/* esp.c: ESP Sun SCSI driver. * * Copyright (C) 1995, 1998, 2006 David S. Miller (davem@davemloft.net) */ /* TODO: * * 1) Maybe disable parity checking in config register one for SCSI1 * targets. (Gilmore says parity error on the SBus can lock up * old sun4c's) * 2) Add support for DMA2 pipelining. * 3) Add tagged queueing. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "esp.h" #include #include #include #include #include #include #include #include #ifndef __sparc_v9__ #include #include #endif #include #include #include #include #include #include #define DRV_VERSION "1.101" #define DEBUG_ESP /* #define DEBUG_ESP_HME */ /* #define DEBUG_ESP_DATA */ /* #define DEBUG_ESP_QUEUE */ /* #define DEBUG_ESP_DISCONNECT */ /* #define DEBUG_ESP_STATUS */ /* #define DEBUG_ESP_PHASES */ /* #define DEBUG_ESP_WORKBUS */ /* #define DEBUG_STATE_MACHINE */ /* #define DEBUG_ESP_CMDS */ /* #define DEBUG_ESP_IRQS */ /* #define DEBUG_SDTR */ /* #define DEBUG_ESP_SG */ /* Use the following to sprinkle debugging messages in a way which * suits you if combinations of the above become too verbose when * trying to track down a specific problem. */ /* #define DEBUG_ESP_MISC */ #if defined(DEBUG_ESP) #define ESPLOG(foo) printk foo #else #define ESPLOG(foo) #endif /* (DEBUG_ESP) */ #if defined(DEBUG_ESP_HME) #define ESPHME(foo) printk foo #else #define ESPHME(foo) #endif #if defined(DEBUG_ESP_DATA) #define ESPDATA(foo) printk foo #else #define ESPDATA(foo) #endif #if defined(DEBUG_ESP_QUEUE) #define ESPQUEUE(foo) printk foo #else #define ESPQUEUE(foo) #endif #if defined(DEBUG_ESP_DISCONNECT) #define ESPDISC(foo) printk foo #else #define ESPDISC(foo) #endif #if defined(DEBUG_ESP_STATUS) #define ESPSTAT(foo) printk foo #else #define ESPSTAT(foo) #endif #if defined(DEBUG_ESP_PHASES) #define ESPPHASE(foo) printk foo #else #define ESPPHASE(foo) #endif #if defined(DEBUG_ESP_WORKBUS) #define ESPBUS(foo) printk foo #else #define ESPBUS(foo) #endif #if defined(DEBUG_ESP_IRQS) #define ESPIRQ(foo) printk foo #else #define ESPIRQ(foo) #endif #if defined(DEBUG_SDTR) #define ESPSDTR(foo) printk foo #else #define ESPSDTR(foo) #endif #if defined(DEBUG_ESP_MISC) #define ESPMISC(foo) printk foo #else #define ESPMISC(foo) #endif /* Command phase enumeration. */ enum { not_issued = 0x00, /* Still in the issue_SC queue. */ /* Various forms of selecting a target. */ #define in_slct_mask 0x10 in_slct_norm = 0x10, /* ESP is arbitrating, normal selection */ in_slct_stop = 0x11, /* ESP will select, then stop with IRQ */ in_slct_msg = 0x12, /* select, then send a message */ in_slct_tag = 0x13, /* select and send tagged queue msg */ in_slct_sneg = 0x14, /* select and acquire sync capabilities */ /* Any post selection activity. */ #define in_phases_mask 0x20 in_datain = 0x20, /* Data is transferring from the bus */ in_dataout = 0x21, /* Data is transferring to the bus */ in_data_done = 0x22, /* Last DMA data operation done (maybe) */ in_msgin = 0x23, /* Eating message from target */ in_msgincont = 0x24, /* Eating more msg bytes from target */ in_msgindone = 0x25, /* Decide what to do with what we got */ in_msgout = 0x26, /* Sending message to target */ in_msgoutdone = 0x27, /* Done sending msg out */ in_cmdbegin = 0x28, /* Sending cmd after abnormal selection */ in_cmdend = 0x29, /* Done sending slow cmd */ in_status = 0x2a, /* Was in status phase, finishing cmd */ in_freeing = 0x2b, /* freeing the bus for cmd cmplt or disc */ in_the_dark = 0x2c, /* Don't know what bus phase we are in */ /* Special states, ie. not normal bus transitions... */ #define in_spec_mask 0x80 in_abortone = 0x80, /* Aborting one command currently */ in_abortall = 0x81, /* Blowing away all commands we have */ in_resetdev = 0x82, /* SCSI target reset in progress */ in_resetbus = 0x83, /* SCSI bus reset in progress */ in_tgterror = 0x84, /* Target did something stupid */ }; enum { /* Zero has special meaning, see skipahead[12]. */ /*0*/ do_never, /*1*/ do_phase_determine, /*2*/ do_reset_bus, /*3*/ do_reset_complete, /*4*/ do_work_bus, /*5*/ do_intr_end }; /* Forward declarations. */ static irqreturn_t esp_intr(int irq, void *dev_id, struct pt_regs *pregs); /* Debugging routines */ struct esp_cmdstrings { u8 cmdchar; char *text; } esp_cmd_strings[] = { /* Miscellaneous */ { ESP_CMD_NULL, "ESP_NOP", }, { ESP_CMD_FLUSH, "FIFO_FLUSH", }, { ESP_CMD_RC, "RSTESP", }, { ESP_CMD_RS, "RSTSCSI", }, /* Disconnected State Group */ { ESP_CMD_RSEL, "RESLCTSEQ", }, { ESP_CMD_SEL, "SLCTNATN", }, { ESP_CMD_SELA, "SLCTATN", }, { ESP_CMD_SELAS, "SLCTATNSTOP", }, { ESP_CMD_ESEL, "ENSLCTRESEL", }, { ESP_CMD_DSEL, "DISSELRESEL", }, { ESP_CMD_SA3, "SLCTATN3", }, { ESP_CMD_RSEL3, "RESLCTSEQ", }, /* Target State Group */ { ESP_CMD_SMSG, "SNDMSG", }, { ESP_CMD_SSTAT, "SNDSTATUS", }, { ESP_CMD_SDATA, "SNDDATA", }, { ESP_CMD_DSEQ, "DISCSEQ", }, { ESP_CMD_TSEQ, "TERMSEQ", }, { ESP_CMD_TCCSEQ, "TRGTCMDCOMPSEQ", }, { ESP_CMD_DCNCT, "DISC", }, { ESP_CMD_RMSG, "RCVMSG", }, { ESP_CMD_RCMD, "RCVCMD", }, { ESP_CMD_RDATA, "RCVDATA", }, { ESP_CMD_RCSEQ, "RCVCMDSEQ", }, /* Initiator State Group */ { ESP_CMD_TI, "TRANSINFO", }, { ESP_CMD_ICCSEQ, "INICMDSEQCOMP", }, { ESP_CMD_MOK, "MSGACCEPTED", }, { ESP_CMD_TPAD, "TPAD", }, { ESP_CMD_SATN, "SATN", }, { ESP_CMD_RATN, "RATN", }, }; #define NUM_ESP_COMMANDS ((sizeof(esp_cmd_strings)) / (sizeof(struct esp_cmdstrings))) /* Print textual representation of an ESP command */ static inline void esp_print_cmd(u8 espcmd) { u8 dma_bit = espcmd & ESP_CMD_DMA; int i; espcmd &= ~dma_bit; for (i = 0; i < NUM_ESP_COMMANDS; i++) if (esp_cmd_strings[i].cmdchar == espcmd) break; if (i == NUM_ESP_COMMANDS) printk("ESP_Unknown"); else printk("%s%s", esp_cmd_strings[i].text, ((dma_bit) ? "+DMA" : "")); } /* Print the status register's value */ static inline void esp_print_statreg(u8 statreg) { u8 phase; printk("STATUS<"); phase = statreg & ESP_STAT_PMASK; printk("%s,", (phase == ESP_DOP ? "DATA-OUT" : (phase == ESP_DIP ? "DATA-IN" : (phase == ESP_CMDP ? "COMMAND" : (phase == ESP_STATP ? "STATUS" : (phase == ESP_MOP ? "MSG-OUT" : (phase == ESP_MIP ? "MSG_IN" : "unknown"))))))); if (statreg & ESP_STAT_TDONE) printk("TRANS_DONE,"); if (statreg & ESP_STAT_TCNT) printk("TCOUNT_ZERO,"); if (statreg & ESP_STAT_PERR) printk("P_ERROR,"); if (statreg & ESP_STAT_SPAM) printk("SPAM,"); if (statreg & ESP_STAT_INTR) printk("IRQ,"); printk(">"); } /* Print the interrupt register's value */ static inline void esp_print_ireg(u8 intreg) { printk("INTREG< "); if (intreg & ESP_INTR_S) printk("SLCT_NATN "); if (intreg & ESP_INTR_SATN) printk("SLCT_ATN "); if (intreg & ESP_INTR_RSEL) printk("RSLCT "); if (intreg & ESP_INTR_FDONE) printk("FDONE "); if (intreg & ESP_INTR_BSERV) printk("BSERV "); if (intreg & ESP_INTR_DC) printk("DISCNCT "); if (intreg & ESP_INTR_IC) printk("ILL_CMD "); if (intreg & ESP_INTR_SR) printk("SCSI_BUS_RESET "); printk(">"); } /* Print the sequence step registers contents */ static inline void esp_print_seqreg(u8 stepreg) { stepreg &= ESP_STEP_VBITS; printk("STEP<%s>", (stepreg == ESP_STEP_ASEL ? "SLCT_ARB_CMPLT" : (stepreg == ESP_STEP_SID ? "1BYTE_MSG_SENT" : (stepreg == ESP_STEP_NCMD ? "NOT_IN_CMD_PHASE" : (stepreg == ESP_STEP_PPC ? "CMD_BYTES_LOST" : (stepreg == ESP_STEP_FINI4 ? "CMD_SENT_OK" : "UNKNOWN")))))); } static char *phase_string(int phase) { switch (phase) { case not_issued: return "UNISSUED"; case in_slct_norm: return "SLCTNORM"; case in_slct_stop: return "SLCTSTOP"; case in_slct_msg: return "SLCTMSG"; case in_slct_tag: return "SLCTTAG"; case in_slct_sneg: return "SLCTSNEG"; case in_datain: return "DATAIN"; case in_dataout: return "DATAOUT"; case in_data_done: return "DATADONE"; case in_msgin: return "MSGIN"; case in_msgincont: return "MSGINCONT"; case in_msgindone: return "MSGINDONE"; case in_msgout: return "MSGOUT"; case in_msgoutdone: return "MSGOUTDONE"; case in_cmdbegin: return "CMDBEGIN"; case in_cmdend: return "CMDEND"; case in_status: return "STATUS"; case in_freeing: return "FREEING"; case in_the_dark: return "CLUELESS"; case in_abortone: return "ABORTONE"; case in_abortall: return "ABORTALL"; case in_resetdev: return "RESETDEV"; case in_resetbus: return "RESETBUS"; case in_tgterror: return "TGTERROR"; default: return "UNKNOWN"; }; } #ifdef DEBUG_STATE_MACHINE static inline void esp_advance_phase(struct scsi_cmnd *s, int newphase) { ESPLOG(("<%s>", phase_string(newphase))); s->SCp.sent_command = s->SCp.phase; s->SCp.phase = newphase; } #else #define esp_advance_phase(__s, __newphase) \ (__s)->SCp.sent_command = (__s)->SCp.phase; \ (__s)->SCp.phase = (__newphase); #endif #ifdef DEBUG_ESP_CMDS static inline void esp_cmd(struct esp *esp, u8 cmd) { esp->espcmdlog[esp->espcmdent] = cmd; esp->espcmdent = (esp->espcmdent + 1) & 31; sbus_writeb(cmd, esp->eregs + ESP_CMD); } #else #define esp_cmd(__esp, __cmd) \ sbus_writeb((__cmd), ((__esp)->eregs) + ESP_CMD) #endif #define ESP_INTSOFF(__dregs) \ sbus_writel(sbus_readl((__dregs)+DMA_CSR)&~(DMA_INT_ENAB), (__dregs)+DMA_CSR) #define ESP_INTSON(__dregs) \ sbus_writel(sbus_readl((__dregs)+DMA_CSR)|DMA_INT_ENAB, (__dregs)+DMA_CSR) #define ESP_IRQ_P(__dregs) \ (sbus_readl((__dregs)+DMA_CSR) & (DMA_HNDL_INTR|DMA_HNDL_ERROR)) /* How we use the various Linux SCSI data structures for operation. * * struct scsi_cmnd: * * We keep track of the synchronous capabilities of a target * in the device member, using sync_min_period and * sync_max_offset. These are the values we directly write * into the ESP registers while running a command. If offset * is zero the ESP will use asynchronous transfers. * If the borken flag is set we assume we shouldn't even bother * trying to negotiate for synchronous transfer as this target * is really stupid. If we notice the target is dropping the * bus, and we have been allowing it to disconnect, we clear * the disconnect flag. */ /* Manipulation of the ESP command queues. Thanks to the aha152x driver * and its author, Juergen E. Fischer, for the methods used here. * Note that these are per-ESP queues, not global queues like * the aha152x driver uses. */ static inline void append_SC(struct scsi_cmnd **SC, struct scsi_cmnd *new_SC) { struct scsi_cmnd *end; new_SC->host_scribble = (unsigned char *) NULL; if (!*SC) *SC = new_SC; else { for (end=*SC;end->host_scribble;end=(struct scsi_cmnd *)end->host_scribble) ; end->host_scribble = (unsigned char *) new_SC; } } static inline void prepend_SC(struct scsi_cmnd **SC, struct scsi_cmnd *new_SC) { new_SC->host_scribble = (unsigned char *) *SC; *SC = new_SC; } static inline struct scsi_cmnd *remove_first_SC(struct scsi_cmnd **SC) { struct scsi_cmnd *ptr; ptr = *SC; if (ptr) *SC = (struct scsi_cmnd *) (*SC)->host_scribble; return ptr; } static inline struct scsi_cmnd *remove_SC(struct scsi_cmnd **SC, int target, int lun) { struct scsi_cmnd *ptr, *prev; for (ptr = *SC, prev = NULL; ptr && ((ptr->device->id != target) || (ptr->device->lun != lun)); prev = ptr, ptr = (struct scsi_cmnd *) ptr->host_scribble) ; if (ptr) { if (prev) prev->host_scribble=ptr->host_scribble; else *SC=(struct scsi_cmnd *)ptr->host_scribble; } return ptr; } /* Resetting various pieces of the ESP scsi driver chipset/buses. */ static void esp_reset_dma(struct esp *esp) { int can_do_burst16, can_do_burst32, can_do_burst64; int can_do_sbus64; u32 tmp; can_do_burst16 = (esp->bursts & DMA_BURST16) != 0; can_do_burst32 = (esp->bursts & DMA_BURST32) != 0; can_do_burst64 = 0; can_do_sbus64 = 0; if (sbus_can_dma_64bit(esp->sdev)) can_do_sbus64 = 1; if (sbus_can_burst64(esp->sdev)) can_do_burst64 = (esp->bursts & DMA_BURST64) != 0; /* Punt the DVMA into a known state. */ if (esp->dma->revision != dvmahme) { tmp = sbus_readl(esp->dregs + DMA_CSR); sbus_writel(tmp | DMA_RST_SCSI, esp->dregs + DMA_CSR); sbus_writel(tmp & ~DMA_RST_SCSI, esp->dregs + DMA_CSR); } switch (esp->dma->revision) { case dvmahme: /* This is the HME DVMA gate array. */ sbus_writel(DMA_RESET_FAS366, esp->dregs + DMA_CSR); sbus_writel(DMA_RST_SCSI, esp->dregs + DMA_CSR); esp->prev_hme_dmacsr = (DMA_PARITY_OFF|DMA_2CLKS|DMA_SCSI_DISAB|DMA_INT_ENAB); esp->prev_hme_dmacsr &= ~(DMA_ENABLE|DMA_ST_WRITE|DMA_BRST_SZ); if (can_do_burst64) esp->prev_hme_dmacsr |= DMA_BRST64; else if (can_do_burst32) esp->prev_hme_dmacsr |= DMA_BRST32; if (can_do_sbus64) { esp->prev_hme_dmacsr |= DMA_SCSI_SBUS64; sbus_set_sbus64(esp->sdev, esp->bursts); } /* This chip is horrible. */ while (sbus_readl(esp->dregs + DMA_CSR) & DMA_PEND_READ) udelay(1); sbus_writel(0, esp->dregs + DMA_CSR); sbus_writel(esp->prev_hme_dmacsr, esp->dregs + DMA_CSR); /* This is necessary to avoid having the SCSI channel * engine lock up on us. */ sbus_writel(0, esp->dregs + DMA_ADDR); break; case dvmarev2: /* This is the gate array found in the sun4m * NCR SBUS I/O subsystem. */ if (esp->erev != esp100) { tmp = sbus_readl(esp->dregs + DMA_CSR); sbus_writel(tmp | DMA_3CLKS, esp->dregs + DMA_CSR); } break; case dvmarev3: tmp = sbus_readl(esp->dregs + DMA_CSR); tmp &= ~DMA_3CLKS; tmp |= DMA_2CLKS; if (can_do_burst32) { tmp &= ~DMA_BRST_SZ; tmp |= DMA_BRST32; } sbus_writel(tmp, esp->dregs + DMA_CSR); break; case dvmaesc1: /* This is the DMA unit found on SCSI/Ether cards. */ tmp = sbus_readl(esp->dregs + DMA_CSR); tmp |= DMA_ADD_ENABLE; tmp &= ~DMA_BCNT_ENAB; if (!can_do_burst32 && can_do_burst16) { tmp |= DMA_ESC_BURST; } else { tmp &= ~(DMA_ESC_BURST); } sbus_writel(tmp, esp->dregs + DMA_CSR); break; default: break; }; ESP_INTSON(esp->dregs); } /* Reset the ESP chip, _not_ the SCSI bus. */ static void __init esp_reset_esp(struct esp *esp) { u8 family_code, version; int i; /* Now reset the ESP chip */ esp_cmd(esp, ESP_CMD_RC); esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA); esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA); /* Reload the configuration registers */ sbus_writeb(esp->cfact, esp->eregs + ESP_CFACT); esp->prev_stp = 0; sbus_writeb(esp->prev_stp, esp->eregs + ESP_STP); esp->prev_soff = 0; sbus_writeb(esp->prev_soff, esp->eregs + ESP_SOFF); sbus_writeb(esp->neg_defp, esp->eregs + ESP_TIMEO); /* This is the only point at which it is reliable to read * the ID-code for a fast ESP chip variants. */ esp->max_period = ((35 * esp->ccycle) / 1000); if (esp->erev == fast) { version = sbus_readb(esp->eregs + ESP_UID); family_code = (version & 0xf8) >> 3; if (family_code == 0x02) esp->erev = fas236; else