/* * OMAP2 McSPI controller driver * * Copyright (C) 2005, 2006 Nokia Corporation * Author: Samuel Ortiz and * Juha Yrj�l� * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define OMAP2_MCSPI_MAX_FREQ 48000000 #define SPI_AUTOSUSPEND_TIMEOUT 2000 #define OMAP2_MCSPI_REVISION 0x00 #define OMAP2_MCSPI_SYSSTATUS 0x14 #define OMAP2_MCSPI_IRQSTATUS 0x18 #define OMAP2_MCSPI_IRQENABLE 0x1c #define OMAP2_MCSPI_WAKEUPENABLE 0x20 #define OMAP2_MCSPI_SYST 0x24 #define OMAP2_MCSPI_MODULCTRL 0x28 /* per-channel banks, 0x14 bytes each, first is: */ #define OMAP2_MCSPI_CHCONF0 0x2c #define OMAP2_MCSPI_CHSTAT0 0x30 #define OMAP2_MCSPI_CHCTRL0 0x34 #define OMAP2_MCSPI_TX0 0x38 #define OMAP2_MCSPI_RX0 0x3c /* per-register bitmasks: */ #define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0) #define OMAP2_MCSPI_MODULCTRL_MS BIT(2) #define OMAP2_MCSPI_MODULCTRL_STEST BIT(3) #define OMAP2_MCSPI_CHCONF_PHA BIT(0) #define OMAP2_MCSPI_CHCONF_POL BIT(1) #define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2) #define OMAP2_MCSPI_CHCONF_EPOL BIT(6) #define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7) #define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12) #define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13) #define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12) #define OMAP2_MCSPI_CHCONF_DMAW BIT(14) #define OMAP2_MCSPI_CHCONF_DMAR BIT(15) #define OMAP2_MCSPI_CHCONF_DPE0 BIT(16) #define OMAP2_MCSPI_CHCONF_DPE1 BIT(17) #define OMAP2_MCSPI_CHCONF_IS BIT(18) #define OMAP2_MCSPI_CHCONF_TURBO BIT(19) #define OMAP2_MCSPI_CHCONF_FORCE BIT(20) #define OMAP2_MCSPI_CHSTAT_RXS BIT(0) #define OMAP2_MCSPI_CHSTAT_TXS BIT(1) #define OMAP2_MCSPI_CHSTAT_EOT BIT(2) #define OMAP2_MCSPI_CHCTRL_EN BIT(0) #define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0) /* We have 2 DMA channels per CS, one for RX and one for TX */ struct omap2_mcspi_dma { int dma_tx_channel; int dma_rx_channel; int dma_tx_sync_dev; int dma_rx_sync_dev; struct completion dma_tx_completion; struct completion dma_rx_completion; }; /* use PIO for small transfers, avoiding DMA setup/teardown overhead and * cache operations; better heuristics consider wordsize and bitrate. */ #define DMA_MIN_BYTES 160 /* * Used for context save and restore, structure members to be updated whenever * corresponding registers are modified. */ struct omap2_mcspi_regs { u32 modulctrl; u32 wakeupenable; struct list_head cs; }; struct omap2_mcspi { struct work_struct work; /* lock protects queue and registers */ spinlock_t lock; struct list_head msg_queue; struct spi_master *master; /* Virtual base address of the controller */ void __iomem *base; unsigned long phys; /* SPI1 has 4 channels, while SPI2 has 2 */ struct omap2_mcspi_dma *dma_channels; struct device *dev; struct workqueue_struct *wq; struct omap2_mcspi_regs ctx; }; struct omap2_mcspi_cs { void __iomem *base; unsigned long phys; int word_len; struct list_head node; /* Context save and restore shadow register */ u32 chconf0; }; #define MOD_REG_BIT(val, mask, set) do { \ if (set) \ val |= mask; \ else \ val &= ~mask; \ } while (0) static inline void mcspi_write_reg(struct spi_master *master, int idx, u32 val) { struct omap2_mcspi *mcspi = spi_master_get_devdata(master); __raw_writel(val, mcspi->base + idx); } static inline u32 mcspi_read_reg(struct spi_master *master, int idx) { struct omap2_mcspi *mcspi = spi_master_get_devdata(master); return __raw_readl(mcspi->base + idx); } static inline void mcspi_write_cs_reg(const struct spi_device *spi, int idx, u32 val) { struct omap2_mcspi_cs *cs = spi->controller_state; __raw_writel(val, cs->base + idx); } static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx) { struct omap2_mcspi_cs *cs = spi->controller_state; return __raw_readl(cs->base + idx); } static inline u32 mcspi_cached_chconf0(const struct spi_device *spi) { struct omap2_mcspi_cs *cs = spi->controller_state; return cs->chconf0; } static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val) { struct omap2_mcspi_cs *cs = spi->controller_state; cs->chconf0 = val; mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val); mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0); } static void omap2_mcspi_set_dma_req(const struct spi_device *spi, int is_read, int enable) { u32 l, rw; l = mcspi_cached_chconf0(spi); if (is_read) /* 1 is read, 0 write */ rw = OMAP2_MCSPI_CHCONF_DMAR; else rw = OMAP2_MCSPI_CHCONF_DMAW; MOD_REG_BIT(l, rw, enable); mcspi_write_chconf0(spi, l); } static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable) { u32 l; l = enable ? OMAP2_MCSPI_CHCTRL_EN : 0; mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, l); /* Flash post-writes */ mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0); } static void omap2_mcspi_force_cs(struct spi_device *spi, int cs_active) { u32 l; l = mcspi_cached_chconf0(spi); MOD_REG_BIT(l, OMAP2_MCSPI_CHCONF_FORCE, cs_active); mcspi_write_chconf0(spi, l); } static void omap2_mcspi_set_master_mode(struct spi_master *master) { struct omap2_mcspi *mcspi = spi_master_get_devdata(master); struct omap2_mcspi_regs *ctx = &mcspi->ctx; u32 l; /* * Setup when switching from (reset default) slave mode * to single-channel master mode */ l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL); MOD_REG_BIT(l, OMAP2_MCSPI_MODULCTRL_STEST, 0); MOD_REG_BIT(l, OMAP2_MCSPI_MODULCTRL_MS, 0); MOD_REG_BIT(l, OMAP2_MCSPI_MODULCTRL_SINGLE, 1); mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l); ctx->modulctrl = l; } static void omap2_mcspi_restore_ctx(struct omap2_mcspi *mcspi) { struct spi_master *spi_cntrl = mcspi->master; struct omap2_mcspi_regs *ctx = &mcspi->ctx; struct omap2_mcspi_cs *cs; /* McSPI: context restore */ mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl); mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable); list_for_each_entry(cs, &ctx->cs, node) __raw_writel(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0); } static void omap2_mcspi_disable_clocks(struct omap2_mcspi *mcspi) { pm_runtime_mark_last_busy(mcspi->dev); pm_runtime_put_autosuspend(mcspi->dev); } static int omap2_mcspi_enable_clocks(struct omap2_mcspi *mcspi) { return pm_runtime_get_sync(mcspi->dev); } static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit) { unsigned long timeout; timeout = jiffies + msecs_to_jiffies(1000); while (!(__raw_readl(reg) & bit)) { if (time_after(jiffies, timeout)) return -1; cpu_relax(); } return 0; } static unsigned omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer) { struct omap2_mcspi *mcspi; struct omap2_mcspi_cs *cs = spi->controller_state; struct omap2_mcspi_dma *mcspi_dma; unsigned int count, c; unsigned long base, tx_reg, rx_reg; int word_len, data_type, element_count; int elements = 0; u32 l; u8 * rx; const u8 * tx; void __iomem *chstat_reg; mcspi = spi_master_get_devdata(spi->master); mcspi_dma = &mcspi->dma_channels[spi->chip_select]; l = mcspi_cached_chconf0(spi); chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0; count = xfer->len; c = count; word_len = cs->word_len; base = cs->phys; tx_reg = base + OMAP2_MCSPI_TX0; rx_reg = base + OMAP2_MCSPI_RX0; rx = xfer->rx_buf; tx = xfer->tx_buf; if (word_len <= 8) { data_type = OMAP_DMA_DATA_TYPE_S8; element_count = count; } else if (word_len <= 16) { data_type = OMAP_DMA_DATA_TYPE_S16; element_count = count >> 1; } else /* word_len <= 32 */ { data_type = OMAP_DMA_DATA_TYPE_S32; element_count = count >> 2; } if (tx != NULL) { omap_set_dma_transfer_params(mcspi_dma->dma_tx_channel, data_type, element_count, 