/* * ASIX AX8817X based USB 2.0 Ethernet Devices * Copyright (C) 2003-2006 David Hollis * Copyright (C) 2005 Phil Chang * Copyright (C) 2006 James Painter * Copyright (c) 2002-2003 TiVo Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "asix.h" int asix_read_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index, u16 size, void *data) { void *buf; int err = -ENOMEM; netdev_dbg(dev->net, "asix_read_cmd() cmd=0x%02x value=0x%04x index=0x%04x size=%d\n", cmd, value, index, size); buf = kmalloc(size, GFP_KERNEL); if (!buf) goto out; err = usb_control_msg( dev->udev, usb_rcvctrlpipe(dev->udev, 0), cmd, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, value, index, buf, size, USB_CTRL_GET_TIMEOUT); if (err == size) memcpy(data, buf, size); else if (err >= 0) err = -EINVAL; kfree(buf); out: return err; } int asix_write_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index, u16 size, void *data) { void *buf = NULL; int err = -ENOMEM; netdev_dbg(dev->net, "asix_write_cmd() cmd=0x%02x value=0x%04x index=0x%04x size=%d\n", cmd, value, index, size); if (data) { buf = kmemdup(data, size, GFP_KERNEL); if (!buf) goto out; } err = usb_control_msg( dev->udev, usb_sndctrlpipe(dev->udev, 0), cmd, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, value, index, buf, size, USB_CTRL_SET_TIMEOUT); kfree(buf); out: return err; } static void asix_async_cmd_callback(struct urb *urb) { struct usb_ctrlrequest *req = (struct usb_ctrlrequest *)urb->context; int status = urb->status; if (status < 0) printk(KERN_DEBUG "asix_async_cmd_callback() failed with %d", status); kfree(req); usb_free_urb(urb); } void asix_write_cmd_async(struct usbnet *dev, u8 cmd, u16 value, u16 index, u16 size, void *data) { struct usb_ctrlrequest *req; int status; struct urb *urb; netdev_dbg(dev->net, "asix_write_cmd_async() cmd=0x%02x value=0x%04x index=0x%04x size=%d\n", cmd, value, index, size); urb = usb_alloc_urb(0, GFP_ATOMIC); if (!urb) { netdev_err(dev->net, "Error allocating URB in write_cmd_async!\n"); return; } req = kmalloc(sizeof(struct usb_ctrlrequest), GFP_ATOMIC); if (!req) { netdev_err(dev->net, "Failed to allocate memory for control request\n"); usb_free_urb(urb); return; } req->bRequestType = USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE; req->bRequest = cmd; req->wValue = cpu_to_le16(value); req->wIndex = cpu_to_le16(index); req->wLength = cpu_to_le16(size); usb_fill_control_urb(urb, dev->udev, usb_sndctrlpipe(dev->udev, 0), (void *)req, data, size, asix_async_cmd_callback, req); status = usb_submit_urb(urb, GFP_ATOMIC); if (status < 0) { netdev_err(dev->net, "Error submitting the control message: status=%d\n", status); kfree(req); usb_free_urb(urb); } } int asix_rx_fixup(struct usbnet *dev, struct sk_buff *skb) { int offset = 0; while (offset + sizeof(u32) < skb->len) { struct sk_buff *ax_skb; u16 size; u32 header = get_unaligned_le32(skb->data + offset); offset += sizeof(u32); /* get the packet length */ size = (u16) (header & 0x7ff); if (size != ((~header >> 16) & 0x07ff)) { netdev_err(dev->net, "asix_rx_fixup() Bad Header Length\n"); return 0; } if ((size > dev->net->mtu + ETH_HLEN + VLAN_HLEN) || (size + offset > skb->len)) { netdev_err(dev->net, "asix_rx_fixup() Bad RX Length %d\n", size); return 0; } ax_skb = netdev_alloc_skb_ip_align(dev->net, size); if (!ax_skb) return 0; skb_put(ax_skb, size); memcpy(ax_skb->data, skb->data + offset, size); usbnet_skb_return(dev, ax_skb); offset += (size + 1) & 0xfffe; } if (skb->len != offset) { netdev_err(dev->net, "asix_rx_fixup() Bad SKB Length %d\n", skb->len); return 0; } return 1; } struct sk_buff *asix_tx_fixup(struct usbnet *dev, struct sk_buff *skb, gfp_t flags) { int padlen; int headroom = skb_headroom(skb); int tailroom = skb_tailroom(skb); u32 packet_len; u32 padbytes = 0xffff0000; padlen = ((skb->len + 4) & (dev->maxpacket - 1)) ? 0 : 4; /* We need to push 4 bytes in front of frame (packet_len) * and maybe add 4 bytes after the end (if padlen is 4) * * Avoid skb_copy_expand() expensive call, using following rules : * - We are allowed to push 4 bytes in headroom if skb_header_cloned() * is false (and if we have 4 bytes of headroom) * - We are allowed to put 4 bytes at tail if skb_cloned() * is false (and if we have 4 bytes of tailroom) * * TCP packets for example are cloned, but skb_header_release() * was called in tcp stack, allowing us to use headroom for our needs. */ if (!skb_header_cloned(skb) && !