if (family_code == 0x0a) esp->erev = fashme; /* Version is usually '5'. */ else esp->erev = fas100a; ESPMISC(("esp%d: FAST chip is %s (family=%d, version=%d)\n", esp->esp_id, (esp->erev == fas236) ? "fas236" : ((esp->erev == fas100a) ? "fas100a" : "fasHME"), family_code, (version & 7))); esp->min_period = ((4 * esp->ccycle) / 1000); } else { esp->min_period = ((5 * esp->ccycle) / 1000); } esp->max_period = (esp->max_period + 3)>>2; esp->min_period = (esp->min_period + 3)>>2; sbus_writeb(esp->config1, esp->eregs + ESP_CFG1); switch (esp->erev) { case esp100: /* nothing to do */ break; case esp100a: sbus_writeb(esp->config2, esp->eregs + ESP_CFG2); break; case esp236: /* Slow 236 */ sbus_writeb(esp->config2, esp->eregs + ESP_CFG2); esp->prev_cfg3 = esp->config3[0]; sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); break; case fashme: esp->config2 |= (ESP_CONFIG2_HME32 | ESP_CONFIG2_HMEFENAB); /* fallthrough... */ case fas236: /* Fast 236 or HME */ sbus_writeb(esp->config2, esp->eregs + ESP_CFG2); for (i = 0; i < 16; i++) { if (esp->erev == fashme) { u8 cfg3; cfg3 = ESP_CONFIG3_FCLOCK | ESP_CONFIG3_OBPUSH; if (esp->scsi_id >= 8) cfg3 |= ESP_CONFIG3_IDBIT3; esp->config3[i] |= cfg3; } else { esp->config3[i] |= ESP_CONFIG3_FCLK; } } esp->prev_cfg3 = esp->config3[0]; sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); if (esp->erev == fashme) { esp->radelay = 80; } else { if (esp->diff) esp->radelay = 0; else esp->radelay = 96; } break; case fas100a: /* Fast 100a */ sbus_writeb(esp->config2, esp->eregs + ESP_CFG2); for (i = 0; i < 16; i++) esp->config3[i] |= ESP_CONFIG3_FCLOCK; esp->prev_cfg3 = esp->config3[0]; sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); esp->radelay = 32; break; default: panic("esp: what could it be... I wonder..."); break; }; /* Eat any bitrot in the chip */ sbus_readb(esp->eregs + ESP_INTRPT); udelay(100); } /* This places the ESP into a known state at boot time. */ static void __init esp_bootup_reset(struct esp *esp) { u8 tmp; /* Reset the DMA */ esp_reset_dma(esp); /* Reset the ESP */ esp_reset_esp(esp); /* Reset the SCSI bus, but tell ESP not to generate an irq */ tmp = sbus_readb(esp->eregs + ESP_CFG1); tmp |= ESP_CONFIG1_SRRDISAB; sbus_writeb(tmp, esp->eregs + ESP_CFG1); esp_cmd(esp, ESP_CMD_RS); udelay(400); sbus_writeb(esp->config1, esp->eregs + ESP_CFG1); /* Eat any bitrot in the chip and we are done... */ sbus_readb(esp->eregs + ESP_INTRPT); } static int __init esp_find_dvma(struct esp *esp, struct sbus_dev *dma_sdev) { struct sbus_dev *sdev = esp->sdev; struct sbus_dma *dma; if (dma_sdev != NULL) { for_each_dvma(dma) { if (dma->sdev == dma_sdev) break; } } else { for_each_dvma(dma) { /* If allocated already, can't use it. */ if (dma->allocated) continue; if (dma->sdev == NULL) break; /* If bus + slot are the same and it has the * correct OBP name, it's ours. */ if (sdev->bus == dma->sdev->bus && sdev->slot == dma->sdev->slot && (!strcmp(dma->sdev->prom_name, "dma") || !strcmp(dma->sdev->prom_name, "espdma"))) break; } } /* If we don't know how to handle the dvma, * do not use this device. */ if (dma == NULL) { printk("Cannot find dvma for ESP%d's SCSI\n", esp->esp_id); return -1; } if (dma->allocated) { printk("esp%d: can't use my espdma\n", esp->esp_id); return -1; } dma->allocated = 1; esp->dma = dma; esp->dregs = dma->regs; return 0; } static int __init esp_map_regs(struct esp *esp, int hme) { struct sbus_dev *sdev = esp->sdev; struct resource *res; /* On HME, two reg sets exist, first is DVMA, * second is ESP registers. */ if (hme) res = &sdev->resource[1]; else res = &sdev->resource[0]; esp->eregs = sbus_ioremap(res, 0, ESP_REG_SIZE, "ESP Registers"); if (esp->eregs == 0) return -1; return 0; } static int __init esp_map_cmdarea(struct esp *esp) { struct sbus_dev *sdev = esp->sdev; esp->esp_command = sbus_alloc_consistent(sdev, 16, &esp->esp_command_dvma); if (esp->esp_command == NULL || esp->esp_command_dvma == 0) return -1; return 0; } static int __init esp_register_irq(struct esp *esp) { esp->ehost->irq = esp->irq = esp->sdev->irqs[0]; /* We used to try various overly-clever things to * reduce the interrupt processing overhead on * sun4c/sun4m when multiple ESP's shared the * same IRQ. It was too complex and messy to * sanely maintain. */ if (request_irq(esp->ehost->irq, esp_intr, IRQF_SHARED, "ESP SCSI", esp)) { printk("esp%d: Cannot acquire irq line\n", esp->esp_id); return -1; } printk("esp%d: IRQ %d ", esp->esp_id, esp->ehost->irq); return 0; } static void __init esp_get_scsi_id(struct esp *esp) { struct sbus_dev *sdev = esp->sdev; struct device_node *dp = sdev->ofdev.node; esp->scsi_id = of_getintprop_default(dp, "initiator-id", -1); if (esp->scsi_id == -1) esp->scsi_id = of_getintprop_default(dp, "scsi-initiator-id", -1); if (esp->scsi_id == -1) esp->scsi_id = (sdev->bus == NULL) ? 7 : of_getintprop_default(sdev->bus->ofdev.node, "scsi-initiator-id", 7); esp->ehost->this_id = esp->scsi_id; esp->scsi_id_mask = (1 << esp->scsi_id); } static void __init esp_get_clock_params(struct esp *esp) { struct sbus_dev *sdev = esp->sdev; int prom_node = esp->prom_node; int sbus_prom_node; unsigned int fmhz; u8 ccf; if (sdev != NULL && sdev->bus != NULL) sbus_prom_node = sdev->bus->prom_node; else sbus_prom_node = 0; /* This is getting messy but it has to be done * correctly or else you get weird behavior all * over the place. We are trying to basically * figure out three pieces of information. * * a) Clock Conversion Factor * * This is a representation of the input * crystal clock frequency going into the * ESP on this machine. Any operation whose * timing is longer than 400ns depends on this * value being correct. For example, you'll * get blips for arbitration/selection during * high load or with multiple targets if this * is not set correctly. * * b) Selection Time-Out * * The ESP isn't very bright and will arbitrate * for the bus and try to select a target * forever if you let it. This value tells * the ESP when it has taken too long to * negotiate and that it should interrupt * the CPU so we can see what happened. * The value is computed as follows (from * NCR/Symbios chip docs). * * (Time Out Period) * (Input Clock) * STO = ---------------------------------- * (8192) * (Clock Conversion Factor) * * You usually want the time out period to be * around 250ms, I think we'll set it a little * bit higher to account for fully loaded SCSI * bus's and slow devices that don't respond so * quickly to selection attempts. (yeah, I know * this is out of spec. but there is a lot of * buggy pieces of firmware out there so bite me) * * c) Imperical constants for synchronous offset * and transfer period register values * * This entails the smallest and largest sync * period we could ever handle on this ESP. */ fmhz = prom_getintdefault(prom_node, "clock-frequency", -1); if (fmhz == -1) fmhz = (!sbus_prom_node) ? 0 : prom_getintdefault(sbus_prom_node, "clock-frequency", -1); if (fmhz <= (5000000)) ccf = 0; else ccf = (((5000000 - 1) + (fmhz))/(5000000)); if (!ccf || ccf > 8) { /* If we can't find anything reasonable, * just assume 20MHZ. This is the clock * frequency of the older sun4c's where I've * been unable to find the clock-frequency * PROM property. All other machines provide * useful values it seems. */ ccf = ESP_CCF_F4; fmhz = (20000000); } if (ccf == (ESP_CCF_F7 + 1)) esp->cfact = ESP_CCF_F0; else if (ccf == ESP_CCF_NEVER) esp->cfact = ESP_CCF_F2; else esp->cfact = ccf; esp->raw_cfact = ccf; esp->cfreq = fmhz; esp->ccycle = ESP_MHZ_TO_CYCLE(fmhz); esp->ctick = ESP_TICK(ccf, esp->ccycle); esp->neg_defp = ESP_NEG_DEFP(fmhz, ccf); esp->sync_defp = SYNC_DEFP_SLOW; printk("SCSI ID %d Clk %dMHz CCYC=%d CCF=%d TOut %d ", esp->scsi_id, (fmhz / 1000000), (int)esp->ccycle, (int)ccf, (int) esp->neg_defp); } static void __init esp_get_bursts(struct esp *esp, struct sbus_dev *dma) { struct sbus_dev *sdev = esp->sdev; u8 bursts; bursts = prom_getintdefault(esp->prom_node, "burst-sizes", 0xff); if (dma) { u8 tmp = prom_getintdefault(dma->prom_node, "burst-sizes", 0xff); if (tmp != 0xff) bursts &= tmp; } if (sdev->bus) { u8 tmp = prom_getintdefault(sdev->bus->prom_node, "burst-sizes", 0xff); if (tmp != 0xff) bursts &= tmp; } if (bursts == 0xff || (bursts & DMA_BURST16) == 0 || (bursts & DMA_BURST32) == 0) bursts = (DMA_BURST32 - 1); esp->bursts = bursts; } static void __init esp_get_revision(struct esp *esp) { u8 tmp; esp->config1 = (ESP_CONFIG1_PENABLE | (esp->scsi_id & 7)); esp->config2 = (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY); sbus_writeb(esp->config2, esp->eregs + ESP_CFG2); tmp = sbus_readb(esp->eregs + ESP_CFG2); tmp &= ~ESP_CONFIG2_MAGIC; if (tmp != (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY)) { /* If what we write to cfg2 does not come back, cfg2 * is not implemented, therefore this must be a plain * esp100. */ esp->erev = esp100; printk("NCR53C90(esp100)\n"); } else { esp->config2 = 0; esp->prev_cfg3 = esp->config3[0] = 5; sbus_writeb(esp->config2, esp->eregs + ESP_CFG2); sbus_writeb(0, esp->eregs + ESP_CFG3); sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); tmp = sbus_readb(esp->eregs + ESP_CFG3); if (tmp != 5) { /* The cfg2 register is implemented, however * cfg3 is not, must be esp100a. */ esp->erev = esp100a; printk("NCR53C90A(esp100a)\n"); } else { int target; for (target = 0; target < 16; target++) esp->config3[target] = 0; esp->prev_cfg3 = 0; sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); /* All of cfg{1,2,3} implemented, must be one of * the fas variants, figure out which one. */ if (esp->raw_cfact > ESP_CCF_F5) { esp->erev = fast; esp->sync_defp = SYNC_DEFP_FAST; printk("NCR53C9XF(espfast)\n"); } else { esp->erev = esp236; printk("NCR53C9x(esp236)\n"); } esp->config2 = 0; sbus_writeb(esp->config2, esp->eregs + ESP_CFG2); } } } static void __init esp_init_swstate(struct esp *esp) { int i; /* Command queues... */ esp->current_SC = NULL; esp->disconnected_SC = NULL; esp->issue_SC = NULL; /* Target and current command state... */ esp->targets_present = 0; esp->resetting_bus = 0; esp->snip = 0; init_waitqueue_head(&esp->reset_queue); /* Debugging... */ for(i = 0; i < 32; i++) esp->espcmdlog[i] = 0; esp->espcmdent = 0; /* MSG phase state... */ for(i = 0; i < 16; i++) { esp->cur_msgout[i] = 0; esp->cur_msgin[i] = 0; } esp->prevmsgout = esp->prevmsgin = 0; esp->msgout_len = esp->msgin_len = 0; /* Clear the one behind caches to hold unmatchable values. */ esp->prev_soff = esp->prev_stp = esp->prev_cfg3 = 0xff; esp->prev_hme_dmacsr = 0xffffffff; } static int __init detect_one_esp(struct scsi_host_template *tpnt, struct device *dev, struct sbus_dev *esp_dev, struct sbus_dev *espdma, struct sbus_bus *sbus, int hme) { static int instance; struct Scsi_Host *esp_host = scsi_host_alloc(tpnt, sizeof(struct esp)); struct esp *esp; if (!esp_host) return -ENOMEM; if (hme) esp_host->max_id = 16; esp = (struct esp *) esp_host->hostdata; esp->ehost = esp_host; esp->sdev = esp_dev; esp->esp_id = instance; esp->prom_node = esp_dev->prom_node; prom_getstring(esp->prom_node, "name", esp->prom_name, sizeof(esp->prom_name)); if (esp_find_dvma(esp, espdma) < 0) goto fail_unlink; if (esp_map_regs(esp, hme) < 0) { printk("ESP registers unmappable"); goto fail_dvma_release; } if (esp_map_cmdarea(esp) < 0) { printk("ESP DVMA transport area unmappable"); goto fail_unmap_regs; } if (esp_register_irq(esp) < 0) goto fail_unmap_cmdarea; esp_get_scsi_id(esp); esp->diff = prom_getbool(esp->prom_node, "differential"); if (esp->diff) printk("Differential "); esp_get_clock_params(esp); esp_get_bursts(esp, espdma); esp_get_revision(esp); esp_init_swstate(esp); esp_bootup_reset(esp); if (scsi_add_host(esp_host, dev)) goto fail_free_irq; dev_set_drvdata(&esp_dev->ofdev.dev, esp); scsi_scan_host(esp_host); instance++; return 0; fail_free_irq: free_irq(esp->ehost->irq, esp); fail_unmap_cmdarea: sbus_free_consistent(esp->sdev, 16, (void *) esp->esp_command, esp->esp_command_dvma); fail_unmap_regs: sbus_iounmap(esp->eregs, ESP_REG_SIZE); fail_dvma_release: esp->dma->allocated = 0; fail_unlink: scsi_host_put(esp_host); return -1; } /* Detecting ESP chips on the machine. This is the simple and easy * version. */ static int __devexit esp_remove_common(struct esp *esp) { unsigned int irq = esp->ehost->irq; scsi_remove_host(esp->ehost); ESP_INTSOFF(esp->dregs); #if 0 esp_reset_dma(esp); esp_reset_esp(esp); #endif free_irq(irq, esp); sbus_free_consistent(esp->sdev, 16, (void *) esp->esp_command, esp->esp_command_dvma); sbus_iounmap(esp->eregs, ESP_REG_SIZE); esp->dma->allocated = 0; scsi_host_put(esp->ehost); return 0; } #ifdef CONFIG_SUN4 #include static struct sbus_dev sun4_esp_dev; static int __init esp_sun4_probe(struct scsi_host_template *tpnt) { if (sun4_esp_physaddr) { memset(&sun4_esp_dev, 0, sizeof(sun4_esp_dev)); sun4_esp_dev.reg_addrs[0].phys_addr = sun4_esp_physaddr; sun4_esp_dev.irqs[0] = 4; sun4_esp_dev.resource[0].start = sun4_esp_physaddr; sun4_esp_dev.resource[0].end = sun4_esp_physaddr + ESP_REG_SIZE - 1; sun4_esp_dev.resource[0].flags = IORESOURCE_IO; return detect_one_esp(tpnt, NULL, &sun4_esp_dev, NULL, NULL, 0); } return 0; } static int __devexit esp_sun4_remove(void) { struct of_device *dev = &sun4_esp_dev.ofdev; struct esp *esp = dev_get_drvdata(&dev->dev); return esp_remove_common(esp); } #else /* !CONFIG_SUN4 */ static int __devinit esp_sbus_probe(struct of_device *dev, const struct of_device_id *match) { struct sbus_dev *sdev = to_sbus_device(&dev->dev); struct device_node *dp = dev->node; struct sbus_dev *dma_sdev = NULL; int hme = 0; if (dp->parent && (!strcmp(dp->parent->name, "espdma") || !strcmp(dp->parent->name, "dma"))) dma_sdev = sdev->parent; else if (!strcmp(dp->name, "SUNW,fas")) { dma_sdev = sdev; hme = 1; } return detect_one_esp(match->data, &dev->dev, sdev, dma_sdev, sdev->bus, hme); } static int __devexit esp_sbus_remove(struct of_device *dev) { struct esp *esp = dev_get_drvdata(&dev->dev); return esp_remove_common(esp); } #endif /* !CONFIG_SUN4 */ /* The info function will return whatever useful * information the developer sees fit. If not provided, then * the name field will be used instead. */ static const char *esp_info(struct Scsi_Host *host) { struct esp *esp; esp = (struct esp *) host->hostdata; switch (esp->erev) { case esp100: return "Sparc ESP100 (NCR53C90)"; case esp100a: return "Sparc ESP100A (NCR53C90A)"; case esp236: return "Sparc ESP236"; case fas236: return "Sparc ESP236-FAST"; case fashme: return "Sparc ESP366-HME"; case fas100a: return "Sparc ESP100A-FAST"; default: return "Bogon ESP revision"; }; } /* From Wolfgang Stanglmeier's NCR scsi driver. */ struct info_str { char *buffer; int length; int offset; int pos; }; static void copy_mem_info(struct info_str *info, char *data, int len) { if (info->pos + len > info->length) len = info->length - info->pos; if (info->pos + len < info->offset) { info->pos += len; return; } if (info->pos < info->offset) { data += (info->offset - info->pos); len -= (info->offset - info->pos); } if (len > 0) { memcpy(info->buffer + info->pos, data, len); info->pos += len; } } static int copy_info(struct info_str *info, char *fmt, ...) { va_list args; char buf[81]; int len; va_start(args, fmt); len = vsprintf(buf, fmt, args); va_end(args); copy_mem_info(info, buf, len); return len; } static int esp_host_info(struct esp *esp, char *ptr, off_t offset, int len) { struct scsi_device *sdev; struct info_str info; int i; info.buffer = ptr; info.length = len; info.offset = offset; info.pos = 0; copy_info(&info, "Sparc ESP Host Adapter:\n"); copy_info(&info, "\tPROM node\t\t%08x\n", (unsigned int) esp->prom_node); copy_info(&info, "\tPROM name\t\t%s\n", esp->prom_name); copy_info(&info, "\tESP Model\t\t"); switch (esp->erev) { case esp100: copy_info(&info, "ESP100\n"); break; case esp100a: copy_info(&info, "ESP100A\n"); break; case esp236: copy_info(&info, "ESP236\n"); break; case fas236: copy_info(&info, "FAS236\n"); break; case fas100a: copy_info(&info, "FAS100A\n"); break; case fast: copy_info(&info, "FAST\n"); break; case fashme: copy_info(&info, "Happy Meal FAS\n"); break; case espunknown: default: copy_info(&info, "Unknown!