1, OMAP_DMA_SYNC_ELEMENT, mcspi_dma->dma_tx_sync_dev, 0); omap_set_dma_dest_params(mcspi_dma->dma_tx_channel, 0, OMAP_DMA_AMODE_CONSTANT, tx_reg, 0, 0); omap_set_dma_src_params(mcspi_dma->dma_tx_channel, 0, OMAP_DMA_AMODE_POST_INC, xfer->tx_dma, 0, 0); } if (rx != NULL) { elements = element_count - 1; if (l & OMAP2_MCSPI_CHCONF_TURBO) elements--; omap_set_dma_transfer_params(mcspi_dma->dma_rx_channel, data_type, elements, 1, OMAP_DMA_SYNC_ELEMENT, mcspi_dma->dma_rx_sync_dev, 1); omap_set_dma_src_params(mcspi_dma->dma_rx_channel, 0, OMAP_DMA_AMODE_CONSTANT, rx_reg, 0, 0); omap_set_dma_dest_params(mcspi_dma->dma_rx_channel, 0, OMAP_DMA_AMODE_POST_INC, xfer->rx_dma, 0, 0); } if (tx != NULL) { omap_start_dma(mcspi_dma->dma_tx_channel); omap2_mcspi_set_dma_req(spi, 0, 1); } if (rx != NULL) { omap_start_dma(mcspi_dma->dma_rx_channel); omap2_mcspi_set_dma_req(spi, 1, 1); } if (tx != NULL) { wait_for_completion(&mcspi_dma->dma_tx_completion); dma_unmap_single(&spi->dev, xfer->tx_dma, count, DMA_TO_DEVICE); /* for TX_ONLY mode, be sure all words have shifted out */ if (rx == NULL) { if (mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_TXS) < 0) dev_err(&spi->dev, "TXS timed out\n"); else if (mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_EOT) < 0) dev_err(&spi->dev, "EOT timed out\n"); } } if (rx != NULL) { wait_for_completion(&mcspi_dma->dma_rx_completion); dma_unmap_single(&spi->dev, xfer->rx_dma, count, DMA_FROM_DEVICE); omap2_mcspi_set_enable(spi, 0); if (l & OMAP2_MCSPI_CHCONF_TURBO) { if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0) & OMAP2_MCSPI_CHSTAT_RXS)) { u32 w; w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0); if (word_len <= 8) ((u8 *)xfer->rx_buf)[elements++] = w; else if (word_len <= 16) ((u16 *)xfer->rx_buf)[elements++] = w; else /* word_len <= 32 */ ((u32 *)xfer->rx_buf)[elements++] = w; } else { dev_err(&spi->dev, "DMA RX penultimate word empty"); count -= (word_len <= 8) ? 2 : (word_len <= 16) ? 4 : /* word_len <= 32 */ 8; omap2_mcspi_set_enable(spi, 1); return count; } } if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0) & OMAP2_MCSPI_CHSTAT_RXS)) { u32 w; w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0); if (word_len <= 8) ((u8 *)xfer->rx_buf)[elements] = w; else if (word_len <= 16) ((u16 *)xfer->rx_buf)[elements] = w; else /* word_len <= 32 */ ((u32 *)xfer->rx_buf)[elements] = w; } else { dev_err(&spi->dev, "DMA RX last word empty"); count -= (word_len <= 8) ? 1 : (word_len <= 16) ? 2 : /* word_len <= 32 */ 4; } omap2_mcspi_set_enable(spi, 1); } return count; } static unsigned omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer) { struct omap2_mcspi *mcspi; struct omap2_mcspi_cs *cs = spi->controller_state; unsigned int count, c; u32 l; void __iomem *base = cs->base; void __iomem *tx_reg; void __iomem *rx_reg; void __iomem *chstat_reg; int word_len; mcspi = spi_master_get_devdata(spi->master); count = xfer->len; c = count; word_len = cs->word_len; l = mcspi_cached_chconf0(spi); /* We store the pre-calculated register addresses on stack to speed * up the transfer loop. */ tx_reg = base + OMAP2_MCSPI_TX0; rx_reg = base + OMAP2_MCSPI_RX0; chstat_reg = base + OMAP2_MCSPI_CHSTAT0; if (c < (word_len>>3)) return 0; if (word_len <= 8) { u8 *rx; const u8 *tx; rx = xfer->rx_buf; tx = xfer->tx_buf; do { c -= 1; if (tx != NULL) { if (mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_TXS) < 0) { dev_err(&spi->dev, "TXS timed out\n"); goto out; } dev_vdbg(&spi->dev, "write-%d %02x\n", word_len, *tx); __raw_writel(*tx++, tx_reg); } if (rx != NULL) { if (mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS) < 0) { dev_err(&spi->dev, "RXS timed out\n"); goto out; } if (c == 1 && tx == NULL && (l & OMAP2_MCSPI_CHCONF_TURBO)) { omap2_mcspi_set_enable(spi, 