/* comedi/drivers/dmm32at.c Diamond Systems mm32at code for a Comedi driver COMEDI - Linux Control and Measurement Device Interface Copyright (C) 2000 David A. Schleef This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Driver: dmm32at Description: Diamond Systems mm32at driver. Devices: Author: Perry J. Piplani Updated: Fri Jun 4 09:13:24 CDT 2004 Status: experimental This driver is for the Diamond Systems MM-32-AT board http://www.diamondsystems.com/products/diamondmm32at It is being used on serveral projects inside NASA, without problems so far. For analog input commands, TRIG_EXT is not yet supported at all.. Configuration Options: comedi_config /dev/comedi0 dmm32at baseaddr,irq */ #include #include "../comedidev.h" #include #include "comedi_fc.h" /* Board register addresses */ #define DMM32AT_MEMSIZE 0x10 #define DMM32AT_CONV 0x00 #define DMM32AT_AILSB 0x00 #define DMM32AT_AUXDOUT 0x01 #define DMM32AT_AIMSB 0x01 #define DMM32AT_AILOW 0x02 #define DMM32AT_AIHIGH 0x03 #define DMM32AT_DACLSB 0x04 #define DMM32AT_DACSTAT 0x04 #define DMM32AT_DACMSB 0x05 #define DMM32AT_FIFOCNTRL 0x07 #define DMM32AT_FIFOSTAT 0x07 #define DMM32AT_CNTRL 0x08 #define DMM32AT_AISTAT 0x08 #define DMM32AT_INTCLOCK 0x09 #define DMM32AT_CNTRDIO 0x0a #define DMM32AT_AICONF 0x0b #define DMM32AT_AIRBACK 0x0b #define DMM32AT_CLK1 0x0d #define DMM32AT_CLK2 0x0e #define DMM32AT_CLKCT 0x0f #define DMM32AT_DIOA 0x0c #define DMM32AT_DIOB 0x0d #define DMM32AT_DIOC 0x0e #define DMM32AT_DIOCONF 0x0f /* Board register values. */ /* DMM32AT_DACSTAT 0x04 */ #define DMM32AT_DACBUSY 0x80 /* DMM32AT_FIFOCNTRL 0x07 */ #define DMM32AT_FIFORESET 0x02 #define DMM32AT_SCANENABLE 0x04 /* DMM32AT_CNTRL 0x08 */ #define DMM32AT_RESET 0x20 #define DMM32AT_INTRESET 0x08 #define DMM32AT_CLKACC 0x00 #define DMM32AT_DIOACC 0x01 /* DMM32AT_AISTAT 0x08 */ #define DMM32AT_STATUS 0x80 /* DMM32AT_INTCLOCK 0x09 */ #define DMM32AT_ADINT 0x80 #define DMM32AT_CLKSEL 0x03 /* DMM32AT_CNTRDIO 0x0a */ #define DMM32AT_FREQ12 0x80 /* DMM32AT_AICONF 0x0b */ #define DMM32AT_RANGE_U10 0x0c #define DMM32AT_RANGE_U5 0x0d #define DMM32AT_RANGE_B10 0x08 #define DMM32AT_RANGE_B5 0x00 #define DMM32AT_SCINT_20 0x00 #define DMM32AT_SCINT_15 0x10 #define DMM32AT_SCINT_10 0x20 #define DMM32AT_SCINT_5 0x30 /* DMM32AT_CLKCT 0x0f */ #define DMM32AT_CLKCT1 0x56 /* mode3 counter 1 - write low byte only */ #define DMM32AT_CLKCT2 0xb6 /* mode3 counter 2 - write high and low byte */ /* DMM32AT_DIOCONF 0x0f */ #define DMM32AT_DIENABLE 0x80 #define DMM32AT_DIRA 0x10 #define DMM32AT_DIRB 0x02 #define DMM32AT_DIRCL 0x01 #define DMM32AT_DIRCH 0x08 /* board AI ranges in comedi structure */ static const struct comedi_lrange dmm32at_airanges = { 4, { UNI_RANGE(10), UNI_RANGE(5), BIP_RANGE(10), BIP_RANGE(5), } }; /* register values for above ranges */ static const unsigned char dmm32at_rangebits[] = { DMM32AT_RANGE_U10, DMM32AT_RANGE_U5, DMM32AT_RANGE_B10, DMM32AT_RANGE_B5, }; /* only one of these ranges is valid, as set by a jumper on the * board. The application should only use the range set by the jumper */ static const struct comedi_lrange dmm32at_aoranges = { 4, { UNI_RANGE(10), UNI_RANGE(5), BIP_RANGE(10), BIP_RANGE(5), } }; struct dmm32at_private { int data; int ai_inuse; unsigned int ai_scans_left; /* Used for AO readback */ unsigned int ao_readback[4]; unsigned char dio_config; }; static