF_READABLE; s->n_chan = 8; s->insn_bits = atmio16d_dio_insn_bits; s->insn_config = atmio16d_dio_insn_config; s->maxdata = 1; s->range_table = &range_digital; /* 8255 subdevice */ s = &dev->subdevices[3]; if (board->has_8255) subdev_8255_init(dev, s, NULL, dev->iobase); else s->type = COMEDI_SUBD_UNUSED; /* don't yet know how to deal with counter/timers */ #if 0 s = &dev->subdevices[4]; /* do */ s->type = COMEDI_SUBD_TIMER; s->n_chan = 0; s->maxdata = 0 #endif printk("\n"); return 0; } static void atmio16d_detach(struct comedi_device *dev) { comedi_spriv_free(dev, 3); reset_atmio16d(dev); comedi_legacy_detach(dev); } static const struct atmio16_board_t atmio16_boards[] = { { .name = "atmio16", .has_8255 = 0, }, { .name = "atmio16d", .has_8255 = 1, }, }; static struct comedi_driver atmio16d_driver = { .driver_name = "atmio16", .module = THIS_MODULE, .attach = atmio16d_attach, .detach = atmio16d_detach, .board_name = &atmio16_boards[0].name, .num_names = ARRAY_SIZE(atmio16_boards), .offset = sizeof(struct atmio16_board_t), }; module_comedi_driver(atmio16d_driver); MODULE_AUTHOR("Comedi http://www.comedi.org"); MODULE_DESCRIPTION("Comedi low-level driver"); MODULE_LICENSE("GPL");