0); *rx++ = __raw_readl(rx_reg); dev_vdbg(&spi->dev, "read-%d %02x\n", word_len, *(rx - 1)); if (mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS) < 0) { dev_err(&spi->dev, "RXS timed out\n"); goto out; } c = 0; } else if (c == 0 && tx == NULL) { omap2_mcspi_set_enable(spi, 0); } *rx++ = __raw_readl(rx_reg); dev_vdbg(&spi->dev, "read-%d %02x\n", word_len, *(rx - 1)); } } while (c); } else if (word_len <= 16) { u16 *rx; const u16 *tx; rx = xfer->rx_buf; tx = xfer->tx_buf; do { c -= 2; if (tx != NULL) { if (mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_TXS) < 0) { dev_err(&spi->dev, "TXS timed out\n"); goto out; } dev_vdbg(&spi->dev, "write-%d %04x\n", word_len, *tx); __raw_writel(*tx++, tx_reg); } if (rx != NULL) { if (mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS) < 0) { dev_err(&spi->dev, "RXS timed out\n"); goto out; } if (c == 2 && tx == NULL && (l & OMAP2_MCSPI_CHCONF_TURBO)) { omap2_mcspi_set_enable(spi, 0); *rx++ = __raw_readl(rx_reg); dev_vdbg(&spi->dev, "read-%d %04x\n", word_len, *(rx - 1)); if (mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS) < 0) { dev_err(&spi->dev, "RXS timed out\n"); goto out; } c = 0; } else if (c == 0 && tx == NULL) { omap2_mcspi_set_enable(spi, 0); } *rx++ = __raw_readl(rx_reg); dev_vdbg(&spi->dev, "read-%d %04x\n", word_len, *(rx - 1)); } } while (c >= 2); } else if (word_len <= 32) { u32 *rx; const u32 *tx; rx = xfer->rx_buf; tx = xfer->tx_buf; do { c -= 4; if (tx != NULL) { if (mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_TXS) < 0) { dev_err(&spi->dev, "TXS timed out\n"); goto out; } dev_vdbg(&spi->dev, "write-%d %08x\n", word_len, *tx); __raw_writel(*tx++, tx_reg); } if (rx != NULL) { if (mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS) < 0) { dev_err(&spi->dev, "RXS timed out\n"); goto out; } if (c == 4 && tx == NULL && (l & OMAP2_MCSPI_CHCONF_TURBO)) { omap2_mcspi_set_enable(spi, 0); *rx++ = __raw_readl(rx_reg); dev_vdbg(&spi->dev, "read-%d %08x\n", word_len, *(rx - 1)); if (mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS) < 0) { dev_err(&spi->dev, "RXS timed out\n"); goto out; } c = 0; } else if (c == 0 && tx == NULL) { omap2_mcspi_set_enable(spi, 0); } *rx++ = __raw_readl(rx_reg); dev_vdbg(&spi->dev, "read-%d %08x\n", word_len, *(rx - 1)); } } while (c >= 4); } /* for TX_ONLY mode, be sure all words have shifted out */ if (xfer->rx_buf == NULL) { if (mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_TXS) < 0) { dev_err(&spi->dev, "TXS timed out\n"); } else if (mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_EOT) < 0) dev_err(&spi->dev, "EOT timed out\n"); /* disable chan to purge rx datas received in TX_ONLY transfer, * otherwise these rx datas will affect the direct following * RX_ONLY transfer. */ omap2_mcspi_set_enable(spi, 0); } out: omap2_mcspi_set_enable(spi, 1); return count - c; } static u32 omap2_mcspi_calc_divisor(u32 speed_hz) { u32 div; for (div = 0; div < 15; div++) if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div)) return div; return 15; } /* called only when no transfer is active to this device */ static int omap2_mcspi_setup_transfer(struct spi_device *spi, struct spi_transfer *t) { struct omap2_mcspi_cs *cs = spi->controller_state; struct omap2_mcspi *mcspi; struct spi_master *spi_cntrl; u32 l = 0, div = 0; u8 word_len = spi->bits_per_word; u32 speed_hz = spi->max_speed_hz; mcspi = spi_master_get_devdata(spi->master); spi_cntrl = mcspi->master; if (t != NULL && t->bits_per_word) word_len = t->bits_per_word; cs->word_len = word_len; if (t && t->speed_hz) speed_hz = t->speed_hz; speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ); div = omap2_mcspi_calc_divisor(speed_hz); l = mcspi_cached_chconf0(spi); /* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS * REVISIT: this controller could support SPI_3WIRE mode. */ l &= ~(OMAP2_MCSPI_CHCONF_IS|OMAP2_MCSPI_CHCONF_DPE1); l |= OMAP2_MCSPI_CHCONF_DPE0; /* wordlength */ l &= ~OMAP2_MCSPI_CHCONF_WL_MASK; l |= (word_len - 1) << 7; /* set chipselect polarity; manage with FORCE */ if (!