int dmm32at_ai_rinsn(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { int n, i; unsigned int d; unsigned char status; unsigned short msb, lsb; unsigned char chan; int range; /* get the channel and range number */ chan = CR_CHAN(insn->chanspec) & (s->n_chan - 1); range = CR_RANGE(insn->chanspec); /* printk("channel=0x%02x, range=%d\n",chan,range); */ /* zero scan and fifo control and reset fifo */ outb(DMM32AT_FIFORESET, dev->iobase + DMM32AT_FIFOCNTRL); /* write the ai channel range regs */ outb(chan, dev->iobase + DMM32AT_AILOW); outb(chan, dev->iobase + DMM32AT_AIHIGH); /* set the range bits */ outb(dmm32at_rangebits[range], dev->iobase + DMM32AT_AICONF); /* wait for circuit to settle */ for (i = 0; i < 40000; i++) { status = inb(dev->iobase + DMM32AT_AIRBACK); if ((status & DMM32AT_STATUS) == 0) break; } if (i == 40000) { printk(KERN_WARNING "dmm32at: timeout\n"); return -ETIMEDOUT; } /* convert n samples */ for (n = 0; n < insn->n; n++) { /* trigger conversion */ outb(0xff, dev->iobase + DMM32AT_CONV); /* wait for conversion to end */ for (i = 0; i < 40000; i++) { status = inb(dev->iobase + DMM32AT_AISTAT); if ((status & DMM32AT_STATUS) == 0) break; } if (i == 40000) { printk(KERN_WARNING "dmm32at: timeout\n"); return -ETIMEDOUT; } /* read data */ lsb = inb(dev->iobase + DMM32AT_AILSB); msb = inb(dev->iobase + DMM32AT_AIMSB); /* invert sign bit to make range unsigned, this is an idiosyncrasy of the diamond board, it return conversions as a signed value, i.e. -32768 to 32767, flipping the bit and interpreting it as signed gives you a range of 0 to 65535 which is used by comedi */ d = ((msb ^ 0x0080) << 8) + lsb; data[n] = d; } /* return the number of samples read/written */ return n; } static int dmm32at_ns_to_timer(unsigned int *ns, int round) { /* trivial timer */ return *ns; } static int dmm32at_ai_cmdtest(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_cmd *cmd) { int err = 0; int tmp; int start_chan, gain, i; /* Step 1 : check if triggers are trivially valid */ err |= cfc_check_trigger_src(&cmd->start_src, TRIG_NOW); err |= cfc_check_trigger_src(&cmd->scan_begin_src, TRIG_TIMER /*| TRIG_EXT */); err |= cfc_check_trigger_src(&cmd->convert_src, TRIG_TIMER /*| TRIG_EXT */); err |= cfc_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT); err |= cfc_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE); if (err) return 1; /* Step 2a : make sure trigger sources are unique */ err |= cfc_check_trigger_is_unique(cmd->scan_begin_src); err |= cfc_check_trigger_is_unique(cmd->convert_src); err |= cfc_check_trigger_is_unique(cmd->stop_src); /* Step 2b : and mutually compatible */ if (err) return 2; /* Step 3: check if arguments are trivially valid */ err |= cfc_check_trigger_arg_is(&cmd->start_arg, 0); #define MAX_SCAN_SPEED 1000000 /* in nanoseconds */ #define MIN_SCAN_SPEED 1000000000 /* in nanoseconds */ if (cmd->scan_begin_src == TRIG_TIMER) { err |= cfc_check_trigger_arg_min(&cmd->scan_begin_arg, MAX_SCAN_SPEED); err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg, MIN_SCAN_SPEED); } else { /* external trigger */ /* should be level/edge, hi/lo specification here */ /* should specify multiple external triggers */ err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg, 9); } if (cmd->convert_src == TRIG_TIMER) { if (cmd->convert_arg >= 17500) cmd->convert_arg = 20000; else if (cmd->convert_arg >= 12500) cmd->convert_arg = 15000; else if (cmd->convert_arg >= 7500) cmd->convert_arg = 10000; else cmd->convert_arg = 5000; } else { /* external trigger */ /* see above */ err |= cfc_check_trigger_arg_max(&cmd->convert_arg, 9); } err |= cfc_check_trigger_arg_is(&cmd->scan_end_arg, cmd->chanlist_len); if (cmd->stop_src == TRIG_COUNT) { err |= cfc_check_trigger_arg_max(&cmd->stop_arg, 0xfffffff0); err |= cfc_check_trigger_arg_min(&cmd->stop_arg, 1); } else { /* TRIG_NONE */ err |= cfc_check_trigger_arg_is(&cmd->stop_arg, 0); } if (err) return 3; /* step 4: fix up any arguments */ if (cmd->scan_begin_src == TRIG_TIMER) { tmp = cmd->scan_begin_arg; dmm32at_ns_to_timer(&cmd->scan_begin_arg, cmd->flags & TRIG_ROUND_MASK); if (tmp != cmd->scan_begin_arg) err++; } if (cmd->convert_src == TRIG_TIMER) { tmp = cmd->convert_arg; dmm32at_ns_to_timer(&cmd->convert_arg, cmd->flags & TRIG_ROUND_MASK); if (tmp != cmd->convert_arg) err++; if (cmd->scan_begin_src == TRIG_TIMER && cmd->scan_begin_arg < cmd->convert_arg * cmd->scan_end_arg) { cmd->scan_begin_arg = cmd->convert_arg * cmd->scan_end_arg; err++; } } if (err) return 4; /* step 5 check the channel list, the channel list for this board must be consecutive and gains must be the same */ if (cmd->chanlist) { gain = CR_RANGE(cmd->chanlist[0]); start_chan = CR_CHAN(cmd->chanlist[0]); for (i = 1; i < cmd->chanlist_len; i++) { if (CR_CHAN(cmd->chanlist[i]) != (start_chan + i) % s->n_chan) { comedi_error(dev, "entries in chanlist must be consecutive channels, counting upwards\n"); err++; } if (CR_RANGE(cmd->chanlist[i]) != gain) { comedi_error(dev, "entries in chanlist must all have the same gain\n"); err++; } } } if (err) return 5; return 0; } static void dmm32at_setaitimer(struct comedi_device *dev, unsigned int nansec) { unsigned char lo1, lo2, hi2; unsigned short both2; /* based on 10mhz clock */ lo1 = 200; both2 = nansec / 20000; hi2 = (both2 & 0xff00) >> 8; lo2 = both2 & 0x00ff; /* set the counter frequency to 10mhz */ outb(0, dev->iobase + DMM32AT_CNTRDIO); /* get access to the clock regs */ outb(DMM32AT_CLKACC, dev->iobase + DMM32AT_CNTRL); /* write the counter 1 control word and low byte to counter */ outb(DMM32AT_CLKCT1, dev->iobase + DMM32AT_CLKCT); outb(lo1, dev->iobase + DMM32AT_CLK1); /* write the counter 2 control word and low byte then to counter */ outb(DMM32AT_CLKCT2, dev->iobase + DMM32AT_CLKCT); outb(lo2, dev->iobase + DMM32AT_CLK2); outb(hi2, dev->iobase + DMM32AT_CLK2); /* enable the ai conversion interrupt and the clock to start scans */ outb(DMM32AT_ADINT | DMM32AT_CLKSEL, dev->iobase + DMM32AT_INTCLOCK); } static int dmm32at_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s) { struct dmm32at_private *devpriv = dev->private; struct comedi_cmd *cmd = &s->async->cmd; int i, range; unsigned char chanlo, chanhi, status; if (!cmd->chanlist) return -EINVAL; /* get the channel list and range */ chanlo = CR_CHAN(cmd->chanlist[0]) & (s->n_chan - 1); chanhi = chanlo + cmd->chanlist_len - 1; if (chanhi >= s->n_chan) return -EINVAL; range = CR_RANGE(cmd->chanlist[0]); /* reset fifo */ outb(DMM32AT_FIFORESET, dev->iobase + DMM32AT_FIFOCNTRL); /* set scan enable */ outb(DMM32AT_SCANENABLE, dev->iobase + DMM32AT_FIFOCNTRL); /* write the ai channel range regs */ outb(chanlo, dev->iobase + DMM32AT_AILOW); outb(chanhi, dev->iobase + DMM32AT_AIHIGH); /* set the range bits */ outb(dmm32at_rangebits[range], dev->iobase + DMM32AT_AICONF); /* reset the interrupt just in case */ outb(DMM32AT_INTRESET, dev->iobase + DMM32AT_CNTRL); if (cmd->stop_src == TRIG_COUNT) devpriv->ai_scans_left = cmd->stop_arg; else { /* TRIG_NONE */ devpriv->ai_scans_left = 0xffffffff; /* indicates TRIG_NONE to * isr */ } /* wait for circuit to settle */ for (i = 0; i < 40000; i++) { status = inb(dev->iobase + DMM32AT_AIRBACK); if ((status & DMM32AT_STATUS) == 0) break; } if (i == 40000) { printk(KERN_WARNING "dmm32at: timeout\n"); return -ETIMEDOUT; } if (devpriv->ai_scans_left > 1) { /* start the clock and enable the interrupts */ dmm32at_setaitimer(dev, cmd->scan_begin_arg); } else { /* start the interrups and initiate a single scan */ outb(DMM32AT_ADINT, dev->iobase + DMM32AT_INTCLOCK); outb(0xff, dev->iobase + DMM32AT_CONV); } /* printk("dmmat32 in command\n"); */ /* for(i=0;ichanlist_len;i++) */ /* comedi_buf_put(s->async,i*100); */ /* s->async->events |= COMEDI_CB_EOA; */ /* comedi_event(dev, s); */ return 0; } static int dmm32at_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s) { struct dmm32at_private *devpriv = dev->private; devpriv->ai_scans_left = 1; return 0; } static irqreturn_t dmm32at_isr(int irq, void *d) { struct comedi_device *dev = d; struct dmm32at_private *devpriv = dev->private; unsigned char intstat; unsigned int samp; unsigned short msb, lsb; int i; if (!dev->attached) { comedi_error(dev, "spurious interrupt"); return IRQ_HANDLED; } intstat = inb(dev->iobase + DMM32AT_INTCLOCK); if (intstat & DMM32AT_ADINT) { struct comedi_subdevice *s = dev->read_subdev; struct comedi_cmd *cmd = &s->async->cmd; for (i = 0; i < cmd->chanlist_len; i++) { /* read data */ lsb = inb(dev->iobase + DMM32AT_AILSB); msb = inb(dev->iobase + DMM32AT_AIMSB); /* invert sign bit to make range unsigned */ samp = ((msb ^ 0x0080) << 8) + lsb; comedi_buf_put(s->async, samp); } if (devpriv->ai_scans_left != 0xffffffff) { /* TRIG_COUNT */ devpriv->ai_scans_left--; if (devpriv->ai_scans_left == 0) { /* disable further interrupts and clocks */ outb(0x0, dev->iobase + DMM32AT_INTCLOCK); /* set the buffer to be flushed with an EOF */ s->async->events |= COMEDI_CB_EOA; } } /* flush the buffer */ comedi_event(dev, s); } /* reset the interrupt */ outb(DMM32AT_INTRESET, dev->iobase + DMM32AT_CNTRL); return IRQ_HANDLED; } static int dmm32at_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { struct dmm32at_private *devpriv = dev->private; int i; int chan = CR_CHAN(insn->chanspec); unsigned char hi, lo, status; /* Writing a list of values to an AO channel is probably not * very useful, but that's how the interface is defined. */ for (i = 0; i < insn->n; i++) { devpriv->ao_readback[chan] = data[i]; /* get the low byte */ lo = data[i] & 0x00ff; /* high byte also contains channel number */ hi = (data[i] >> 8) + chan * (1 << 6); /* printk("writing 0x%02x 0x%02x\n",hi,lo); */ /* write the low and high values to the board */ outb(lo, dev->iobase + DMM32AT_DACLSB); outb(hi, dev->iobase + DMM32AT_DACMSB); /* wait for circuit to settle */ for (i = 0; i < 40000; i++) { status = inb(dev->iobase + DMM32AT_DACSTAT); if ((status & DMM32AT_DACBUSY) == 0) break; } if (i == 40000) { printk(KERN_WARNING "dmm32at: timeout\n"); return -ETIMEDOUT; } /* dummy