\n"); break; }; copy_info(&info, "\tDMA Revision\t\t"); switch (esp->dma->revision) { case dvmarev0: copy_info(&info, "Rev 0\n"); break; case dvmaesc1: copy_info(&info, "ESC Rev 1\n"); break; case dvmarev1: copy_info(&info, "Rev 1\n"); break; case dvmarev2: copy_info(&info, "Rev 2\n"); break; case dvmarev3: copy_info(&info, "Rev 3\n"); break; case dvmarevplus: copy_info(&info, "Rev 1+\n"); break; case dvmahme: copy_info(&info, "Rev HME/FAS\n"); break; default: copy_info(&info, "Unknown!\n"); break; }; copy_info(&info, "\tLive Targets\t\t[ "); for (i = 0; i < 15; i++) { if (esp->targets_present & (1 << i)) copy_info(&info, "%d ", i); } copy_info(&info, "]\n\n"); /* Now describe the state of each existing target. */ copy_info(&info, "Target #\tconfig3\t\tSync Capabilities\tDisconnect\tWide\n"); shost_for_each_device(sdev, esp->ehost) { struct esp_device *esp_dev = sdev->hostdata; uint id = sdev->id; if (!(esp->targets_present & (1 << id))) continue; copy_info(&info, "%d\t\t", id); copy_info(&info, "%08lx\t", esp->config3[id]); copy_info(&info, "[%02lx,%02lx]\t\t\t", esp_dev->sync_max_offset, esp_dev->sync_min_period); copy_info(&info, "%s\t\t", esp_dev->disconnect ? "yes" : "no"); copy_info(&info, "%s\n", (esp->config3[id] & ESP_CONFIG3_EWIDE) ? "yes" : "no"); } return info.pos > info.offset? info.pos - info.offset : 0; } /* ESP proc filesystem code. */ static int esp_proc_info(struct Scsi_Host *host, char *buffer, char **start, off_t offset, int length, int inout) { struct esp *esp = (struct esp *) host->hostdata; if (inout) return -EINVAL; /* not yet */ if (start) *start = buffer; return esp_host_info(esp, buffer, offset, length); } static void esp_get_dmabufs(struct esp *esp, struct scsi_cmnd *sp) { if (sp->use_sg == 0) { sp->SCp.this_residual = sp->request_bufflen; sp->SCp.buffer = (struct scatterlist *) sp->request_buffer; sp->SCp.buffers_residual = 0; if (sp->request_bufflen) { sp->SCp.have_data_in = sbus_map_single(esp->sdev, sp->SCp.buffer, sp->SCp.this_residual, sp->sc_data_direction); sp->SCp.ptr = (char *) ((unsigned long)sp->SCp.have_data_in); } else { sp->SCp.ptr = NULL; } } else { sp->SCp.buffer = (struct scatterlist *) sp->request_buffer; sp->SCp.buffers_residual = sbus_map_sg(esp->sdev, sp->SCp.buffer, sp->use_sg, sp->sc_data_direction); sp->SCp.this_residual = sg_dma_len(sp->SCp.buffer); sp->SCp.ptr = (char *) ((unsigned long)sg_dma_address(sp->SCp.buffer)); } } static void esp_release_dmabufs(struct esp *esp, struct scsi_cmnd *sp) { if (sp->use_sg) { sbus_unmap_sg(esp->sdev, sp->request_buffer, sp->use_sg, sp->sc_data_direction); } else if (sp->request_bufflen) { sbus_unmap_single(esp->sdev, sp->SCp.have_data_in, sp->request_bufflen, sp->sc_data_direction); } } static void esp_restore_pointers(struct esp *esp, struct scsi_cmnd *sp) { struct esp_pointers *ep = &esp->data_pointers[sp->device->id]; sp->SCp.ptr = ep->saved_ptr; sp->SCp.buffer = ep->saved_buffer; sp->SCp.this_residual = ep->saved_this_residual; sp->SCp.buffers_residual = ep->saved_buffers_residual; } static void esp_save_pointers(struct esp *esp, struct scsi_cmnd *sp) { struct esp_pointers *ep = &esp->data_pointers[sp->device->id]; ep->saved_ptr = sp->SCp.ptr; ep->saved_buffer = sp->SCp.buffer; ep->saved_this_residual = sp->SCp.this_residual; ep->saved_buffers_residual = sp->SCp.buffers_residual; } /* Some rules: * * 1) Never ever panic while something is live on the bus. * If there is to be any chance of syncing the disks this * rule is to be obeyed. * * 2) Any target that causes a foul condition will no longer * have synchronous transfers done to it, no questions * asked. * * 3) Keep register accesses to a minimum. Think about some * day when we have Xbus machines this is running on and * the ESP chip is on the other end of the machine on a * different board from the cpu where this is running. */ /* Fire off a command. We assume the bus is free and that the only * case where we could see an interrupt is where we have disconnected * commands active and they are trying to reselect us. */ static inline void esp_check_cmd(struct esp *esp, struct scsi_cmnd *sp) { switch (sp->cmd_len) { case 6: case 10: case 12: esp->esp_slowcmd = 0; break; default: esp->esp_slowcmd = 1; esp->esp_scmdleft = sp->cmd_len; esp->esp_scmdp = &sp->cmnd[0]; break; }; } static inline void build_sync_nego_msg(struct esp *esp, int period, int offset) { esp->cur_msgout[0] = EXTENDED_MESSAGE; esp->cur_msgout[1] = 3; esp->cur_msgout[2] = EXTENDED_SDTR; esp->cur_msgout[3] = period; esp->cur_msgout[4] = offset; esp->msgout_len = 5; } /* SIZE is in bits, currently HME only supports 16 bit wide transfers. */ static inline void build_wide_nego_msg(struct esp *esp, int size) { esp->cur_msgout[0] = EXTENDED_MESSAGE; esp->cur_msgout[1] = 2; esp->cur_msgout[2] = EXTENDED_WDTR; switch (size) { case 32: esp->cur_msgout[3] = 2; break; case 16: esp->cur_msgout[3] = 1; break; case 8: default: esp->cur_msgout[3] = 0; break; }; esp->msgout_len = 4; } static void esp_exec_cmd(struct esp *esp) { struct scsi_cmnd *SCptr; struct scsi_device *SDptr; struct esp_device *esp_dev; volatile u8 *cmdp = esp->esp_command; u8 the_esp_command; int lun, target; int i; /* Hold off if we have disconnected commands and * an IRQ is showing... */ if (esp->disconnected_SC && ESP_IRQ_P(esp->dregs)) return; /* Grab first member of the issue queue. */ SCptr = esp->current_SC = remove_first_SC(&esp->issue_SC); /* Safe to panic here because current_SC is null. */ if (!SCptr) panic("esp: esp_exec_cmd and issue queue is NULL"); SDptr = SCptr->device; esp_dev = SDptr->hostdata; lun = SCptr->device->lun; target = SCptr->device->id; esp->snip = 0; esp->msgout_len = 0; /* Send it out whole, or piece by piece? The ESP * only knows how to automatically send out 6, 10, * and 12 byte commands. I used to think that the * Linux SCSI code would never throw anything other * than that to us, but then again there is the * SCSI generic driver which can send us anything. */ esp_check_cmd(esp, SCptr); /* If arbitration/selection is successful, the ESP will leave * ATN asserted, causing the target to go into message out * phase. The ESP will feed the target the identify and then * the target can only legally go to one of command, * datain/out, status, or message in phase, or stay in message * out phase (should we be trying to send a sync negotiation * message after the identify). It is not allowed to drop * BSY, but some buggy targets do and we check for this * condition in the selection complete code. Most of the time * we'll make the command bytes available to the ESP and it * will not interrupt us until it finishes command phase, we * cannot do this for command sizes the ESP does not * understand and in this case we'll get interrupted right * when the target goes into command phase. * * It is absolutely _illegal_ in the presence of SCSI-2 devices * to use the ESP select w/o ATN command. When SCSI-2 devices are * present on the bus we _must_ always go straight to message out * phase with an identify message for the target. Being that * selection attempts in SCSI-1 w/o ATN was an option, doing SCSI-2 * selections should not confuse SCSI-1 we hope. */ if (esp_dev->sync) { /* this targets sync is known */ #ifndef __sparc_v9__ do_sync_known: #endif if (esp_dev->disconnect) *cmdp++ = IDENTIFY(1, lun); else *cmdp++ = IDENTIFY(0, lun); if (esp->esp_slowcmd) { the_esp_command = (ESP_CMD_SELAS | ESP_CMD_DMA); esp_advance_phase(SCptr, in_slct_stop); } else { the_esp_command = (ESP_CMD_SELA | ESP_CMD_DMA); esp_advance_phase(SCptr, in_slct_norm); } } else if (!(esp->targets_present & (1<disconnect)) { /* After the bootup SCSI code sends both the * TEST_UNIT_READY and INQUIRY commands we want * to at least attempt allowing the device to * disconnect. */ ESPMISC(("esp: Selecting device for first time. target=%d " "lun=%d\n", target, SCptr->device->lun)); if (!SDptr->borken && !esp_dev->disconnect) esp_dev->disconnect = 1; *cmdp++ = IDENTIFY(0, lun); esp->prevmsgout = NOP; esp_advance_phase(SCptr, in_slct_norm); the_esp_command = (ESP_CMD_SELA | ESP_CMD_DMA); /* Take no chances... */ esp_dev->sync_max_offset = 0; esp_dev->sync_min_period = 0; } else { /* Sorry, I have had way too many problems with * various CDROM devices on ESP. -DaveM */ int cdrom_hwbug_wkaround = 0; #ifndef __sparc_v9__ /* Never allow disconnects or synchronous transfers on * SparcStation1 and SparcStation1+. Allowing those * to be enabled seems to lockup the machine completely. */ if ((idprom->id_machtype == (SM_SUN4C | SM_4C_SS1)) || (idprom->id_machtype == (SM_SUN4C | SM_4C_SS1PLUS))) { /* But we are nice and allow tapes and removable * disks (but not CDROMs) to disconnect. */ if(SDptr->type == TYPE_TAPE || (SDptr->type != TYPE_ROM && SDptr->removable)) esp_dev->disconnect = 1; else esp_dev->disconnect = 0; esp_dev->sync_max_offset = 0; esp_dev->sync_min_period = 0; esp_dev->sync = 1; esp->snip = 0; goto do_sync_known; } #endif /* !(__sparc_v9__) */ /* We've talked to this guy before, * but never negotiated. Let's try, * need to attempt WIDE first, before * sync nego, as per SCSI 2 standard. */ if (esp->erev == fashme && !esp_dev->wide) { if (!SDptr->borken && SDptr->type != TYPE_ROM && SDptr->removable == 0) { build_wide_nego_msg(esp, 16); esp_dev->wide = 1; esp->wnip = 1; goto after_nego_msg_built; } else { esp_dev->wide = 1; /* Fall through and try sync. */ } } if (!SDptr->borken) { if ((SDptr->type == TYPE_ROM)) { /* Nice try sucker... */ ESPMISC(("esp%d: Disabling sync for buggy " "CDROM.\n", esp->esp_id)); cdrom_hwbug_wkaround = 1; build_sync_nego_msg(esp, 0, 0); } else if (SDptr->removable != 0) { ESPMISC(("esp%d: Not negotiating sync/wide but " "allowing disconnect for removable media.\n", esp->esp_id)); build_sync_nego_msg(esp, 0, 0); } else { build_sync_nego_msg(esp, esp->sync_defp, 15); } } else { build_sync_nego_msg(esp, 0, 0); } esp_dev->sync = 1; esp->snip = 1; after_nego_msg_built: /* A fix for broken SCSI1 targets, when they disconnect * they lock up the bus and confuse ESP. So disallow * disconnects for SCSI1 targets for now until we * find a better fix. * * Addendum: This is funny, I figured out what was going * on. The blotzed SCSI1 target would disconnect, * one of the other SCSI2 targets or both would be * disconnected as well. The SCSI1 target would * stay disconnected long enough that we start * up a command on one of the SCSI2 targets. As * the ESP is arbitrating for the bus the SCSI1 * target begins to arbitrate as well to reselect * the ESP. The SCSI1 target refuses to drop it's * ID bit on the data bus even though the ESP is * at ID 7 and is the obvious winner for any * arbitration. The ESP is a poor sport and refuses * to lose arbitration, it will continue indefinitely * trying to arbitrate for the bus and can only be * stopped via a chip reset or SCSI bus reset. * Therefore _no_ disconnects for SCSI1 targets * thank you very much. ;-) */ if(((SDptr->scsi_level < 3) && (SDptr->type != TYPE_TAPE) && SDptr->removable == 0) || cdrom_hwbug_wkaround || SDptr->borken) { ESPMISC((KERN_INFO "esp%d: Disabling DISCONNECT for target %d " "lun %d\n", esp->esp_id, SCptr->device->id, SCptr->device->lun)); esp_dev->disconnect = 0; *cmdp++ = IDENTIFY(0, lun); } else { *cmdp++ = IDENTIFY(1, lun); } /* ESP fifo is only so big... * Make this look like a slow command. */ esp->esp_slowcmd = 1; esp->esp_scmdleft = SCptr->cmd_len; esp->esp_scmdp = &SCptr->cmnd[0]; the_esp_command = (ESP_CMD_SELAS | ESP_CMD_DMA); esp_advance_phase(SCptr, in_slct_msg); } if (!esp->esp_slowcmd) for (i = 0; i < SCptr->cmd_len; i++) *cmdp++ = SCptr->cmnd[i]; /* HME sucks... */ if (esp->erev == fashme) sbus_writeb((target & 0xf) | (ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT), esp->eregs + ESP_BUSID); else sbus_writeb(target & 7, esp->eregs + ESP_BUSID); if (esp->prev_soff != esp_dev->sync_max_offset || esp->prev_stp != esp_dev->sync_min_period || (esp->erev > esp100a && esp->prev_cfg3 != esp->config3[target])) { esp->prev_soff = esp_dev->sync_max_offset; esp->prev_stp = esp_dev->sync_min_period; sbus_writeb(esp->prev_soff, esp->eregs + ESP_SOFF); sbus_writeb(esp->prev_stp, esp->eregs + ESP_STP); if (esp->erev > esp100a) { esp->prev_cfg3 = esp->config3[target]; sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); } } i = (cmdp - esp->esp_command); if (esp->erev == fashme) { esp_cmd(esp, ESP_CMD_FLUSH); /* Grrr! */ /* Set up the DMA and HME counters */ sbus_writeb(i, esp->eregs + ESP_TCLOW); sbus_writeb(0, esp->eregs + ESP_TCMED); sbus_writeb(0, esp->eregs + FAS_RLO); sbus_writeb(0, esp->eregs + FAS_RHI); esp_cmd(esp, the_esp_command); /* Talk about touchy hardware... */ esp->prev_hme_dmacsr = ((esp->prev_hme_dmacsr | (DMA_SCSI_DISAB | DMA_ENABLE)) & ~(DMA_ST_WRITE)); sbus_writel(16, esp->dregs + DMA_COUNT); sbus_writel(esp->esp_command_dvma, esp->dregs + DMA_ADDR); sbus_writel(esp->prev_hme_dmacsr, esp->dregs + DMA_CSR); } else { u32 tmp; /* Set up the DMA and ESP counters */ sbus_writeb(i, esp->eregs + ESP_TCLOW); sbus_writeb(0, esp->eregs + ESP_TCMED); tmp = sbus_readl(esp->dregs + DMA_CSR); tmp &= ~DMA_ST_WRITE; tmp |= DMA_ENABLE; sbus_writel(tmp, esp->dregs + DMA_CSR); if (esp->dma->revision == dvmaesc1) { if (i) /* Workaround ESC gate array SBUS rerun bug. */ sbus_writel(PAGE_SIZE, esp->dregs + DMA_COUNT); } sbus_writel(esp->esp_command_dvma, esp->dregs + DMA_ADDR); /* Tell ESP to "go". */ esp_cmd(esp, the_esp_command); } } /* Queue a SCSI command delivered from the mid-level Linux SCSI code. */ static int esp_queue(struct scsi_cmnd *SCpnt, void (*done)(struct scsi_cmnd *)) { struct esp *esp; /* Set up func ptr and initial driver cmd-phase. */ SCpnt->scsi_done = done; SCpnt->SCp.phase = not_issued; /* We use the scratch area. */ ESPQUEUE(("esp_queue: target=%d lun=%d ", SCpnt->device->id, SCpnt->device->lun)); ESPDISC(("N<%02x,%02x>", SCpnt->device->id, SCpnt->device->lun)); esp = (struct esp *) SCpnt->device->host->hostdata; esp_get_dmabufs(esp, SCpnt); esp_save_pointers(esp, SCpnt); /* FIXME for tag queueing */ SCpnt->SCp.Status = CHECK_CONDITION; SCpnt->SCp.Message = 0xff; SCpnt->SCp.sent_command = 0; /* Place into our queue. */ if (SCpnt->cmnd[0] == REQUEST_SENSE) { ESPQUEUE(("RQSENSE\n")); prepend_SC(&esp->issue_SC, SCpnt); } else { ESPQUEUE(("\n")); append_SC(&esp->issue_SC, SCpnt); } /* Run it now if we can. */ if (!esp->current_SC && !esp->resetting_bus) esp_exec_cmd(esp); return 0; } /* Dump driver state. */ static void esp_dump_cmd(struct scsi_cmnd *SCptr) { ESPLOG(("[tgt<%02x> lun<%02x> " "pphase<%s> cphase<%s>]", SCptr->device->id, SCptr->device->lun, phase_string(SCptr->SCp.sent_command), phase_string(SCptr->SCp.phase))); } static void esp_dump_state(struct esp *esp) { struct scsi_cmnd *SCptr = esp->current_SC; #ifdef DEBUG_ESP_CMDS int i; #endif ESPLOG(("esp%d: dumping state\n", esp->esp_id)); ESPLOG(("esp%d: dma -- cond_reg<%08x> addr<%08x>\n", esp->esp_id, sbus_readl(esp->dregs + DMA_CSR), sbus_readl(esp->dregs + DMA_ADDR))); ESPLOG(("esp%d: SW [sreg<%02x> sstep<%02x> ireg<%02x>]\n", esp->esp_id, esp->sreg, esp->seqreg, esp->ireg)); ESPLOG(("esp%d: HW reread [sreg<%02x> sstep<%02x> ireg<%02x>]\n", esp->esp_id, sbus_readb(esp->eregs + ESP_STATUS), sbus_readb(esp->eregs + ESP_SSTEP), sbus_readb(esp->eregs + ESP_INTRPT))); #ifdef DEBUG_ESP_CMDS printk("esp%d: last ESP cmds [", esp->esp_id); i = (esp->espcmdent - 1) & 31; printk("<"); esp_print_cmd(esp->espcmdlog[i]); printk(">"); i = (i - 1) & 31; printk("<"); esp_print_cmd(esp->espcmdlog[i]); printk(">"); i = (i - 1) & 31; printk("<"); esp_print_cmd(esp->espcmdlog[i]); printk(">"); i = (i - 1) & 31; printk("<"); esp_print_cmd(esp->espcmdlog[i]); printk(">"); printk("]\n"); #endif /* (DEBUG_ESP_CMDS) */ if (SCptr) { ESPLOG(("esp%d: current command ", esp->esp_id)); esp_dump_cmd(SCptr); } ESPLOG(("\n")); SCptr = esp->disconnected_SC; ESPLOG(("esp%d: disconnected ", esp->esp_id)); while (SCptr) { esp_dump_cmd(SCptr); SCptr = (struct scsi_cmnd *) SCptr->host_scribble; } ESPLOG(("\n")); } /* Abort a command. The host_lock is acquired by caller. */ static int esp_abort(struct scsi_cmnd *SCptr) { struct esp *esp = (struct esp *) SCptr->device->host->hostdata; int don; ESPLOG(("esp%d: Aborting command\n", esp->esp_id)); esp_dump_state(esp); /* Wheee, if this is the current command on the bus, the * best we can do is assert ATN and wait for msgout phase. * This should even fix a hung SCSI bus when we lose state * in the driver and timeout because the eventual phase change * will cause the ESP to (eventually) give an interrupt. */ if (esp->current_SC == SCptr) { esp->cur_msgout[0] = ABORT; esp->msgout_len = 1; esp->msgout_ctr = 0; esp_cmd(esp, ESP_CMD_SATN); return SUCCESS; } /* If it is still in the issue queue then we can safely * call the completion routine and report abort success. */ don = (sbus_readl(esp->dregs + DMA_CSR) & DMA_INT_ENAB); if (don) { ESP_INTSOFF(esp->dregs); } if (esp->issue_SC) { struct scsi_cmnd **prev, *this; for (prev = (&esp->issue_SC), this = esp->issue_SC; this != NULL; prev = (struct scsi_cmnd **) &(this->host_scribble), this = (struct scsi_cmnd *) this->host_scribble) { if (this == SCptr) { *prev = (struct scsi_cmnd *) this->host_scribble; this->host_scribble = NULL; esp_release_dmabufs(esp, this); this->result = DID_ABORT << 16; this->scsi_done(this); if (don) ESP_INTSON(esp->dregs); return SUCCESS; } } } /* Yuck, the command to abort is disconnected, it is not * worth trying to abort it now if something else is live * on the bus at this time. So, we let the SCSI code wait * a little bit and try again later. */ if (esp->current_SC) { if (don) ESP_INTSON(esp->dregs); return FAILED; } /* It's disconnected, we have to reconnect to re-establish * the nexus and tell the device to abort. However, we really * cannot 'reconnect' per se. Don't try to be fancy, just * indicate failure, which causes our caller to reset the whole * bus. */ if (don) ESP_INTSON(esp->dregs); return FAILED; } /* We've sent ESP_CMD_RS to the ESP, the interrupt had just * arrived indicating the end of the SCSI bus reset. Our job * is to clean out the command queues and begin re-execution * of SCSI commands once more. */ static int esp_finish_reset(struct esp *esp) { struct scsi_cmnd *sp = esp->current_SC; /* Clean up currently executing command, if any. */ if (sp != NULL) { esp->current_SC = NULL; esp_release_dmabufs(esp, sp); sp->result = (DID_RESET << 16); sp->scsi_done(sp); } /* Clean up disconnected queue, they have been invalidated * by the bus reset. */ if (esp->disconnected_SC) { while ((sp = remove_first_SC(&esp->disconnected_SC)) != NULL) { esp_release_dmabufs(esp, sp); sp->result = (DID_RESET << 16); sp->scsi_done(sp); } } /* SCSI bus reset is complete. */ esp->resetting_bus = 0; wake_up(&esp->reset_queue); /* Ok, now it is safe to get commands going once more. */ if (esp->issue_SC) esp_exec_cmd(esp); return do_intr_end; } static int esp_do_resetbus(struct esp *esp) { ESPLOG(("esp%d: Resetting scsi bus\n", esp->esp_id)); esp->resetting_bus = 1; esp_cmd(esp, ESP_CMD_RS); return do_intr_end; } /* Reset ESP chip, reset hanging bus, then kill active and * disconnected commands for targets without soft reset. * * The host_lock is acquired by caller. */ static int esp_reset(struct scsi_cmnd *SCptr) { struct esp *esp = (struct esp *) SCptr->device->host->hostdata; spin_lock_irq(esp->ehost->host_lock); (void) esp_do_resetbus(esp); spin_unlock_irq(esp->ehost->host_lock); wait_event(esp->reset_queue, (esp->resetting_bus == 0)); return SUCCESS; } /* Internal ESP done function. */ static void esp_done(struct esp *esp, int error) { struct scsi_cmnd *done_SC = esp->current_SC; esp->current_SC = NULL; esp_release_dmabufs(esp, done_SC); done_SC->result = error; done_SC->scsi_done(done_SC); /* Bus is free, issue any commands in the queue. */ if (esp->issue_SC && !esp->current_SC) esp_exec_cmd(esp); } /* Wheee, ESP interrupt engine. */ /* Forward declarations. */ static int esp_do_phase_determine(struct esp *esp); static int esp_do_data_finale(struct esp *esp); static int esp_select_complete(struct esp *esp); static int esp_do_status(struct esp *esp); static int esp_do_msgin(struct esp *esp); static int esp_do_msgindone(struct esp *esp); static int esp_do_msgout(struct esp *esp); static int esp_do_cmdbegin(struct esp *esp); #define sreg_datainp(__sreg) (((__sreg) & ESP_STAT_PMASK) == ESP_DIP) #define sreg_dataoutp(__sreg) (((__sreg) & ESP_STAT_PMASK) == ESP_DOP) /* Read any bytes found in the FAS366 fifo, storing them into * the ESP driver software state structure. */ static void hme_fifo_read(struct esp *esp) { u8 count = 0; u8 status = esp->sreg; /* Cannot safely frob the fifo for these following cases, but * we must always read the fifo when the reselect interrupt * is pending. */ if (((esp->ireg & ESP_INTR_RSEL) == 0) && (sreg_datainp(status) || sreg_dataoutp(status) || (esp->current_SC && esp->current_SC->SCp.phase == in_data_done))) { ESPHME(("")); } else { unsigned long fcnt = sbus_readb(esp->eregs + ESP_FFLAGS) & ESP_FF_FBYTES; /* The HME stores bytes in multiples of 2 in the fifo. */ ESPHME(("hme_fifo[fcnt=%d", (int)fcnt)); while (fcnt) { esp->hme_fifo_workaround_buffer[count++] = sbus_readb(esp->eregs + ESP_FDATA); esp->hme_fifo_workaround_buffer[count++] = sbus_readb(esp->eregs + ESP_FDATA); ESPHME(("<%02x,%02x>", esp->hme_fifo_workaround_buffer[count-2], esp->hme_fifo_workaround_buffer[count-1])); fcnt--; } if (sbus_readb(esp->eregs + ESP_STATUS2) & ESP_STAT2_F1BYTE) { ESPHME(("")); sbus_writeb(0, esp->eregs + ESP_FDATA); esp->hme_fifo_workaround_buffer[count++] = sbus_readb(esp->eregs + ESP_FDATA); ESPHME(("<%02x,0x00>", esp->hme_fifo_workaround_buffer[count-1])); ESPHME(("CMD_FLUSH")); esp_cmd(esp, ESP_CMD_FLUSH); } else { ESPHME(("no_xtra_byte")); } } ESPHME(("wkarnd_cnt=%d]", (int)count)); esp->hme_fifo_workaround_count = count; } static inline void hme_fifo_push(struct esp *esp, u8 *bytes, u8 count) { esp_cmd(esp, ESP_CMD_FLUSH); while (count) { u8 tmp = *bytes++; sbus_writeb(tmp, esp->eregs + ESP_FDATA); sbus_writeb(0, esp->eregs + ESP_FDATA); count--; } } /* We try to avoid some interrupts by jumping ahead and see if the ESP * has gotten far enough yet. Hence the following. */ static inline int skipahead1(struct esp *esp, struct scsi_cmnd *scp, int prev_phase, int new_phase) { if (scp->SCp.sent_command != prev_phase) return 0; if (ESP_IRQ_P(esp->dregs)) { /* Yes, we are able to save an interrupt. */ if (esp->erev == fashme) esp->sreg2 = sbus_readb(esp->eregs + ESP_STATUS2); esp->sreg = (sbus_readb(esp->eregs + ESP_STATUS) & ~(ESP_STAT_INTR)); esp->ireg = sbus_readb(esp->eregs + ESP_INTRPT); if (esp->erev == fashme) { /* This chip is really losing. */ ESPHME(("HME[")); /* Must latch fifo before reading the interrupt * register else garbage ends up in the FIFO * which confuses the driver utterly. * Happy Meal indeed.... */ ESPHME(("fifo_workaround]")); if (!(esp->sreg2 & ESP_STAT2_FEMPTY) || (esp->sreg2 & ESP_STAT2_F1BYTE)) hme_fifo_read(esp); } if (!(esp->ireg & ESP_INTR_SR)) return 0; else return do_reset_complete; } /* Ho hum, target is taking forever... */ scp->SCp.sent_command = new_phase; /* so we don't recurse... */ return do_intr_end; } static inline int skipahead2(struct esp *esp, struct scsi_cmnd *scp, int prev_phase1, int prev_phase2, int new_phase) { if (scp->SCp.sent_command != prev_phase1 && scp->SCp.sent_command != prev_phase2) return 0; if (ESP_IRQ_P(esp->dregs)) { /* Yes, we are able to save an interrupt. */ if (esp->erev == fashme) esp->sreg2 = sbus_readb(esp->eregs + ESP_STATUS2); esp->sreg = (sbus_readb(esp->eregs + ESP_STATUS) & ~(ESP_STAT_INTR)); esp->ireg = sbus_readb(esp->eregs + ESP_INTRPT); if (esp->erev == fashme) { /* This chip is really losing. */ ESPHME(("HME[")); /* Must latch fifo before reading the interrupt * register else garbage ends up in the FIFO * which confuses the driver utterly. * Happy Meal indeed.... */ ESPHME(("fifo_workaround]")); if (!(esp->sreg2 & ESP_STAT2_FEMPTY) || (esp->sreg2 & ESP_STAT2_F1BYTE)) hme_fifo_read(esp); } if (!(esp->ireg & ESP_INTR_SR)) return 0; else return do_reset_complete; } /* Ho hum, target is taking forever... */ scp->SCp.sent_command = new_phase; /* so we don't recurse... */ return do_intr_end; } /* Now some dma helpers. */ static void dma_setup(struct esp *esp, __u32 addr, int count, int write) { u32 nreg = sbus_readl(esp->dregs + DMA_CSR); if (write) nreg |= DMA_ST_WRITE; else nreg &= ~(DMA_ST_WRITE); nreg |= DMA_ENABLE; sbus_writel(nreg, esp->dregs + DMA_CSR); if (esp->dma->revision == dvmaesc1) { /* This ESC gate array sucks! */ __u32 src = addr; __u32 dest = src + count; if (dest & (PAGE_SIZE - 1)) count = PAGE_ALIGN(count); sbus_writel(count, esp->dregs + DMA_COUNT); } sbus_writel(addr, esp->dregs + DMA_ADDR); } static void dma_drain(struct esp *esp) { u32 tmp; if (esp->dma->revision == dvmahme) return; if ((tmp = sbus_readl(esp->dregs + DMA_CSR)) & DMA_FIFO_ISDRAIN) { switch (esp->dma->revision) { default: tmp |= DMA_FIFO_STDRAIN; sbus_writel(tmp, esp->dregs + DMA_CSR); case dvmarev3: case dvmaesc1: while (sbus_readl(esp->dregs + DMA_CSR) & DMA_FIFO_ISDRAIN) udelay(1); }; } } static void dma_invalidate(struct esp *esp) { u32 tmp; if (esp->dma->revision == dvmahme) { sbus_writel(DMA_RST_SCSI, esp->dregs + DMA_CSR); esp->prev_hme_dmacsr = ((esp->prev_hme_dmacsr | (DMA_PARITY_OFF | DMA_2CLKS | DMA_SCSI_DISAB | DMA_INT_ENAB)) & ~(DMA_ST_WRITE | DMA_ENABLE)); sbus_writel(0, esp->dregs + DMA_CSR); sbus_writel(esp->prev_hme_dmacsr, esp->dregs + DMA_CSR); /* This is necessary to avoid having the SCSI channel * engine lock up on us. */ sbus_writel(0, esp->dregs + DMA_ADDR); } else { while ((tmp = sbus_readl(esp->dregs + DMA_CSR)) & DMA_PEND_READ) udelay(1); tmp &= ~(DMA_ENABLE | DMA_ST_WRITE | DMA_BCNT_ENAB); tmp |= DMA_FIFO_INV; sbus_writel(tmp, esp->dregs + DMA_CSR); tmp &= ~DMA_FIFO_INV; sbus_writel(tmp, esp->dregs + DMA_CSR); } } static inline void dma_flashclear(struct esp *esp) { dma_drain(esp); dma_invalidate(esp); } static int dma_can_transfer(struct esp *esp, struct scsi_cmnd *sp) { __u32 base, end, sz; if (esp->dma->revision == dvmarev3) { sz = sp->SCp.this_residual; if (sz > 0x1000000) sz = 0x1000000; } else { base = ((__u32)((unsigned long)sp->SCp.ptr)); base &= (0x1000000 - 1); end = (base + sp->SCp.this_residual); if (end > 0x1000000) end = 0x1000000; sz = (end - base); } return sz; } /* Misc. esp helper macros. */ #define esp_setcount(__eregs, __cnt, __hme) \ sbus_writeb(((__cnt)&0xff), (__eregs) + ESP_TCLOW); \ sbus_writeb((((__cnt)>>8)&0xff), (__eregs) + ESP_TCMED); \ if (__hme) { \ sbus_writeb((((__cnt)>>16)&0xff), (__eregs) + FAS_RLO); \ sbus_writeb(0, (__eregs) + FAS_RHI); \ } #define esp_getcount(__eregs, __hme) \ ((sbus_readb((__eregs) + ESP_TCLOW)&0xff) | \ ((sbus_readb((__eregs) + ESP_TCMED)&0xff) << 8) | \ ((__hme) ? sbus_readb((__eregs) + FAS_RLO) << 16 : 0)) #define fcount(__esp) \ (((__esp)->erev == fashme) ? \ (__esp)->hme_fifo_workaround_count : \ sbus_readb(((__esp)->eregs) + ESP_FFLAGS) & ESP_FF_FBYTES) #define fnzero(__esp) \ (((__esp)->erev == fashme) ? 