(spi->mode & SPI_CS_HIGH)) l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */ else l &= ~OMAP2_MCSPI_CHCONF_EPOL; /* set clock divisor */ l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK; l |= div << 2; /* set SPI mode 0..3 */ if (spi->mode & SPI_CPOL) l |= OMAP2_MCSPI_CHCONF_POL; else l &= ~OMAP2_MCSPI_CHCONF_POL; if (spi->mode & SPI_CPHA) l |= OMAP2_MCSPI_CHCONF_PHA; else l &= ~OMAP2_MCSPI_CHCONF_PHA; mcspi_write_chconf0(spi, l); dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n", OMAP2_MCSPI_MAX_FREQ >> div, (spi->mode & SPI_CPHA) ? "trailing" : "leading", (spi->mode & SPI_CPOL) ? "inverted" : "normal"); return 0; } static void omap2_mcspi_dma_rx_callback(int lch, u16 ch_status, void *data) { struct spi_device *spi = data; struct omap2_mcspi *mcspi; struct omap2_mcspi_dma *mcspi_dma; mcspi = spi_master_get_devdata(spi->master); mcspi_dma = &(mcspi->dma_channels[spi->chip_select]); complete(&mcspi_dma->dma_rx_completion); /* We must disable the DMA RX request */ omap2_mcspi_set_dma_req(spi, 1, 0); } static void omap2_mcspi_dma_tx_callback(int lch, u16 ch_status, void *data) { struct spi_device *spi = data; struct omap2_mcspi *mcspi; struct omap2_mcspi_dma *mcspi_dma; mcspi = spi_master_get_devdata(spi->master); mcspi_dma = &(mcspi->dma_channels[spi->chip_select]); complete(&mcspi_dma->dma_tx_completion); /* We must disable the DMA TX request */ omap2_mcspi_set_dma_req(spi, 0, 0); } static int omap2_mcspi_request_dma(struct spi_device *spi) { struct spi_master *master = spi->master; struct omap2_mcspi *mcspi; struct omap2_mcspi_dma *mcspi_dma; mcspi = spi_master_get_devdata(master); mcspi_dma = mcspi->dma_channels + spi->chip_select; if (omap_request_dma(mcspi_dma->dma_rx_sync_dev, "McSPI RX", omap2_mcspi_dma_rx_callback, spi, &mcspi_dma->dma_rx_channel)) { dev_err(&spi->dev, "no RX DMA channel for McSPI\n"); return -EAGAIN; } if (omap_request_dma(mcspi_dma->dma_tx_sync_dev, "McSPI TX", omap2_mcspi_dma_tx_callback, spi, &mcspi_dma->dma_tx_channel)) { omap_free_dma(mcspi_dma->dma_rx_channel); mcspi_dma->dma_rx_channel = -1; dev_err(&spi->dev, "no TX DMA channel for McSPI\n"); return -EAGAIN; } init_completion(&mcspi_dma->dma_rx_completion); init_completion(&mcspi_dma->dma_tx_completion); return 0; } static int omap2_mcspi_setup(struct spi_device *spi) { int ret; struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master); struct omap2_mcspi_regs *ctx = &mcspi->ctx; struct omap2_mcspi_dma *mcspi_dma; struct omap2_mcspi_cs *cs = spi->controller_state; if (spi->bits_per_word < 4 || spi->bits_per_word > 32) { dev_dbg(&spi->dev, "setup: unsupported %d bit words\n", spi->bits_per_word); return -EINVAL; } mcspi_dma = &mcspi->dma_channels[spi->chip_select]; if (!cs) { cs = devm_kzalloc(&spi->dev , sizeof *cs, GFP_KERNEL); if (!cs) return -ENOMEM; cs->base = mcspi->base + spi->chip_select * 0x14; cs->phys = mcspi->phys + spi->chip_select * 0x14; cs->chconf0 = 0; spi->controller_state = cs; /* Link this to context save list */ list_add_tail(&cs->node, &ctx->cs); } if (mcspi_dma->dma_rx_channel == -1 || mcspi_dma->dma_tx_channel == -1) { ret = omap2_mcspi_request_dma(spi); if (ret < 0) return ret; } ret = omap2_mcspi_enable_clocks(mcspi); if (ret < 0) return ret; ret = omap2_mcspi_setup_transfer(spi, NULL); omap2_mcspi_disable_clocks(mcspi); return ret; } static void omap2_mcspi_cleanup(struct spi_device *spi) { struct omap2_mcspi *mcspi; struct omap2_mcspi_dma *mcspi_dma; struct omap2_mcspi_cs *cs; mcspi = spi_master_get_devdata(spi->master); if (spi->controller_state) { /* Unlink controller state from context save list */ cs = spi->controller_state; list_del(&cs->node); } if (spi->chip_select < spi->master->num_chipselect) { mcspi_dma = &mcspi->dma_channels[spi->chip_select]; if (mcspi_dma->dma_rx_channel != -1) { omap_free_dma(mcspi_dma->dma_rx_channel); mcspi_dma->dma_rx_channel = -1; } if (mcspi_dma->dma_tx_channel != -1) { omap_free_dma(mcspi_dma->dma_tx_channel); mcspi_dma->dma_tx_channel = -1; } } } static void omap2_mcspi_work(struct work_struct *work) { struct omap2_mcspi *mcspi; mcspi = container_of(work, struct omap2_mcspi, work); if (omap2_mcspi_enable_clocks(mcspi) < 0) return; spin_lock_irq(&mcspi->lock); /* We only enable one channel at a time -- the one whose message is * at the head of the queue -- although this controller would gladly * arbitrate among multiple channels. This corresponds to "single * channel" master mode. As a side effect, we need to manage the * chipselect with the FORCE bit ... CS != channel enable. */ while (!list_empty(&mcspi->msg_queue)) { struct spi_message *m; struct spi_device *spi; struct spi_transfer *t = NULL; int cs_active = 0; struct omap2_mcspi_cs *cs; struct omap2_mcspi_device_config *cd; int par_override = 0; int status = 0; u32 chconf; m = container_of(mcspi->msg_queue.next, struct spi_message, queue); list_del_init(&m->queue); spin_unlock_irq(&mcspi->lock); spi = m->spi; cs = spi->controller_state; cd = spi->controller_data; omap2_mcspi_set_enable(spi, 1); list_for_each_entry(t, &m->transfers, transfer_list) { if (t->tx_buf == NULL && t->rx_buf == NULL && t->len) { status = -EINVAL; break; } if (par_override || t->speed_hz || t->bits_per_word) { par_override = 1; status = omap2_mcspi_setup_transfer(spi, t); if (status < 0) break; if (!t->speed_hz && !t->bits_per_word) par_override = 0; } if (!cs_active) { omap2_mcspi_force_cs(spi, 1); cs_active = 1; } chconf = mcspi_cached_chconf0(spi); chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK; chconf &= ~OMAP2_MCSPI_CHCONF_TURBO; if (t->tx_buf == NULL) chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY; else if (t->rx_buf == NULL) chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY; if (cd && cd->turbo_mode && t->tx_buf == NULL) { /* Turbo mode is for more than one word */ if (t->len > ((cs->word_len + 7) >> 3)) chconf |= OMAP2_MCSPI_CHCONF_TURBO; } mcspi_write_chconf0(spi, chconf); if (t->len) { unsigned count; /* RX_ONLY mode needs dummy data in TX reg */ if (t->tx_buf == NULL) __raw_writel(0, cs->base + OMAP2_MCSPI_TX0); if (m->is_dma_mapped || t->len >= DMA_MIN_BYTES) count = omap2_mcspi_txrx_dma(spi, t); else count = omap2_mcspi_txrx_pio(spi, t); m->actual_length += count; if (count != t->len) { status = -EIO; break; } } if (t->delay_usecs) udelay(t->delay_usecs); /* ignore the "leave it on after last xfer" hint */ if (t->cs_change) { omap2_mcspi_force_cs(spi, 0); cs_active = 0; } } /* Restore defaults if they were overriden */ if (par_override) { par_override = 0; status = omap2_mcspi_setup_transfer(spi, NULL); } if (cs_active) omap2_mcspi_force_cs(spi, 0); omap2_mcspi_set_enable(spi, 0); m->status = status; m->complete(m->context); spin_lock_irq(&mcspi->lock); } spin_unlock_irq(&mcspi->lock); omap2_mcspi_disable_clocks(mcspi); } static int omap2_mcspi_transfer(struct spi_device *spi, struct spi_message *m) { struct omap2_mcspi *mcspi; unsigned long flags; struct spi_transfer *t; m->actual_length = 0; m->status = 0; /* reject invalid messages and transfers */ if (list_empty(&m->transfers) || !m->complete) return -EINVAL; list_for_each_entry(t, &m->transfers, transfer_list) { const void *tx_buf = t->tx_buf; void *rx_buf = t->rx_buf; unsigned len = t->len; if (t->speed_hz > OMAP2_MCSPI_MAX_FREQ || (len && !