read to update trigger the output */ status = inb(dev->iobase + DMM32AT_DACMSB); } /* return the number of samples read/written */ return i; } static int dmm32at_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { struct dmm32at_private *devpriv = dev->private; int i; int chan = CR_CHAN(insn->chanspec); for (i = 0; i < insn->n; i++) data[i] = devpriv->ao_readback[chan]; return i; } static int dmm32at_dio_insn_bits(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { struct dmm32at_private *devpriv = dev->private; unsigned char diobits; /* The insn data is a mask in data[0] and the new data * in data[1], each channel cooresponding to a bit. */ if (data[0]) { s->state &= ~data[0]; s->state |= data[0] & data[1]; /* Write out the new digital output lines */ /* outw(s->state,dev->iobase + DMM32AT_DIO); */ } /* get access to the DIO regs */ outb(DMM32AT_DIOACC, dev->iobase + DMM32AT_CNTRL); /* if either part of dio is set for output */ if (((devpriv->dio_config & DMM32AT_DIRCL) == 0) || ((devpriv->dio_config & DMM32AT_DIRCH) == 0)) { diobits = (s->state & 0x00ff0000) >> 16; outb(diobits, dev->iobase + DMM32AT_DIOC); } if ((devpriv->dio_config & DMM32AT_DIRB) == 0) { diobits = (s->state & 0x0000ff00) >> 8; outb(diobits, dev->iobase + DMM32AT_DIOB); } if ((devpriv->dio_config & DMM32AT_DIRA) == 0) { diobits = (s->state & 0x000000ff); outb(diobits, dev->iobase + DMM32AT_DIOA); } /* now read the state back in */ s->state = inb(dev->iobase + DMM32AT_DIOC); s->state <<= 8; s->state |= inb(dev->iobase + DMM32AT_DIOB); s->state <<= 8; s->state |= inb(dev->iobase + DMM32AT_DIOA); data[1] = s->state; /* on return, data[1] contains the value of the digital * input and output lines. */ /* data[1]=inw(dev->iobase + DMM32AT_DIO); */ /* or we could just return the software copy of the output values if * it was a purely digital output subdevice */ /* data[1]=s->state; */ return insn->n; } static int dmm32at_dio_insn_config(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { struct dmm32at_private *devpriv = dev->private; unsigned char chanbit; int chan = CR_CHAN(insn->chanspec); if (insn->n != 1) return -EINVAL; if (chan < 8) chanbit = DMM32AT_DIRA; else if (chan < 16) chanbit = DMM32AT_DIRB; else if (chan < 20) chanbit = DMM32AT_DIRCL; else chanbit = DMM32AT_DIRCH; /* The input or output configuration of each digital line is * configured by a special insn_config instruction. chanspec * contains the channel to be changed, and data[0] contains the * value COMEDI_INPUT or COMEDI_OUTPUT. */ /* if output clear the bit, otherwise set it */ if (data[0] == COMEDI_OUTPUT) devpriv->dio_config &= ~chanbit; else devpriv->dio_config |= chanbit; /* get access to the DIO regs */ outb(DMM32AT_DIOACC, dev->iobase + DMM32AT_CNTRL); /* set the DIO's to the new configuration setting */ outb(devpriv->dio_config, dev->iobase + DMM32AT_DIOCONF); return 1; } static int dmm32at_attach(struct comedi_device *dev, struct comedi_devconfig *it) { struct dmm32at_private *devpriv; int ret; struct comedi_subdevice *s; unsigned char aihi, ailo, fifostat, aistat, intstat, airback; unsigned int irq; irq = it->options[1]; ret = comedi_request_region(dev, it->options[0], DMM32AT_MEMSIZE); if (ret) return ret; /* the following just makes sure the board is there and gets it to a known state */ /* reset the board */ outb(DMM32AT_RESET, dev->iobase + DMM32AT_CNTRL); /* allow a millisecond to reset */ udelay(1000); /* zero scan and fifo control */ outb(0x0, dev->iobase + DMM32AT_FIFOCNTRL); /* zero interrupt and clock control */ outb(0x0, dev->iobase + DMM32AT_INTCLOCK); /* write a test channel range, the high 3 bits should drop */ outb(0x80, dev->iobase + DMM32AT_AILOW); outb(0xff, dev->iobase + DMM32AT_AIHIGH); /* set the range at 10v unipolar */ outb(DMM32AT_RANGE_U10, dev->iobase + DMM32AT_AICONF); /* should take 10 us to settle, here's a hundred */ udelay(100); /* read back the values */ ailo = inb(dev->iobase + DMM32AT_AILOW); aihi = inb(dev->iobase + DMM32AT_AIHIGH); fifostat = inb(dev->iobase + DMM32AT_FIFOSTAT); aistat = inb(dev->iobase + DMM32AT_AISTAT); intstat = inb(dev->iobase + DMM32AT_INTCLOCK); airback = inb(dev->iobase + DMM32AT_AIRBACK); printk(KERN_DEBUG "dmm32at: lo=0x%02x hi=0x%02x fifostat=0x%02x\n", ailo, aihi, fifostat); printk(KERN_DEBUG "dmm32at: aistat=0x%02x intstat=0x%02x airback=0x%02x\n", aistat, intstat, airback); if ((ailo != 0x00) || (aihi != 0x1f) || (fifostat != 0x80) || (aistat != 0x60 || (intstat != 0x00) || airback != 0x0c)) { printk(KERN_ERR "dmmat32: board detection failed\n"); return -EIO; } /* board is there, register interrupt */ if (irq) { ret = request_irq(irq, dmm32at_isr, 0, dev->board_name, dev); if (ret < 0) { printk(KERN_ERR "dmm32at: irq conflict\n"); return ret; } dev->irq = irq; } devpriv = kzalloc(sizeof(*devpriv), GFP_KERNEL); if (!devpriv) return -ENOMEM; dev->private = devpriv; ret = comedi_alloc_subdevices(dev, 3); if (ret) return ret; s = &dev->subdevices[0]; dev->read_subdev = s; /* analog input subdevice */ s->type = COMEDI_SUBD_AI; /* we support single-ended (ground) and differential */ s->subdev_flags = SDF_READABLE | SDF_GROUND | SDF_DIFF | SDF_CMD_READ; s->n_chan = 32; s->maxdata = 0xffff; s->range_table = &dmm32at_airanges; s->len_chanlist = 32; /* This is the maximum chanlist length that the board can handle */ s->insn_read = dmm32at_ai_rinsn; s->do_cmd = dmm32at_ai_cmd; s->do_cmdtest = dmm32at_ai_cmdtest; s->cancel = dmm32at_ai_cancel; s = &dev->subdevices[1]; /* analog output subdevice */ s->type = COMEDI_SUBD_AO; s->subdev_flags = SDF_WRITABLE; s->n_chan = 4; s->maxdata = 0x0fff; s->range_table = &dmm32at_aoranges; s->insn_write = dmm32at_ao_winsn; s->insn_read = dmm32at_ao_rinsn; s = &dev->subdevices[2]; /* digital i/o subdevice */ /* get access to the DIO regs */ outb(DMM32AT_DIOACC, dev->iobase + DMM32AT_CNTRL); /* set the DIO's to the defualt input setting */ devpriv->dio_config = DMM32AT_DIRA | DMM32AT_DIRB | DMM32AT_DIRCL | DMM32AT_DIRCH | DMM32AT_DIENABLE; outb(devpriv->dio_config, dev->iobase + DMM32AT_DIOCONF); /* set up the subdevice */ s->type = COMEDI_SUBD_DIO; s->subdev_flags = SDF_READABLE | SDF_WRITABLE; s->n_chan = 24; s->maxdata = 1; s->state = 0; s->range_table = &range_digital; s->insn_bits = dmm32at_dio_insn_bits; s->insn_config = dmm32at_dio_insn_config; /* success */ printk(KERN_INFO "comedi%d: dmm32at: attached\n", dev->minor); return 1; } static struct comedi_driver dmm32at_driver = { .driver_name = "dmm32at", .module = THIS_MODULE, .attach = dmm32at_attach, .detach = comedi_legacy_detach, }; module_comedi_driver(dmm32at_driver); MODULE_AUTHOR("Comedi http://www.comedi.org"); MODULE_DESCRIPTION("Comedi low-level driver"); MODULE_LICENSE("GPL");