0 : \ sbus_readb(((__esp)->eregs) + ESP_FFLAGS) & ESP_FF_ONOTZERO) /* XXX speculative nops unnecessary when continuing amidst a data phase * XXX even on esp100!!! another case of flooding the bus with I/O reg * XXX writes... */ #define esp_maybe_nop(__esp) \ if ((__esp)->erev == esp100) \ esp_cmd((__esp), ESP_CMD_NULL) #define sreg_to_dataphase(__sreg) \ ((((__sreg) & ESP_STAT_PMASK) == ESP_DOP) ? in_dataout : in_datain) /* The ESP100 when in synchronous data phase, can mistake a long final * REQ pulse from the target as an extra byte, it places whatever is on * the data lines into the fifo. For now, we will assume when this * happens that the target is a bit quirky and we don't want to * be talking synchronously to it anyways. Regardless, we need to * tell the ESP to eat the extraneous byte so that we can proceed * to the next phase. */ static int esp100_sync_hwbug(struct esp *esp, struct scsi_cmnd *sp, int fifocnt) { /* Do not touch this piece of code. */ if ((!(esp->erev == esp100)) || (!(sreg_datainp((esp->sreg = sbus_readb(esp->eregs + ESP_STATUS))) && !fifocnt) && !(sreg_dataoutp(esp->sreg) && !fnzero(esp)))) { if (sp->SCp.phase == in_dataout) esp_cmd(esp, ESP_CMD_FLUSH); return 0; } else { /* Async mode for this guy. */ build_sync_nego_msg(esp, 0, 0); /* Ack the bogus byte, but set ATN first. */ esp_cmd(esp, ESP_CMD_SATN); esp_cmd(esp, ESP_CMD_MOK); return 1; } } /* This closes the window during a selection with a reselect pending, because * we use DMA for the selection process the FIFO should hold the correct * contents if we get reselected during this process. So we just need to * ack the possible illegal cmd interrupt pending on the esp100. */ static inline int esp100_reconnect_hwbug(struct esp *esp) { u8 tmp; if (esp->erev != esp100) return 0; tmp = sbus_readb(esp->eregs + ESP_INTRPT); if (tmp & ESP_INTR_SR) return 1; return 0; } /* This verifies the BUSID bits during a reselection so that we know which * target is talking to us. */ static inline int reconnect_target(struct esp *esp) { int it, me = esp->scsi_id_mask, targ = 0; if (2 != fcount(esp)) return -1; if (esp->erev == fashme) { /* HME does not latch it's own BUS ID bits during * a reselection. Also the target number is given * as an unsigned char, not as a sole bit number * like the other ESP's do. * Happy Meal indeed.... */ targ = esp->hme_fifo_workaround_buffer[0]; } else { it = sbus_readb(esp->eregs + ESP_FDATA); if (!(it & me)) return -1; it &= ~me; if (it & (it - 1)) return -1; while (!(it & 1)) targ++, it >>= 1; } return targ; } /* This verifies the identify from the target so that we know which lun is * being reconnected. */ static inline int reconnect_lun(struct esp *esp) { int lun; if ((esp->sreg & ESP_STAT_PMASK) != ESP_MIP) return -1; if (esp->erev == fashme) lun = esp->hme_fifo_workaround_buffer[1]; else lun = sbus_readb(esp->eregs + ESP_FDATA); /* Yes, you read this correctly. We report lun of zero * if we see parity error. ESP reports parity error for * the lun byte, and this is the only way to hope to recover * because the target is connected. */ if (esp->sreg & ESP_STAT_PERR) return 0; /* Check for illegal bits being set in the lun. */ if ((lun & 0x40) || !(lun & 0x80)) return -1; return lun & 7; } /* This puts the driver in a state where it can revitalize a command that * is being continued due to reselection. */ static inline void esp_connect(struct esp *esp, struct scsi_cmnd *sp) { struct esp_device *esp_dev = sp->device->hostdata; if (esp->prev_soff != esp_dev->sync_max_offset || esp->prev_stp != esp_dev->sync_min_period || (esp->erev > esp100a && esp->prev_cfg3 != esp->config3[sp->device->id])) { esp->prev_soff = esp_dev->sync_max_offset; esp->prev_stp = esp_dev->sync_min_period; sbus_writeb(esp->prev_soff, esp->eregs + ESP_SOFF); sbus_writeb(esp->prev_stp, esp->eregs + ESP_STP); if (esp->erev > esp100a) { esp->prev_cfg3 = esp->config3[sp->device->id]; sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); } } esp->current_SC = sp; } /* This will place the current working command back into the issue queue * if we are to receive a reselection amidst a selection attempt. */ static inline void esp_reconnect(struct esp *esp, struct scsi_cmnd *sp) { if (!esp->disconnected_SC) ESPLOG(("esp%d: Weird, being reselected but disconnected " "command queue is empty.\n", esp->esp_id)); esp->snip = 0; esp->current_SC = NULL; sp->SCp.phase = not_issued; append_SC(&esp->issue_SC, sp); } /* Begin message in phase. */ static int esp_do_msgin(struct esp *esp) { /* Must be very careful with the fifo on the HME */ if ((esp->erev != fashme) || !(sbus_readb(esp->eregs + ESP_STATUS2) & ESP_STAT2_FEMPTY)) esp_cmd(esp, ESP_CMD_FLUSH); esp_maybe_nop(esp); esp_cmd(esp, ESP_CMD_TI); esp->msgin_len = 1; esp->msgin_ctr = 0; esp_advance_phase(esp->current_SC, in_msgindone); return do_work_bus; } /* This uses various DMA csr fields and the fifo flags count value to * determine how many bytes were successfully sent/received by the ESP. */ static inline int esp_bytes_sent(struct esp *esp, int fifo_count) { int rval = sbus_readl(esp->dregs + DMA_ADDR) - esp->esp_command_dvma; if (esp->dma->revision == dvmarev1) rval -= (4 - ((sbus_readl(esp->dregs + DMA_CSR) & DMA_READ_AHEAD)>>11)); return rval - fifo_count; } static inline void advance_sg(struct scsi_cmnd *sp) { ++sp->SCp.buffer; --sp->SCp.buffers_residual; sp->SCp.this_residual = sg_dma_len(sp->SCp.buffer); sp->SCp.ptr = (char *)((unsigned long)sg_dma_address(sp->SCp.buffer)); } /* Please note that the way I've coded these routines is that I _always_ * check for a disconnect during any and all information transfer * phases. The SCSI standard states that the target _can_ cause a BUS * FREE condition by dropping all MSG/CD/IO/BSY signals. Also note * that during information transfer phases the target controls every * change in phase, the only thing the initiator can do is "ask" for * a message out phase by driving ATN true. The target can, and sometimes * will, completely ignore this request so we cannot assume anything when * we try to force a message out phase to abort/reset a target. Most of * the time the target will eventually be nice and go to message out, so * we may have to hold on to our state about what we want to tell the target * for some period of time. */ /* I think I have things working here correctly. Even partial transfers * within a buffer or sub-buffer should not upset us at all no matter * how bad the target and/or ESP fucks things up. */ static int esp_do_data(struct esp *esp) { struct scsi_cmnd *SCptr = esp->current_SC; int thisphase, hmuch; ESPDATA(("esp_do_data: ")); esp_maybe_nop(esp); thisphase = sreg_to_dataphase(esp->sreg); esp_advance_phase(SCptr, thisphase); ESPDATA(("newphase<%s> ", (thisphase == in_datain) ? "DATAIN" : "DATAOUT")); hmuch = dma_can_transfer(esp, SCptr); if (hmuch > (64 * 1024) && (esp->erev != fashme)) hmuch = (64 * 1024); ESPDATA(("hmuch<%d> ", hmuch)); esp->current_transfer_size = hmuch; if (esp->erev == fashme) { u32 tmp = esp->prev_hme_dmacsr; /* Always set the ESP count registers first. */ esp_setcount(esp->eregs, hmuch, 1); /* Get the DMA csr computed. */ tmp |= (DMA_SCSI_DISAB | DMA_ENABLE); if (thisphase == in_datain) tmp |= DMA_ST_WRITE; else tmp &= ~(DMA_ST_WRITE); esp->prev_hme_dmacsr = tmp; ESPDATA(("DMA|TI --> do_intr_end\n")); if (thisphase == in_datain) { sbus_writel(hmuch, esp->dregs + DMA_COUNT); esp_cmd(esp, ESP_CMD_DMA | ESP_CMD_TI); } else { esp_cmd(esp, ESP_CMD_DMA | ESP_CMD_TI); sbus_writel(hmuch, esp->dregs + DMA_COUNT); } sbus_writel((__u32)((unsigned long)SCptr->SCp.ptr), esp->dregs+DMA_ADDR); sbus_writel(esp->prev_hme_dmacsr, esp->dregs + DMA_CSR); } else { esp_setcount(esp->eregs, hmuch, 0); dma_setup(esp, ((__u32)((unsigned long)SCptr->SCp.ptr)), hmuch, (thisphase == in_datain)); ESPDATA(("DMA|TI --> do_intr_end\n")); esp_cmd(esp, ESP_CMD_DMA | ESP_CMD_TI); } return do_intr_end; } /* See how successful the data transfer was. */ static int esp_do_data_finale(struct esp *esp) { struct scsi_cmnd *SCptr = esp->current_SC; struct esp_device *esp_dev = SCptr->device->hostdata; int bogus_data = 0, bytes_sent = 0, fifocnt, ecount = 0; ESPDATA(("esp_do_data_finale: ")); if (SCptr->SCp.phase == in_datain) { if (esp->sreg & ESP_STAT_PERR) { /* Yuck, parity error. The ESP asserts ATN * so that we can go to message out phase * immediately and inform the target that * something bad happened. */ ESPLOG(("esp%d: data bad parity detected.\n", esp->esp_id)); esp->cur_msgout[0] = INITIATOR_ERROR; esp->msgout_len = 1; } dma_drain(esp); } dma_invalidate(esp); /* This could happen for the above parity error case. */ if (esp->ireg != ESP_INTR_BSERV) { /* Please go to msgout phase, please please please... */ ESPLOG(("esp%d: !BSERV after data, probably to msgout\n", esp->esp_id)); return esp_do_phase_determine(esp); } /* Check for partial transfers and other horrible events. * Note, here we read the real fifo flags register even * on HME broken adapters because we skip the HME fifo * workaround code in esp_handle() if we are doing data * phase things. We don't want to fuck directly with * the fifo like that, especially if doing synchronous * transfers! Also, will need to double the count on * HME if we are doing wide transfers, as the HME fifo * will move and count 16-bit quantities during wide data. * SMCC _and_ Qlogic can both bite me. */ fifocnt = (sbus_readb(esp->eregs + ESP_FFLAGS) & ESP_FF_FBYTES); if (esp->erev != fashme) ecount = esp_getcount(esp->eregs, 0); bytes_sent = esp->current_transfer_size; ESPDATA(("trans_sz(%d), ", bytes_sent)); if (esp->erev == fashme) { if (!(esp->sreg & ESP_STAT_TCNT)) { ecount = esp_getcount(esp->eregs, 1); bytes_sent -= ecount; } /* Always subtract any cruft remaining in the FIFO. */ if (esp->prev_cfg3 & ESP_CONFIG3_EWIDE) fifocnt <<= 1; if (SCptr->SCp.phase == in_dataout) bytes_sent -= fifocnt; /* I have an IBM disk which exhibits the following * behavior during writes to it. It disconnects in * the middle of a partial transfer, the current sglist * buffer is 1024 bytes, the disk stops data transfer * at 512 bytes. * * However the FAS366 reports that 32 more bytes were * transferred than really were. This is precisely * the size of a fully loaded FIFO in wide scsi mode. * The FIFO state recorded indicates that it is empty. * * I have no idea if this is a bug in the FAS366 chip * or a bug in the firmware on this IBM disk. In any * event the following seems to be a good workaround. -DaveM */ if (bytes_sent != esp->current_transfer_size && SCptr->SCp.phase == in_dataout) { int mask = (64 - 1); if ((esp->prev_cfg3 & ESP_CONFIG3_EWIDE) == 0) mask >>= 1; if (bytes_sent & mask) bytes_sent -= (bytes_sent & mask); } } else { if (!(esp->sreg & ESP_STAT_TCNT)) bytes_sent -= ecount; if (SCptr->SCp.phase == in_dataout) bytes_sent -= fifocnt; } ESPDATA(("bytes_sent(%d), ", bytes_sent)); /* If we were in synchronous mode, check for peculiarities. */ if (esp->erev == fashme) { if (esp_dev->sync_max_offset) { if (SCptr->SCp.phase == in_dataout) esp_cmd(esp, ESP_CMD_FLUSH); } else { esp_cmd(esp, ESP_CMD_FLUSH); } } else { if (esp_dev->sync_max_offset) bogus_data = esp100_sync_hwbug(esp, SCptr, fifocnt); else esp_cmd(esp, ESP_CMD_FLUSH); } /* Until we are sure of what has happened, we are certainly * in the dark. */ esp_advance_phase(SCptr, in_the_dark); if (bytes_sent < 0) { /* I've seen this happen due to lost state in this * driver. No idea why it happened, but allowing * this value to be negative caused things to * lock up. This allows greater chance of recovery. * In fact every time I've seen this, it has been * a driver bug without question. */ ESPLOG(("esp%d: yieee, bytes_sent < 0!\n", esp->esp_id)); ESPLOG(("esp%d: csz=%d fifocount=%d ecount=%d\n", esp->esp_id, esp->current_transfer_size, fifocnt, ecount)); ESPLOG(("esp%d: use_sg=%d ptr=%p this_residual=%d\n", esp->esp_id, SCptr->use_sg, SCptr->SCp.ptr, SCptr->SCp.this_residual)); ESPLOG(("esp%d: Forcing async for target %d\n", esp->esp_id, SCptr->device->id)); SCptr->device->borken = 1; esp_dev->sync = 0; bytes_sent = 0; } /* Update the state of our transfer. */ SCptr->SCp.ptr += bytes_sent; SCptr->SCp.this_residual -= bytes_sent; if (SCptr->SCp.this_residual < 0) { /* shit */ ESPLOG(("esp%d: Data transfer overrun.