(rx_buf || tx_buf)) || (t->bits_per_word && ( t->bits_per_word < 4 || t->bits_per_word > 32))) { dev_dbg(&spi->dev, "transfer: %d Hz, %d %s%s, %d bpw\n", t->speed_hz, len, tx_buf ? "tx" : "", rx_buf ? "rx" : "", t->bits_per_word); return -EINVAL; } if (t->speed_hz && t->speed_hz < (OMAP2_MCSPI_MAX_FREQ >> 15)) { dev_dbg(&spi->dev, "speed_hz %d below minimum %d Hz\n", t->speed_hz, OMAP2_MCSPI_MAX_FREQ >> 15); return -EINVAL; } if (m->is_dma_mapped || len < DMA_MIN_BYTES) continue; if (tx_buf != NULL) { t->tx_dma = dma_map_single(&spi->dev, (void *) tx_buf, len, DMA_TO_DEVICE); if (dma_mapping_error(&spi->dev, t->tx_dma)) { dev_dbg(&spi->dev, "dma %cX %d bytes error\n", 'T', len); return -EINVAL; } } if (rx_buf != NULL) { t->rx_dma = dma_map_single(&spi->dev, rx_buf, t->len, DMA_FROM_DEVICE); if (dma_mapping_error(&spi->dev, t->rx_dma)) { dev_dbg(&spi->dev, "dma %cX %d bytes error\n", 'R', len); if (tx_buf != NULL) dma_unmap_single(&spi->dev, t->tx_dma, len, DMA_TO_DEVICE); return -EINVAL; } } } mcspi = spi_master_get_devdata(spi->master); spin_lock_irqsave(&mcspi->lock, flags); list_add_tail(&m->queue, &mcspi->msg_queue); queue_work(mcspi->wq, &mcspi->work); spin_unlock_irqrestore(&mcspi->lock, flags); return 0; } static int __init omap2_mcspi_master_setup(struct omap2_mcspi *mcspi) { struct spi_master *master = mcspi->master; struct omap2_mcspi_regs *ctx = &mcspi->ctx; int ret = 0; ret = omap2_mcspi_enable_clocks(mcspi); if (ret < 0) return ret; mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE, OMAP2_MCSPI_WAKEUPENABLE_WKEN); ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN; omap2_mcspi_set_master_mode(master); omap2_mcspi_disable_clocks(mcspi); return 0; } static int omap_mcspi_runtime_resume(struct device *dev) { struct omap2_mcspi *mcspi; struct spi_master *master; master = dev_get_drvdata(dev); mcspi = spi_master_get_devdata(master); omap2_mcspi_restore_ctx(mcspi); return 0; } static struct omap2_mcspi_platform_config omap2_pdata = { .regs_offset = 0, }; static struct omap2_mcspi_platform_config omap4_pdata = { .regs_offset = OMAP4_MCSPI_REG_OFFSET, }; static const struct of_device_id omap_mcspi_of_match[] = { { .compatible = "ti,omap2-mcspi", .data = &omap2_pdata, }, { .compatible = "ti,omap4-mcspi", .data = &omap4_pdata, }, { }, }; MODULE_DEVICE_TABLE(of, omap_mcspi_of_match); static int __devinit omap2_mcspi_probe(struct platform_device *pdev) { struct spi_master *master; struct omap2_mcspi_platform_config *pdata; struct omap2_mcspi *mcspi; struct resource *r; int status = 0, i; u32 regs_offset = 0; static int bus_num = 1; struct device_node *node = pdev->dev.of_node; const struct of_device_id *match; master = spi_alloc_master(&pdev->dev, sizeof *mcspi); if (master == NULL) { dev_dbg(&pdev->dev, "master allocation failed\n"); return -ENOMEM; } /* the spi->mode bits understood by this driver: */ master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; master->setup = omap2_mcspi_setup; master->transfer = omap2_mcspi_transfer; master->cleanup = omap2_mcspi_cleanup; master->dev.of_node = node; match = of_match_device(omap_mcspi_of_match, &pdev->dev); if (match) { u32 num_cs = 1; /* default number of chipselect */ pdata = match->data; of_property_read_u32(node, "ti,spi-num-cs", &num_cs); master->num_chipselect = num_cs; master->bus_num = bus_num++; } else { pdata = pdev->dev.platform_data; master->num_chipselect = pdata->num_cs; if (pdev->id != -1) master->bus_num = pdev->id; } regs_offset = pdata->regs_offset; dev_set_drvdata(&pdev->dev, master); mcspi = spi_master_get_devdata(master); mcspi->master = master; mcspi->wq = alloc_workqueue(dev_name(&pdev->dev), WQ_MEM_RECLAIM, 1); if (mcspi->wq == NULL) { status = -ENOMEM; goto free_master; } r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (r == NULL) { status = -ENODEV; goto free_master; } r->start += regs_offset; r->end += regs_offset; mcspi->phys = r->start; mcspi->base = devm_request_and_ioremap(&pdev->dev, r); if (!mcspi->base) { dev_dbg(&pdev->dev, "can't ioremap MCSPI\n"); status = -ENOMEM; goto free_master; } mcspi->dev = &pdev->dev; INIT_WORK(&mcspi->work, omap2_mcspi_work); spin_lock_init(&mcspi->lock); INIT_LIST_HEAD(&mcspi->msg_queue); INIT_LIST_HEAD(&mcspi->ctx.cs); mcspi->dma_channels = kcalloc(master->num_chipselect, sizeof(struct omap2_mcspi_dma), GFP_KERNEL); if (mcspi->dma_channels == NULL) goto free_master; for (i = 0; i < master->num_chipselect; i++) { char dma_ch_name[14]; struct resource *dma_res; sprintf(dma_ch_name, "rx%d", i); dma_res = platform_get_resource_byname(pdev, IORESOURCE_DMA, dma_ch_name); if (!dma_res) { dev_dbg(&pdev->dev, "cannot get DMA RX channel\n"); status = -ENODEV; break; } mcspi->dma_channels[i].dma_rx_channel = -1; mcspi->dma_channels[i].dma_rx_sync_dev = dma_res->start; sprintf(dma_ch_name, "tx%d", i); dma_res = platform_get_resource_byname(pdev, IORESOURCE_DMA, dma_ch_name); if (!dma_res) { dev_dbg(&pdev->dev, "cannot get DMA TX channel\n"); status = -ENODEV; break; } mcspi->dma_channels[i].dma_tx_channel = -1; mcspi->dma_channels[i].dma_tx_sync_dev = dma_res->start; } if (status < 0) goto dma_chnl_free; pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT); pm_runtime_enable(&pdev->dev); if (status || omap2_mcspi_master_setup(mcspi) < 0) goto disable_pm; status = spi_register_master(master); if (status < 0) goto err_spi_register; return status; err_spi_register: spi_master_put(master); disable_pm: pm_runtime_disable(&pdev->dev); dma_chnl_free: kfree(mcspi->dma_channels); free_master: kfree(master); platform_set_drvdata(pdev, NULL); return status; } static int __devexit omap2_mcspi_remove(struct platform_device *pdev) { struct spi_master *master; struct omap2_mcspi *mcspi; struct omap2_mcspi_dma *dma_channels; master = dev_get_drvdata(&pdev->dev); mcspi = spi_master_get_devdata(master); dma_channels = mcspi->dma_channels; omap2_mcspi_disable_clocks(mcspi); pm_runtime_disable(&pdev->dev); spi_unregister_master(master); kfree(dma_channels); destroy_workqueue(mcspi->wq); platform_set_drvdata(pdev, NULL); return 0; } /* work with hotplug and coldplug */ MODULE_ALIAS("platform:omap2_mcspi"); #ifdef CONFIG_SUSPEND /* * When SPI wake up from off-mode, CS is in activate state. If it was in * unactive state when driver was suspend, then force it to unactive state at * wake up. */ static int omap2_mcspi_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct omap2_mcspi *mcspi = spi_master_get_devdata(master); struct omap2_mcspi_regs *ctx = &mcspi->ctx; struct omap2_mcspi_cs *cs; omap2_mcspi_enable_clocks(mcspi); list_for_each_entry(cs, &ctx->cs, node) { if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) { /* * We need to toggle CS state for OMAP take this * change in account. */ MOD_REG_BIT(cs->chconf0, OMAP2_MCSPI_CHCONF_FORCE, 1); __raw_writel(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0); MOD_REG_BIT(cs->chconf0, OMAP2_MCSPI_CHCONF_FORCE, 0); __raw_writel(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0); } } omap2_mcspi_disable_clocks(mcspi); return 0; } #else #define omap2_mcspi_resume NULL #endif static const struct dev_pm_ops omap2_mcspi_pm_ops = { .resume = omap2_mcspi_resume, .runtime_resume = omap_mcspi_runtime_resume, }; static struct platform_driver omap2_mcspi_driver = { .driver = { .name = "omap2_mcspi", .owner = THIS_MODULE, .pm = &omap2_mcspi_pm_ops, .of_match_table = omap_mcspi_of_match, }, .probe = omap2_mcspi_probe, .remove = __devexit_p(omap2_mcspi_remove), }; module_platform_driver(omap2_mcspi_driver); MODULE_LICENSE("GPL");