\n", esp->esp_id)); SCptr->SCp.this_residual = 0; } /* Maybe continue. */ if (!bogus_data) { ESPDATA(("!bogus_data, ")); /* NO MATTER WHAT, we advance the scatterlist, * if the target should decide to disconnect * in between scatter chunks (which is common) * we could die horribly! I used to have the sg * advance occur only if we are going back into * (or are staying in) a data phase, you can * imagine the hell I went through trying to * figure this out. */ if (SCptr->use_sg && !SCptr->SCp.this_residual) advance_sg(SCptr); if (sreg_datainp(esp->sreg) || sreg_dataoutp(esp->sreg)) { ESPDATA(("to more data\n")); return esp_do_data(esp); } ESPDATA(("to new phase\n")); return esp_do_phase_determine(esp); } /* Bogus data, just wait for next interrupt. */ ESPLOG(("esp%d: bogus_data during end of data phase\n", esp->esp_id)); return do_intr_end; } /* We received a non-good status return at the end of * running a SCSI command. This is used to decide if * we should clear our synchronous transfer state for * such a device when that happens. * * The idea is that when spinning up a disk or rewinding * a tape, we don't want to go into a loop re-negotiating * synchronous capabilities over and over. */ static int esp_should_clear_sync(struct scsi_cmnd *sp) { u8 cmd = sp->cmnd[0]; /* These cases are for spinning up a disk and * waiting for that spinup to complete. */ if (cmd == START_STOP) return 0; if (cmd == TEST_UNIT_READY) return 0; /* One more special case for SCSI tape drives, * this is what is used to probe the device for * completion of a rewind or tape load operation. */ if (sp->device->type == TYPE_TAPE) { if (cmd == MODE_SENSE) return 0; } return 1; } /* Either a command is completing or a target is dropping off the bus * to continue the command in the background so we can do other work. */ static int esp_do_freebus(struct esp *esp) { struct scsi_cmnd *SCptr = esp->current_SC; struct esp_device *esp_dev = SCptr->device->hostdata; int rval; rval = skipahead2(esp, SCptr, in_status, in_msgindone, in_freeing); if (rval) return rval; if (esp->ireg != ESP_INTR_DC) { ESPLOG(("esp%d: Target will not disconnect\n", esp->esp_id)); return do_reset_bus; /* target will not drop BSY... */ } esp->msgout_len = 0; esp->prevmsgout = NOP; if (esp->prevmsgin == COMMAND_COMPLETE) { /* Normal end of nexus. */ if (esp->disconnected_SC || (esp->erev == fashme)) esp_cmd(esp, ESP_CMD_ESEL); if (SCptr->SCp.Status != GOOD && SCptr->SCp.Status != CONDITION_GOOD && ((1<device->id) & esp->targets_present) && esp_dev->sync && esp_dev->sync_max_offset) { /* SCSI standard says that the synchronous capabilities * should be renegotiated at this point. Most likely * we are about to request sense from this target * in which case we want to avoid using sync * transfers until we are sure of the current target * state. */ ESPMISC(("esp: Status <%d> for target %d lun %d\n", SCptr->SCp.Status, SCptr->device->id, SCptr->device->lun)); /* But don't do this when spinning up a disk at * boot time while we poll for completion as it * fills up the console with messages. Also, tapes * can report not ready many times right after * loading up a tape. */ if (esp_should_clear_sync(SCptr) != 0) esp_dev->sync = 0; } ESPDISC(("F<%02x,%02x>", SCptr->device->id, SCptr->device->lun)); esp_done(esp, ((SCptr->SCp.Status & 0xff) | ((SCptr->SCp.Message & 0xff)<<8) | (DID_OK << 16))); } else if (esp->prevmsgin == DISCONNECT) { /* Normal disconnect. */ esp_cmd(esp, ESP_CMD_ESEL); ESPDISC(("D<%02x,%02x>", SCptr->device->id, SCptr->device->lun)); append_SC(&esp->disconnected_SC, SCptr); esp->current_SC = NULL; if (esp->issue_SC) esp_exec_cmd(esp); } else { /* Driver bug, we do not expect a disconnect here * and should not have advanced the state engine * to in_freeing. */ ESPLOG(("esp%d: last msg not disc and not cmd cmplt.\n", esp->esp_id)); return do_reset_bus; } return do_intr_end; } /* When a reselect occurs, and we cannot find the command to * reconnect to in our queues, we do this. */ static int esp_bad_reconnect(struct esp *esp) { struct scsi_cmnd *sp; ESPLOG(("esp%d: Eieeee, reconnecting unknown command!\n", esp->esp_id)); ESPLOG(("QUEUE DUMP\n")); sp = esp->issue_SC; ESPLOG(("esp%d: issue_SC[", esp->esp_id)); while (sp) { ESPLOG(("<%02x,%02x>", sp->device->id, sp->device->lun)); sp = (struct scsi_cmnd *) sp->host_scribble; } ESPLOG(("]\n")); sp = esp->current_SC; ESPLOG(("esp%d: current_SC[", esp->esp_id)); if (sp) ESPLOG(("<%02x,%02x>", sp->device->id, sp->device->lun)); else ESPLOG(("")); ESPLOG(("]\n")); sp = esp->disconnected_SC; ESPLOG(("esp%d: disconnected_SC[", esp->esp_id)); while (sp) { ESPLOG(("<%02x,%02x>", sp->device->id, sp->device->lun)); sp = (struct scsi_cmnd *) sp->host_scribble; } ESPLOG(("]\n")); return do_reset_bus; } /* Do the needy when a target tries to reconnect to us. */ static int esp_do_reconnect(struct esp *esp) { int lun, target; struct scsi_cmnd *SCptr; /* Check for all bogus conditions first. */ target = reconnect_target(esp); if (target < 0) { ESPDISC(("bad bus bits\n")); return do_reset_bus; } lun = reconnect_lun(esp); if (lun < 0) { ESPDISC(("target=%2x, bad identify msg\n", target)); return do_reset_bus; } /* Things look ok... */ ESPDISC(("R<%02x,%02x>", target, lun)); /* Must not flush FIFO or DVMA on HME. */ if (esp->erev != fashme) { esp_cmd(esp, ESP_CMD_FLUSH); if (esp100_reconnect_hwbug(esp)) return do_reset_bus; esp_cmd(esp, ESP_CMD_NULL); } SCptr = remove_SC(&esp->disconnected_SC, (u8) target, (u8) lun); if (!SCptr) return esp_bad_reconnect(esp); esp_connect(esp, SCptr); esp_cmd(esp, ESP_CMD_MOK); if (esp->erev == fashme) sbus_writeb(((SCptr->device->id & 0xf) | (ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT)), esp->eregs + ESP_BUSID); /* Reconnect implies a restore pointers operation. */ esp_restore_pointers(esp, SCptr); esp->snip = 0; esp_advance_phase(SCptr, in_the_dark); return do_intr_end; } /* End of NEXUS (hopefully), pick up status + message byte then leave if * all goes well. */ static int esp_do_status(struct esp *esp) { struct scsi_cmnd *SCptr = esp->current_SC; int intr, rval; rval = skipahead1(esp, SCptr, in_the_dark, in_status); if (rval) return rval; intr = esp->ireg; ESPSTAT(("esp_do_status: ")); if (intr != ESP_INTR_DC) { int message_out = 0; /* for parity problems */ /* Ack the message. */ ESPSTAT(("ack msg, ")); esp_cmd(esp, ESP_CMD_MOK); if (esp->erev != fashme) { dma_flashclear(esp); /* Wait till the first bits settle. */ while (esp->esp_command[0] == 0xff) udelay(1); } else { esp->esp_command[0] = esp->hme_fifo_workaround_buffer[0]; esp->esp_command[1] = esp->hme_fifo_workaround_buffer[1]; } ESPSTAT(("got something, ")); /* ESP chimes in with one of * * 1) function done interrupt: * both status and message in bytes * are available * * 2) bus service interrupt: * only status byte was acquired * * 3) Anything else: * can't happen, but we test for it * anyways * * ALSO: If bad parity was detected on either * the status _or_ the message byte then * the ESP has asserted ATN on the bus * and we must therefore wait for the * next phase change. */ if (intr & ESP_INTR_FDONE) { /* We got it all, hallejulia. */ ESPSTAT(("got both, ")); SCptr->SCp.Status = esp->esp_command[0]; SCptr->SCp.Message = esp->esp_command[1]; esp->prevmsgin = SCptr->SCp.Message; esp->cur_msgin[0] = SCptr->SCp.Message; if (esp->sreg & ESP_STAT_PERR) { /* There was bad parity for the * message byte, the status byte * was ok. */ message_out = MSG_PARITY_ERROR; } } else if (intr == ESP_INTR_BSERV) { /* Only got status byte. */ ESPLOG(("esp%d: got status only, ", esp->esp_id)); if (!(esp->sreg & ESP_STAT_PERR)) { SCptr->SCp.Status = esp->esp_command[0]; SCptr->SCp.Message = 0xff; } else { /* The status byte had bad parity. * we leave the scsi_pointer Status * field alone as we set it to a default * of CHECK_CONDITION in esp_queue. */ message_out = INITIATOR_ERROR; } } else { /* This shouldn't happen ever. */ ESPSTAT(("got bolixed\n")); esp_advance_phase(SCptr, in_the_dark); return esp_do_phase_determine(esp); } if (!message_out) { ESPSTAT(("status=%2x msg=%2x, ", SCptr->SCp.Status, SCptr->SCp.Message)); if (SCptr->SCp.Message == COMMAND_COMPLETE) { ESPSTAT(("and was COMMAND_COMPLETE\n")); esp_advance_phase(SCptr, in_freeing); return esp_do_freebus(esp); } else { ESPLOG(("esp%d: and _not_ COMMAND_COMPLETE\n", esp->esp_id)); esp->msgin_len = esp->msgin_ctr = 1; esp_advance_phase(SCptr, in_msgindone); return esp_do_msgindone(esp); } } else { /* With luck we'll be able to let the target * know that bad parity happened, it will know * which byte caused the problems and send it * again. For the case where the status byte * receives bad parity, I do not believe most * targets recover very well. We'll see. */ ESPLOG(("esp%d: bad parity somewhere mout=%2x\n", esp->esp_id, message_out)); esp->cur_msgout[0] = message_out; esp->msgout_len = esp->msgout_ctr = 1; esp_advance_phase(SCptr, in_the_dark); return esp_do_phase_determine(esp); } } else { /* If we disconnect now, all hell breaks loose. */ ESPLOG(("esp%d: whoops, disconnect\n", esp->esp_id)); esp_advance_phase(SCptr, in_the_dark); return esp_do_phase_determine(esp); } } static int esp_enter_status(struct esp *esp) { u8 thecmd = ESP_CMD_ICCSEQ; esp_cmd(esp, ESP_CMD_FLUSH); if (esp->erev != fashme) { u32 tmp; esp->esp_command[0] = esp->esp_command[1] = 0xff; sbus_writeb(2, esp->eregs + ESP_TCLOW); sbus_writeb(0, esp->eregs + ESP_TCMED); tmp = sbus_readl(esp->dregs + DMA_CSR); tmp |= (DMA_ST_WRITE | DMA_ENABLE); sbus_writel(tmp, esp->dregs + DMA_CSR); if (esp->dma->revision == dvmaesc1) sbus_writel(0x100, esp->dregs + DMA_COUNT); sbus_writel(esp->esp_command_dvma, esp->dregs + DMA_ADDR); thecmd |= ESP_CMD_DMA; } esp_cmd(esp, thecmd); esp_advance_phase(esp->current_SC, in_status); return esp_do_status(esp); } static int esp_disconnect_amidst_phases(struct esp *esp) { struct scsi_cmnd *sp = esp->current_SC; struct esp_device *esp_dev = sp->device->hostdata; /* This means real problems if we see this * here. Unless we were actually trying * to force the device to abort/reset. */ ESPLOG(("esp%d Disconnect amidst phases, ", esp->esp_id)); ESPLOG(("pphase<%s> cphase<%s>, ", phase_string(sp->SCp.phase), phase_string(sp->SCp.sent_command))); if (esp->disconnected_SC != NULL || (esp->erev == fashme)) esp_cmd(esp, ESP_CMD_ESEL); switch (esp->cur_msgout[0]) { default: /* We didn't expect this to happen at all. */ ESPLOG(("device is bolixed\n")); esp_advance_phase(sp, in_tgterror); esp_done(esp, (DID_ERROR << 16)); break; case BUS_DEVICE_RESET: ESPLOG(("device reset successful\n")); esp_dev->sync_max_offset = 0; esp_dev->sync_min_period = 0; esp_dev->sync = 0; esp_advance_phase(sp, in_resetdev); esp_done(esp, (DID_RESET << 16)); break; case ABORT: ESPLOG(("device abort successful\n")); esp_advance_phase(sp, in_abortone); esp_done(esp, (DID_ABORT << 16)); break; }; return do_intr_end; } static int esp_enter_msgout(struct esp *esp) { esp_advance_phase(esp->current_SC, in_msgout); return esp_do_msgout(esp); } static int esp_enter_msgin(struct esp *esp) { esp_advance_phase(esp->current_SC, in_msgin); return esp_do_msgin(esp); } static int esp_enter_cmd(struct esp *esp) { esp_advance_phase(esp->current_SC, in_cmdbegin); return esp_do_cmdbegin(esp); } static int esp_enter_badphase(struct esp *esp) { ESPLOG(("esp%d: Bizarre bus phase %2x.\n", esp->esp_id, esp->sreg & ESP_STAT_PMASK)); return do_reset_bus; } typedef int (*espfunc_t)(struct esp *); static espfunc_t phase_vector[] = { esp_do_data, /* ESP_DOP */ esp_do_data, /* ESP_DIP */ esp_enter_cmd, /* ESP_CMDP */ esp_enter_status, /* ESP_STATP */ esp_enter_badphase, /* ESP_STAT_PMSG */ esp_enter_badphase, /* ESP_STAT_PMSG | ESP_STAT_PIO */ esp_enter_msgout, /* ESP_MOP */ esp_enter_msgin, /* ESP_MIP */ }; /* The target has control of the bus and we have to see where it has * taken us. */ static int esp_do_phase_determine(struct esp *esp) { if ((esp->ireg & ESP_INTR_DC) != 0) return esp_disconnect_amidst_phases(esp); return phase_vector[esp->sreg & ESP_STAT_PMASK](esp); } /* First interrupt after exec'ing a cmd comes here. */ static int esp_select_complete(struct esp *esp) { struct scsi_cmnd *SCptr = esp->current_SC; struct esp_device *esp_dev = SCptr->device->hostdata; int cmd_bytes_sent, fcnt; if (esp->erev != fashme) esp->seqreg = (sbus_readb(esp->eregs + ESP_SSTEP) & ESP_STEP_VBITS); if (esp->erev == fashme) fcnt = esp->hme_fifo_workaround_count; else fcnt = (sbus_readb(esp->eregs + ESP_FFLAGS) & ESP_FF_FBYTES); cmd_bytes_sent = esp_bytes_sent(esp, fcnt); dma_invalidate(esp); /* Let's check to see if a reselect happened * while we we're trying to select. This must * be checked first. */ if (esp->ireg == (ESP_INTR_RSEL | ESP_INTR_FDONE)) { esp_reconnect(esp, SCptr); return esp_do_reconnect(esp); } /* Looks like things worked, we should see a bus service & * a function complete interrupt at this point. Note we * are doing a direct comparison because we don't want to * be fooled into thinking selection was successful if * ESP_INTR_DC is set, see below. */ if (esp->ireg == (ESP_INTR_FDONE | ESP_INTR_BSERV)) { /* target speaks... */ esp->targets_present |= (1<device->id); /* What if the target ignores the sdtr? */ if (esp->snip) esp_dev->sync = 1; /* See how far, if at all, we got in getting * the information out to the target. */ switch (esp->seqreg) { default: case ESP_STEP_ASEL: /* Arbitration won, target selected, but * we are in some phase which is not command * phase nor is it message out phase. * * XXX We've confused the target, obviously. * XXX So clear it's state, but we also end * XXX up clearing everyone elses. That isn't * XXX so nice. I'd like to just reset this * XXX target, but if I cannot even get it's * XXX attention and finish selection to talk * XXX to it, there is not much more I can do. * XXX If we have a loaded bus we're going to * XXX spend the next second or so renegotiating * XXX for synchronous transfers. */ ESPLOG(("esp%d: STEP_ASEL for tgt %d\n", esp->esp_id, SCptr->device->id)); case ESP_STEP_SID: /* Arbitration won, target selected, went * to message out phase, sent one message * byte, then we stopped. ATN is asserted * on the SCSI bus and the target is still * there hanging on. This is a legal * sequence step if we gave the ESP a select * and stop command. * * XXX See above, I could set the borken flag * XXX in the device struct and retry the * XXX command. But would that help for * XXX tagged capable targets? */ case ESP_STEP_NCMD: /* Arbitration won, target selected, maybe * sent the one message byte in message out * phase, but we did not go to command phase * in the end. Actually, we could have sent * only some of the message bytes if we tried * to send out the entire identify and tag * message using ESP_CMD_SA3. */ cmd_bytes_sent = 0; break; case ESP_STEP_PPC: /* No, not the powerPC pinhead. Arbitration * won, all message bytes sent if we went to * message out phase, went to command phase * but only part of the command was sent. * * XXX I've seen this, but usually in conjunction * XXX with a gross error which appears to have * XXX occurred between the time I told the * XXX ESP to arbitrate and when I got the * XXX interrupt. Could I have misloaded the * XXX command bytes into the fifo? Actually, * XXX I most likely missed a phase, and therefore * XXX went into never never land and didn't even * XXX know it. That was the old driver though. * XXX What is even more peculiar is that the ESP * XXX showed the proper function complete and * XXX bus service bits in the interrupt register. */ case ESP_STEP_FINI4: case ESP_STEP_FINI5: case ESP_STEP_FINI6: case ESP_STEP_FINI7: /* Account for the identify message */ if (SCptr->SCp.phase == in_slct_norm) cmd_bytes_sent -= 1; }; if (esp->erev != fashme) esp_cmd(esp, ESP_CMD_NULL); /* Be careful, we could really get fucked during synchronous * data transfers if we try to flush the fifo now. */ if ((esp->erev != fashme) && /* not a Happy Meal and... */ !fcnt && /* Fifo is empty and... */ /* either we are not doing synchronous transfers or... */ (!esp_dev->sync_max_offset || /* We are not going into data in phase. */ ((esp->sreg & ESP_STAT_PMASK) != ESP_DIP))) esp_cmd(esp, ESP_CMD_FLUSH); /* flush is safe */ /* See how far we got if this is not a slow command. */ if (!esp->esp_slowcmd) { if (cmd_bytes_sent < 0) cmd_bytes_sent = 0; if (cmd_bytes_sent != SCptr->cmd_len) { /* Crapola, mark it as a slowcmd * so that we have some chance of * keeping the command alive with * good luck. * * XXX Actually, if we didn't send it all * XXX this means either we didn't set things * XXX up properly (driver bug) or the target * XXX or the ESP detected parity on one of * XXX the command bytes. This makes much * XXX more sense, and therefore this code * XXX should be changed to send out a * XXX parity error message or if the status * XXX register shows no parity error then * XXX just expect the target to bring the * XXX bus into message in phase so that it * XXX can send us the parity error message. * XXX SCSI sucks... */ esp->esp_slowcmd = 1; esp->esp_scmdp = &(SCptr->cmnd[cmd_bytes_sent]); esp->esp_scmdleft = (SCptr->cmd_len - cmd_bytes_sent); } } /* Now figure out where we went. */ esp_advance_phase(SCptr, in_the_dark); return esp_do_phase_determine(esp); } /* Did the target even make it? */ if (esp->ireg == ESP_INTR_DC) { /* wheee... nobody there or they didn't like * what we told it to do, clean up. */ /* If anyone is off the bus, but working on * a command in the background for us, tell * the ESP to listen for them. */ if (esp->disconnected_SC) esp_cmd(esp, ESP_CMD_ESEL); if (((1<device->id) & esp->targets_present) && esp->seqreg != 0 && (esp->cur_msgout[0] == EXTENDED_MESSAGE) && (SCptr->SCp.phase == in_slct_msg || SCptr->SCp.phase == in_slct_stop)) { /* shit */ esp->snip = 0; ESPLOG(("esp%d: Failed synchronous negotiation for target %d " "lun %d\n", esp->esp_id, SCptr->device->id, SCptr->device->lun)); esp_dev->sync_max_offset = 0; esp_dev->sync_min_period = 0; esp_dev->sync = 1; /* so we don't negotiate again */ /* Run the command again, this time though we * won't try to negotiate for synchronous transfers. * * XXX I'd like to do something like send an * XXX INITIATOR_ERROR or ABORT message to the * XXX target to tell it, "Sorry I confused you, * XXX please come back and I will be nicer next * XXX time". But that requires having the target * XXX on the bus, and it has dropped BSY on us. */ esp->current_SC = NULL; esp_advance_phase(SCptr, not_issued); prepend_SC(&esp->issue_SC, SCptr); esp_exec_cmd(esp); return do_intr_end; } /* Ok, this is normal, this is what we see during boot * or whenever when we are scanning the bus for targets. * But first make sure that is really what is happening. */ if (((1<device->id) & esp->targets_present)) { ESPLOG(("esp%d: Warning, live target %d not responding to " "selection.\n", esp->esp_id, SCptr->device->id)); /* This _CAN_ happen. The SCSI standard states that * the target is to _not_ respond to selection if * _it_ detects bad parity on the bus for any reason. * Therefore, we assume that if we've talked successfully * to this target before, bad parity is the problem. */ esp_done(esp, (DID_PARITY << 16)); } else { /* Else, there really isn't anyone there. */ ESPMISC(("esp: selection failure, maybe nobody there?\n")); ESPMISC(("esp: target %d lun %d\n", SCptr->device->id, SCptr->device->lun)); esp_done(esp, (DID_BAD_TARGET << 16)); } return do_intr_end; } ESPLOG(("esp%d: Selection failure.\n", esp->esp_id)); printk("esp%d: Currently -- ", esp->esp_id); esp_print_ireg(esp->ireg); printk(" "); esp_print_statreg(esp->sreg); printk(" "); esp_print_seqreg(esp->seqreg); printk("\n"); printk("esp%d: New -- ", esp->esp_id); esp->sreg = sbus_readb(esp->eregs + ESP_STATUS); esp->seqreg = sbus_readb(esp->eregs + ESP_SSTEP); esp->ireg = sbus_readb(esp->eregs + ESP_INTRPT); esp_print_ireg(esp->ireg); printk(" "); esp_print_statreg(esp->sreg); printk(" "); esp_print_seqreg(esp->seqreg); printk("\n"); ESPLOG(("esp%d: resetting bus\n", esp->esp_id)); return do_reset_bus; /* ugh... */ } /* Continue reading bytes for msgin phase. */ static int esp_do_msgincont(struct esp *esp) { if (esp->ireg & ESP_INTR_BSERV) { /* in the right phase too? */ if ((esp->sreg & ESP_STAT_PMASK) == ESP_MIP) { /* phew... */ esp_cmd(esp, ESP_CMD_TI); esp_advance_phase(esp->current_SC, in_msgindone); return do_intr_end; } /* We changed phase but ESP shows bus service, * in this case it is most likely that we, the * hacker who has been up for 20hrs straight * staring at the screen, drowned in coffee * smelling like retched cigarette ashes * have miscoded something..... so, try to * recover as best we can. */ ESPLOG(("esp%d: message in mis-carriage.\n", esp->esp_id)); } esp_advance_phase(esp->current_SC, in_the_dark); return do_phase_determine; } static int check_singlebyte_msg(struct esp *esp) { esp->prevmsgin = esp->cur_msgin[0]; if (esp->cur_msgin[0] & 0x80) { /* wheee... */ ESPLOG(("esp%d: target sends identify amidst phases\n", esp->esp_id)); esp_advance_phase(esp->current_SC, in_the_dark); return 0; } else if (((esp->cur_msgin[0] & 0xf0) == 0x20) || (esp->cur_msgin[0] == EXTENDED_MESSAGE)) { esp->msgin_len = 2; esp_advance_phase(esp->current_SC, in_msgincont); return 0; } esp_advance_phase(esp->current_SC, in_the_dark); switch (esp->cur_msgin[0]) { default: /* We don't want to hear about it. */ ESPLOG(("esp%d: msg %02x which we don't know about\n", esp->esp_id, esp->cur_msgin[0])); return MESSAGE_REJECT; case NOP: ESPLOG(("esp%d: target %d sends a nop\n", esp->esp_id, esp->current_SC->device->id)); return 0; case RESTORE_POINTERS: /* In this case we might also have to backup the * "slow command" pointer. It is rare to get such * a save/restore pointer sequence so early in the * bus transition sequences, but cover it. */ if (esp->esp_slowcmd) { esp->esp_scmdleft = esp->current_SC->cmd_len; esp->esp_scmdp = &esp->current_SC->cmnd[0]; } esp_restore_pointers(esp, esp->current_SC); return 0; case SAVE_POINTERS: esp_save_pointers(esp, esp->current_SC); return 0; case COMMAND_COMPLETE: case DISCONNECT: /* Freeing the bus, let it go. */ esp->current_SC->SCp.phase = in_freeing; return 0; case MESSAGE_REJECT: ESPMISC(("msg reject, ")); if (esp->prevmsgout == EXTENDED_MESSAGE) { struct esp_device *esp_dev = esp->current_SC->device->hostdata; /* Doesn't look like this target can * do synchronous or WIDE transfers. */ ESPSDTR(("got reject, was trying nego, clearing sync/WIDE\n")); esp_dev->sync = 1; esp_dev->wide = 1; esp_dev->sync_min_period = 0; esp_dev->sync_max_offset = 0; return 0; } else { ESPMISC(("not sync nego, sending ABORT\n")); return ABORT; } }; } /* Target negotiates for synchronous transfers before we do, this * is legal although very strange. What is even funnier is that * the SCSI2 standard specifically recommends against targets doing * this because so many initiators cannot cope with this occurring. */ static int target_with_ants_in_pants(struct esp *esp, struct scsi_cmnd *SCptr, struct esp_device *esp_dev) { if (esp_dev->sync || SCptr->device->borken) { /* sorry, no can do */ ESPSDTR(("forcing to async, ")); build_sync_nego_msg(esp, 0, 0); esp_dev->sync = 1; esp->snip = 1; ESPLOG(("esp%d: hoping for msgout\n", esp->esp_id)); esp_advance_phase(SCptr, in_the_dark); return EXTENDED_MESSAGE; } /* Ok, we'll check them out... */ return 0; } static void sync_report(struct esp *esp) { int msg3, msg4; char *type; msg3 = esp->cur_msgin[3]; msg4 = esp->cur_msgin[4]; if (msg4) { int hz = 1000000000 / (msg3 * 4); int integer = hz / 1000000; int fraction = (hz - (integer * 1000000)) / 10000; if ((esp->erev == fashme) && (esp->config3[esp->current_SC->device->id] & ESP_CONFIG3_EWIDE)) { type = "FAST-WIDE"; integer <<= 1; fraction <<= 1; } else if ((msg3 * 4) < 200) { type = "FAST"; } else { type = "synchronous"; } /* Do not transform this back into one big printk * again, it triggers a bug in our sparc64-gcc272 * sibling call optimization. -DaveM */ ESPLOG((KERN_INFO "esp%d: target %d ", esp->esp_id, esp->current_SC->device->id)); ESPLOG(("[period %dns offset %d %d.%02dMHz ", (int) msg3 * 4, (int) msg4, integer, fraction)); ESPLOG(("%s SCSI%s]\n", type, (((msg3 * 4) < 200) ? "-II" : ""))); } else { ESPLOG((KERN_INFO "esp%d: target %d asynchronous\n", esp->esp_id, esp->current_SC->device->id)); } } static int check_multibyte_msg(struct esp *esp) { struct scsi_cmnd *SCptr = esp->current_SC; struct esp_device *esp_dev = SCptr->device->hostdata; u8 regval = 0; int message_out = 0; ESPSDTR(("chk multibyte msg: ")); if (esp->cur_msgin[2] == EXTENDED_SDTR) { int period = esp->cur_msgin[3]; int offset = esp->cur_msgin[4]; ESPSDTR(("is sync nego response, ")); if (!esp->snip) { int rval; /* Target negotiates first! */ ESPSDTR(("target jumps the gun, ")); message_out = EXTENDED_MESSAGE; /* we must respond */ rval = target_with_ants_in_pants(esp, SCptr, esp_dev); if (rval) return rval; } ESPSDTR(("examining sdtr, ")); /* Offset cannot be larger than ESP fifo size. */ if (offset > 15) { ESPSDTR(("offset too big %2x, ", offset)); offset = 15; ESPSDTR(("sending back new offset\n")); build_sync_nego_msg(esp, period, offset); return EXTENDED_MESSAGE; } if (offset && period > esp->max_period) { /* Yeee, async for this slow device. */ ESPSDTR(("period too long %2x, ", period)); build_sync_nego_msg(esp, 0, 0); ESPSDTR(("hoping for msgout\n")); esp_advance_phase(esp->current_SC, in_the_dark); return EXTENDED_MESSAGE; } else if (offset && period < esp->min_period) { ESPSDTR(("period too short %2x, ", period)); period = esp->min_period; if (esp->erev > esp236) regval = 4; else regval = 5; } else if (offset) { int tmp; ESPSDTR(("period is ok, ")); tmp = esp->ccycle / 1000; regval = (((period << 2) + tmp - 1) / tmp); if (regval && ((esp->erev == fas100a || esp->erev == fas236 || esp->erev == fashme))) { if (period >= 50) regval--; } } if (offset) { u8 bit; esp_dev->sync_min_period = (regval & 0x1f); esp_dev->sync_max_offset = (offset | esp->radelay); if (esp->erev == fas100a || esp->erev == fas236 || esp->erev == fashme) { if ((esp->erev == fas100a) || (esp->erev == fashme)) bit = ESP_CONFIG3_FAST; else bit = ESP_CONFIG3_FSCSI; if (period < 50) { /* On FAS366, if using fast-20 synchronous transfers * we need to make sure the REQ/ACK assert/deassert * control bits are clear. */ if (esp->erev == fashme) esp_dev->sync_max_offset &= ~esp->radelay; esp->config3[SCptr->device->id] |= bit; } else { esp->config3[SCptr->device->id] &= ~bit; } esp->prev_cfg3 = esp->config3[SCptr->device->id]; sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); } esp->prev_soff = esp_dev->sync_max_offset; esp->prev_stp = esp_dev->sync_min_period; sbus_writeb(esp->prev_soff, esp->eregs + ESP_SOFF); sbus_writeb(esp->prev_stp, esp->eregs + ESP_STP); ESPSDTR(("soff=%2x stp=%2x cfg3=%2x\n", esp_dev->sync_max_offset, esp_dev->sync_min_period, esp->config3[SCptr->device->id])); esp->snip = 0; } else if (esp_dev->sync_max_offset) { u8 bit; /* back to async mode */ ESPSDTR(("unaccaptable sync nego, forcing async\n")); esp_dev->sync_max_offset = 0; esp_dev->sync_min_period = 0; esp->prev_soff = 0; esp->prev_stp = 0; sbus_writeb(esp->prev_soff, esp->eregs + ESP_SOFF); sbus_writeb(esp->prev_stp, esp->eregs + ESP_STP); if (esp->erev == fas100a || esp->erev == fas236 || esp->erev == fashme) { if ((esp->erev == fas100a) || (esp->erev == fashme)) bit = ESP_CONFIG3_FAST; else bit = ESP_CONFIG3_FSCSI; esp->config3[SCptr->device->id] &= ~bit; esp->prev_cfg3 = esp->config3[SCptr->device->id]; sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); } } sync_report(esp); ESPSDTR(("chk multibyte msg: sync is known, ")); esp_dev->sync = 1; if (message_out) { ESPLOG(("esp%d: sending sdtr back, hoping for msgout\n", esp->esp_id)); build_sync_nego_msg(esp, period, offset); esp_advance_phase(SCptr, in_the_dark); return EXTENDED_MESSAGE; } ESPSDTR(("returning zero\n")); esp_advance_phase(SCptr, in_the_dark); /* ...or else! */ return 0; } else if (esp->cur_msgin[2] == EXTENDED_WDTR) { int size = 8 << esp->cur_msgin[3]; esp->wnip = 0; if (esp->erev != fashme) { ESPLOG(("esp%d: AIEEE wide msg received and not HME.\n", esp->esp_id)); message_out = MESSAGE_REJECT; } else if (size > 16) { ESPLOG(("esp%d: AIEEE wide transfer for %d size " "not supported.\n", esp->esp_id, size)); message_out = MESSAGE_REJECT; } else { /* Things look good; let's see what we got. */ if (size == 16) { /* Set config 3 register for this target. */ esp->config3[SCptr->device->id] |= ESP_CONFIG3_EWIDE; } else { /* Just make sure it was one byte sized. */ if (size != 8) { ESPLOG(("esp%d: Aieee, wide nego of %d size.\n", esp->esp_id, size)); message_out = MESSAGE_REJECT; goto finish; } /* Pure paranoia. */ esp->config3[SCptr->device->id] &= ~(ESP_CONFIG3_EWIDE); } esp->prev_cfg3 = esp->config3[SCptr->device->id]; sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); /* Regardless, next try for sync transfers. */ build_sync_nego_msg(esp, esp->sync_defp, 15); esp_dev->sync = 1; esp->snip = 1; message_out = EXTENDED_MESSAGE; } } else if (esp->cur_msgin[2] == EXTENDED_MODIFY_DATA_POINTER) { ESPLOG(("esp%d: rejecting modify data ptr msg\n", esp->esp_id)); message_out = MESSAGE_REJECT; } finish: esp_advance_phase(SCptr, in_the_dark); return message_out; } static int esp_do_msgindone(struct esp *esp) { struct scsi_cmnd *SCptr = esp->current_SC; int message_out = 0, it = 0, rval; rval = skipahead1(esp, SCptr, in_msgin, in_msgindone); if (rval) return rval; if (SCptr->SCp.sent_command != in_status) { if (!(esp->ireg & ESP_INTR_DC)) { if (esp->msgin_len && (esp->sreg & ESP_STAT_PERR)) { message_out = MSG_PARITY_ERROR; esp_cmd(esp, ESP_CMD_FLUSH); } else if (esp->erev != fashme && (it = (sbus_readb(esp->eregs + ESP_FFLAGS) & ESP_FF_FBYTES)) != 1) { /* We certainly dropped the ball somewhere. */ message_out = INITIATOR_ERROR; esp_cmd(esp, ESP_CMD_FLUSH); } else if (!esp->msgin_len) { if (esp->erev == fashme) it = esp->hme_fifo_workaround_buffer[0]; else it = sbus_readb(esp->eregs + ESP_FDATA); esp_advance_phase(SCptr, in_msgincont); } else { /* it is ok and we want it */ if (esp->erev == fashme) it = esp->cur_msgin[esp->msgin_ctr] = esp->hme_fifo_workaround_buffer[0]; else it = esp->cur_msgin[esp->msgin_ctr] = sbus_readb(esp->eregs + ESP_FDATA); esp->msgin_ctr++; } } else { esp_advance_phase(SCptr, in_the_dark); return do_work_bus; } } else { it = esp->cur_msgin[0]; } if (!message_out && esp->msgin_len) { if (esp->msgin_ctr < esp->msgin_len) { esp_advance_phase(SCptr, in_msgincont); } else if (esp->msgin_len == 1) { message_out = check_singlebyte_msg(esp); } else if (esp->msgin_len == 2) { if (esp->cur_msgin[0] == EXTENDED_MESSAGE) { if ((it + 2) >= 15) { message_out = MESSAGE_REJECT; } else { esp->msgin_len = (it + 2); esp_advance_phase(SCptr, in_msgincont); } } else { message_out = MESSAGE_REJECT; /* foo on you */ } } else { message_out = check_multibyte_msg(esp); } } if (message_out < 0) { return -message_out; } else if (message_out) { if (((message_out != 1) && ((message_out < 0x20) || (message_out & 0x80)))) esp->msgout_len = 1; esp->cur_msgout[0] = message_out; esp_cmd(esp, ESP_CMD_SATN); esp_advance_phase(SCptr, in_the_dark); esp->msgin_len = 0; } esp->sreg = sbus_readb(esp->eregs + ESP_STATUS); esp->sreg &= ~(ESP_STAT_INTR); if ((esp->sreg & (ESP_STAT_PMSG|ESP_STAT_PCD)) == (ESP_STAT_PMSG|ESP_STAT_PCD)) esp_cmd(esp, ESP_CMD_MOK); if ((SCptr->SCp.sent_command == in_msgindone) && (SCptr->SCp.phase == in_freeing)) return esp_do_freebus(esp); return do_intr_end; } static int esp_do_cmdbegin(struct esp *esp) { struct scsi_cmnd *SCptr = esp->current_SC; esp_advance_phase(SCptr, in_cmdend); if (esp->erev == fashme) { u32 tmp = sbus_readl(esp->dregs + DMA_CSR); int i; for (i = 0; i < esp->esp_scmdleft; i++) esp->esp_command[i] = *esp->esp_scmdp++; esp->esp_scmdleft = 0; esp_cmd(esp, ESP_CMD_FLUSH); esp_setcount(esp->eregs, i, 1); esp_cmd(esp, (ESP_CMD_DMA | ESP_CMD_TI)); tmp |= (DMA_SCSI_DISAB | DMA_ENABLE); tmp &= ~(DMA_ST_WRITE); sbus_writel(i, esp->dregs + DMA_COUNT); sbus_writel(esp->esp_command_dvma, esp->dregs + DMA_ADDR); sbus_writel(tmp, esp->dregs + DMA_CSR); } else { u8 tmp; esp_cmd(esp, ESP_CMD_FLUSH); tmp = *esp->esp_scmdp++; esp->esp_scmdleft--; sbus_writeb(tmp, esp->eregs + ESP_FDATA); esp_cmd(esp, ESP_CMD_TI); } return do_intr_end; } static int esp_do_cmddone(struct esp *esp) { if (esp->erev == fashme) dma_invalidate(esp); else esp_cmd(esp, ESP_CMD_NULL); if (esp->ireg & ESP_INTR_BSERV) { esp_advance_phase(esp->current_SC, in_the_dark); return esp_do_phase_determine(esp); } ESPLOG(("esp%d: in do_cmddone() but didn't get BSERV interrupt.\n", esp->esp_id)); return do_reset_bus; } static int esp_do_msgout(struct esp *esp) { esp_cmd(esp, ESP_CMD_FLUSH); switch (esp->msgout_len) { case 1: if (esp->erev == fashme) hme_fifo_push(esp, &esp->cur_msgout[0], 1); else sbus_writeb(esp->cur_msgout[0], esp->eregs + ESP_FDATA); esp_cmd(esp, ESP_CMD_TI); break; case 2: esp->esp_command[0] = esp->cur_msgout[0]; esp->esp_command[1] = esp->cur_msgout[1]; if (esp->erev == fashme) { hme_fifo_push(esp, &esp->cur_msgout[0], 2); esp_cmd(esp, ESP_CMD_TI); } else { dma_setup(esp, esp->esp_command_dvma, 2, 0); esp_setcount(esp->eregs, 2, 0); esp_cmd(esp, ESP_CMD_DMA | ESP_CMD_TI); } break; case 4: esp->esp_command[0] = esp->cur_msgout[0]; esp->esp_command[1] = esp->cur_msgout[1]; esp->esp_command[2] = esp->cur_msgout[2]; esp->esp_command[3] = esp->cur_msgout[3]; esp->snip = 1; if (esp->erev == fashme) { hme_fifo_push(esp, &esp->cur_msgout[0], 4); esp_cmd(esp, ESP_CMD_TI); } else { dma_setup(esp, esp->esp_command_dvma, 4, 0); esp_setcount(esp->eregs, 4, 0); esp_cmd(esp, ESP_CMD_DMA | ESP_CMD_TI); } break; case 5: esp->esp_command[0] = esp->cur_msgout[0]; esp->esp_command[1] = esp->cur_msgout[1]; esp->esp_command[2] = esp->cur_msgout[2]; esp->esp_command[3] = esp->cur_msgout[3]; esp->esp_command[4] = esp->cur_msgout[4]; esp->snip = 1; if (esp->erev == fashme) { hme_fifo_push(esp, &esp->cur_msgout[0], 5); esp_cmd(esp, ESP_CMD_TI); } else { dma_setup(esp, esp->esp_command_dvma, 5, 0); esp_setcount(esp->eregs, 5, 0); esp_cmd(esp, ESP_CMD_DMA | ESP_CMD_TI); } break; default: /* whoops */ ESPMISC(("bogus msgout sending NOP\n")); esp->cur_msgout[0] = NOP; if (esp->erev == fashme) { hme_fifo_push(esp, &esp->cur_msgout[0], 1); } else { sbus_writeb(esp->cur_msgout[0], esp->eregs + ESP_FDATA); } esp->msgout_len = 1; esp_cmd(esp, ESP_CMD_TI); break; }; esp_advance_phase(esp->current_SC, in_msgoutdone); return do_intr_end; } static int esp_do_msgoutdone(struct esp *esp) { if (esp->msgout_len > 1) { /* XXX HME/FAS ATN deassert workaround required, * XXX no DMA flushing, only possible ESP_CMD_FLUSH * XXX to kill the fifo. */ if (esp->erev != fashme) { u32 tmp; while ((tmp = sbus_readl(esp->dregs + DMA_CSR)) & DMA_PEND_READ) udelay(1); tmp &= ~DMA_ENABLE; sbus_writel(tmp, esp->dregs + DMA_CSR); dma_invalidate(esp); } else { esp_cmd(esp, ESP_CMD_FLUSH); } } if (!(esp->ireg & ESP_INTR_DC)) { if (esp->erev != fashme) esp_cmd(esp, ESP_CMD_NULL); switch (esp->sreg & ESP_STAT_PMASK) { case ESP_MOP: /* whoops, parity error */ ESPLOG(("esp%d: still in msgout, parity error assumed\n", esp->esp_id)); if (esp->msgout_len > 1) esp_cmd(esp, ESP_CMD_SATN); esp_advance_phase(esp->current_SC, in_msgout); return do_work_bus; case ESP_DIP: break; default: /* Happy Meal fifo is touchy... */ if ((esp->erev != fashme) && !fcount(esp) && !(((struct esp_device *)esp->current_SC->device->hostdata)->sync_max_offset)) esp_cmd(esp, ESP_CMD_FLUSH); break; }; } else { ESPLOG(("esp%d: disconnect, resetting bus\n", esp->esp_id)); return do_reset_bus; } /* If we sent out a synchronous negotiation message, update * our state. */ if (esp->cur_msgout[2] == EXTENDED_MESSAGE && esp->cur_msgout[4] == EXTENDED_SDTR) { esp->snip = 1; /* anal retentiveness... */ } esp->prevmsgout = esp->cur_msgout[0]; esp->msgout_len = 0; esp_advance_phase(esp->current_SC, in_the_dark); return esp_do_phase_determine(esp); } static int esp_bus_unexpected(struct esp *esp) { ESPLOG(("esp%d: command in weird state %2x\n", esp->esp_id, esp->current_SC->SCp.phase)); return do_reset_bus; } static espfunc_t bus_vector[] = { esp_do_data_finale, esp_do_data_finale, esp_bus_unexpected, esp_do_msgin, esp_do_msgincont, esp_do_msgindone, esp_do_msgout, esp_do_msgoutdone, esp_do_cmdbegin, esp_do_cmddone, esp_do_status, esp_do_freebus, esp_do_phase_determine, esp_bus_unexpected, esp_bus_unexpected, esp_bus_unexpected, }; /* This is the second tier in our dual-level SCSI state machine. */ static int esp_work_bus(struct esp *esp) { struct scsi_cmnd *SCptr = esp->current_SC; unsigned int phase; ESPBUS(("esp_work_bus: ")); if (!SCptr) { ESPBUS(("reconnect\n")); return esp_do_reconnect(esp); } phase = SCptr->SCp.phase; if ((phase & 0xf0) == in_phases_mask) return bus_vector[(phase & 0x0f)](esp); else if ((phase & 0xf0) == in_slct_mask) return esp_select_complete(esp); else return esp_bus_unexpected(esp); } static espfunc_t isvc_vector[] = { NULL, esp_do_phase_determine, esp_do_resetbus, esp_finish_reset, esp_work_bus }; /* Main interrupt handler for an esp adapter. */ static void esp_handle(struct esp *esp) { struct scsi_cmnd *SCptr; int what_next = do_intr_end; SCptr = esp->current_SC; /* Check for errors. */ esp->sreg = sbus_readb(esp->eregs + ESP_STATUS); esp->sreg &= (~ESP_STAT_INTR); if (esp->erev == fashme) { esp->sreg2 = sbus_readb(esp->eregs + ESP_STATUS2); esp->seqreg = (sbus_readb(esp->eregs + ESP_SSTEP) & ESP_STEP_VBITS); } if (esp->sreg & (ESP_STAT_SPAM)) { /* Gross error, could be due to one of: * * - top of fifo overwritten, could be because * we tried to do a synchronous transfer with * an offset greater than ESP fifo size * * - top of command register overwritten * * - DMA setup to go in one direction, SCSI * bus points in the other, whoops * * - weird phase change during asynchronous * data phase while we are initiator */ ESPLOG(("esp%d: Gross error sreg=%2x\n", esp->esp_id, esp->sreg)); /* If a command is live on the bus we cannot safely * reset the bus, so we'll just let the pieces fall * where they may. Here we are hoping that the * target will be able to cleanly go away soon * so we can safely reset things. */ if (!SCptr) { ESPLOG(("esp%d: No current cmd during gross error, " "resetting bus\n", esp->esp_id)); what_next = do_reset_bus; goto state_machine; } } if (sbus_readl(esp->dregs + DMA_CSR) & DMA_HNDL_ERROR) { /* A DMA gate array error. Here we must * be seeing one of two things. Either the * virtual to physical address translation * on the SBUS could not occur, else the * translation it did get pointed to a bogus * page. Ho hum... */ ESPLOG(("esp%d: DMA error %08x\n", esp->esp_id, sbus_readl(esp->dregs + DMA_CSR))); /* DMA gate array itself must be reset to clear the * error condition. */ esp_reset_dma(esp); what_next = do_reset_bus; goto state_machine; } esp->ireg = sbus_readb(esp->eregs + ESP_INTRPT); /* Unlatch intr reg */ if (esp->erev == fashme) { /* This chip is really losing. */ ESPHME(("HME[")); ESPHME(("sreg2=%02x,", esp->sreg2)); /* Must latch fifo before reading the interrupt * register else garbage ends up in the FIFO * which confuses the driver utterly. */ if (!(esp->sreg2 & ESP_STAT2_FEMPTY) || (esp->sreg2 & ESP_STAT2_F1BYTE)) { ESPHME(("fifo_workaround]")); hme_fifo_read(esp); } else { ESPHME(("no_fifo_workaround]")); } } /* No current cmd is only valid at this point when there are * commands off the bus or we are trying a reset. */ if (!SCptr && !esp->disconnected_SC && !(esp->ireg & ESP_INTR_SR)) { /* Panic is safe, since current_SC is null. */ ESPLOG(("esp%d: no command in esp_handle()\n", esp->esp_id)); panic("esp_handle: current_SC == penguin within interrupt!"); } if (esp->ireg & (ESP_INTR_IC)) { /* Illegal command fed to ESP. Outside of obvious * software bugs that could cause this, there is * a condition with esp100 where we can confuse the * ESP into an erroneous illegal command interrupt * because it does not scrape the FIFO properly * for reselection. See esp100_reconnect_hwbug() * to see how we try very hard to avoid this. */ ESPLOG(("esp%d: invalid command\n", esp->esp_id)); esp_dump_state(esp); if (SCptr != NULL) { /* Devices with very buggy firmware can drop BSY * during a scatter list interrupt when using sync * mode transfers. We continue the transfer as * expected, the target drops the bus, the ESP * gets confused, and we get a illegal command * interrupt because the bus is in the disconnected * state now and ESP_CMD_TI is only allowed when * a nexus is alive on the bus. */ ESPLOG(("esp%d: Forcing async and disabling disconnect for " "target %d\n", esp->esp_id, SCptr->device->id)); SCptr->device->borken = 1; /* foo on you */ } what_next = do_reset_bus; } else if (!(esp->ireg & ~(ESP_INTR_FDONE | ESP_INTR_BSERV | ESP_INTR_DC))) { if (SCptr) { unsigned int phase = SCptr->SCp.phase; if (phase & in_phases_mask) { what_next = esp_work_bus(esp); } else if (phase & in_slct_mask) { what_next = esp_select_complete(esp); } else { ESPLOG(("esp%d: interrupt for no good reason...\n", esp->esp_id)); what_next = do_intr_end; } } else { ESPLOG(("esp%d: BSERV or FDONE or DC while SCptr==NULL\n", esp->esp_id)); what_next = do_reset_bus; } } else if (esp->ireg & ESP_INTR_SR) { ESPLOG(("esp%d: SCSI bus reset interrupt\n", esp->esp_id)); what_next = do_reset_complete; } else if (esp->ireg & (ESP_INTR_S | ESP_INTR_SATN)) { ESPLOG(("esp%d: AIEEE we have been selected by another initiator!\n", esp->esp_id)); what_next = do_reset_bus; } else if (esp->ireg & ESP_INTR_RSEL) { if (SCptr == NULL) { /* This is ok. */ what_next = esp_do_reconnect(esp); } else if (SCptr->SCp.phase & in_slct_mask) { /* Only selection code knows how to clean * up properly. */ ESPDISC(("Reselected during selection attempt\n")); what_next = esp_select_complete(esp); } else { ESPLOG(("esp%d: Reselected while bus is busy\n", esp->esp_id)); what_next = do_reset_bus; } } /* This is tier-one in our dual level SCSI state machine. */ state_machine: while (what_next != do_intr_end) { if (what_next >= do_phase_determine && what_next < do_intr_end) { what_next = isvc_vector[what_next](esp); } else { /* state is completely lost ;-( */ ESPLOG(("esp%d: interrupt engine loses state, resetting bus\n", esp->esp_id)); what_next = do_reset_bus; } } } /* Service only the ESP described by dev_id. */ static irqreturn_t esp_intr(int irq, void *dev_id, struct pt_regs *pregs) { struct esp *esp = dev_id; unsigned long flags; spin_lock_irqsave(esp->ehost->host_lock, flags); if (ESP_IRQ_P(esp->dregs)) { ESP_INTSOFF(esp->dregs); ESPIRQ(("I[%d:%d](", smp_processor_id(), esp->esp_id)); esp_handle(esp); ESPIRQ((")")); ESP_INTSON(esp->dregs); } spin_unlock_irqrestore(esp->ehost->host_lock, flags); return IRQ_HANDLED; } static int esp_slave_alloc(struct scsi_device *SDptr) { struct esp_device *esp_dev = kmalloc(sizeof(struct esp_device), GFP_ATOMIC); if (!esp_dev) return -ENOMEM; memset(esp_dev, 0, sizeof(struct esp_device)); SDptr->hostdata = esp_dev; return 0; } static void esp_slave_destroy(struct scsi_device *SDptr) { struct esp *esp = (struct esp *) SDptr->host->hostdata; esp->targets_present &= ~(1 << SDptr->id); kfree(SDptr->hostdata); SDptr->hostdata = NULL; } static struct scsi_host_template esp_template = { .module = THIS_MODULE, .name = "esp", .info = esp_info, .slave_alloc = esp_slave_alloc, .slave_destroy = esp_slave_destroy, .queuecommand = esp_queue, .eh_abort_handler = esp_abort, .eh_bus_reset_handler = esp_reset, .can_queue = 7, .this_id = 7, .sg_tablesize = SG_ALL, .cmd_per_lun = 1, .use_clustering = ENABLE_CLUSTERING, .proc_name = "esp", .proc_info = esp_proc_info, }; #ifndef CONFIG_SUN4 static struct of_device_id esp_match[] = { { .name = "SUNW,esp", .data = &esp_template, }, { .name = "SUNW,fas", .data = &esp_template, }, { .name = "esp", .data = &esp_template, }, {}, }; MODULE_DEVICE_TABLE(of, esp_match); static struct of_platform_driver esp_sbus_driver = { .name = "esp", .match_table = esp_match, .probe = esp_sbus_probe, .remove = __devexit_p(esp_sbus_remove), }; #endif static int __init esp_init(void) { #ifdef CONFIG_SUN4 return esp_sun4_probe(&esp_template); #else return of_register_driver(&esp_sbus_driver, &sbus_bus_type); #endif } static void __exit esp_exit(void) { #ifdef CONFIG_SUN4 esp_sun4_remove(); #else of_unregister_driver(&esp_sbus_driver); #endif } MODULE_DESCRIPTION("ESP Sun SCSI driver"); MODULE_AUTHOR("David S. Miller (davem@davemloft.net)"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); module_init(esp_init); module_exit(esp_exit);