(padlen && skb_cloned(skb)) && headroom + tailroom >= 4 + padlen) { /* following should not happen, but better be safe */ if (headroom < 4 || tailroom < padlen) { skb->data = memmove(skb->head + 4, skb->data, skb->len); skb_set_tail_pointer(skb, skb->len); } } else { struct sk_buff *skb2; skb2 = skb_copy_expand(skb, 4, padlen, flags); dev_kfree_skb_any(skb); skb = skb2; if (!skb) return NULL; } packet_len = ((skb->len ^ 0x0000ffff) << 16) + skb->len; skb_push(skb, 4); cpu_to_le32s(&packet_len); skb_copy_to_linear_data(skb, &packet_len, sizeof(packet_len)); if (padlen) { cpu_to_le32s(&padbytes); memcpy(skb_tail_pointer(skb), &padbytes, sizeof(padbytes)); skb_put(skb, sizeof(padbytes)); } return skb; } int asix_set_sw_mii(struct usbnet *dev) { int ret; ret = asix_write_cmd(dev, AX_CMD_SET_SW_MII, 0x0000, 0, 0, NULL); if (ret < 0) netdev_err(dev->net, "Failed to enable software MII access\n"); return ret; } int asix_set_hw_mii(struct usbnet *dev) { int ret; ret = asix_write_cmd(dev, AX_CMD_SET_HW_MII, 0x0000, 0, 0, NULL); if (ret < 0) netdev_err(dev->net, "Failed to enable hardware MII access\n"); return ret; } int asix_read_phy_addr(struct usbnet *dev, int internal) { int offset = (internal ? 1 : 0); u8 buf[2]; int ret = asix_read_cmd(dev, AX_CMD_READ_PHY_ID, 0, 0, 2, buf); netdev_dbg(dev->net, "asix_get_phy_addr()\n"); if (ret < 0) { netdev_err(dev->net, "Error reading PHYID register: %02x\n", ret); goto out; } netdev_dbg(dev->net, "asix_get_phy_addr() returning 0x%04x\n", *((__le16 *)buf)); ret = buf[offset]; out: return ret; } int asix_get_phy_addr(struct usbnet *dev) { /* return the address of the internal phy */ return asix_read_phy_addr(dev, 1); } int asix_sw_reset(struct usbnet *dev, u8 flags) { int ret; ret = asix_write_cmd(dev, AX_CMD_SW_RESET, flags, 0, 0, NULL); if (ret < 0) netdev_err(dev->net, "Failed to send software reset: %02x\n", ret); return ret; } u16 asix_read_rx_ctl(struct usbnet *dev) { __le16 v; int ret = asix_read_cmd(dev, AX_CMD_READ_RX_CTL, 0, 0, 2, &v); if (ret < 0) { netdev_err(dev->net, "Error reading RX_CTL register: %02x\n", ret); goto out; } ret = le16_to_cpu(v); out: return ret; } int asix_write_rx_ctl(struct usbnet *dev, u16 mode) { int ret; netdev_dbg(dev->net, "asix_write_rx_ctl() - mode = 0x%04x\n", mode); ret = asix_write_cmd(dev, AX_CMD_WRITE_RX_CTL, mode, 0, 0, NULL); if (ret < 0) netdev_err(dev->net, "Failed to write RX_CTL mode to 0x%04x: %02x\n", mode, ret); return ret; } u16 asix_read_medium_status(struct usbnet *dev) { __le16 v; int ret = asix_read_cmd(dev, AX_CMD_READ_MEDIUM_STATUS, 0, 0, 2, &v); if (ret < 0) { netdev_err(dev->net, "Error reading Medium Status register: %02x\n", ret); return ret; /* TODO: callers not checking for error ret */ } return le16_to_cpu(v); } int asix_write_medium_mode(struct usbnet *dev, u16 mode) { int ret; netdev_dbg(dev->net, "asix_write_medium_mode() - mode = 0x%04x\n", mode); ret = asix_write_cmd(dev, AX_CMD_WRITE_MEDIUM_MODE, mode, 0, 0, NULL); if (ret < 0) netdev_err(dev->net, "Failed to write Medium Mode mode to 0x%04x: %02x\n", mode, ret); return ret; } int asix_write_gpio(struct usbnet *dev, u16 value, int sleep) { int ret; netdev_dbg(dev->net, "asix_write_gpio() - value = 0x%04x\n", value); ret = asix_write_cmd(dev, AX_CMD_WRITE_GPIOS, value, 0, 0, NULL); if (ret < 0) netdev_err(dev->net, "Failed to write GPIO value 0x%04x: %02x\n", value, ret); if (sleep) msleep(sleep); return ret; } /* * AX88772 & AX88178 have a 16-bit RX_CTL value */ void asix_set_multicast(struct net_device *net) { struct usbnet *dev = netdev_priv(net); struct asix_data *data = (struct asix_data *)&dev->data; u16 rx_ctl = AX_DEFAULT_RX_CTL; if (net->flags & IFF_PROMISC) { rx_ctl |= AX_RX_CTL_PRO; } else if (net->flags & IFF_ALLMULTI || netdev_mc_count(net) > AX_MAX_MCAST) { rx_ctl |= AX_RX_CTL_AMALL; } else if (netdev_mc_empty(net)) { /* just broadcast and directed */ } else { /* We use the 20 byte dev->data * for our 8 byte filter buffer * to avoid allocating memory that * is tricky to free later */ struct netdev_hw_addr *ha; u32 crc_bits; memset(data->multi_filter, 0, AX_MCAST_FILTER_SIZE); /* Build the multicast hash filter. */ netdev_for_each_mc_addr(ha, net) { crc_bits = ether_crc(ETH_ALEN, ha->addr) >> 26; data->multi_filter[crc_bits >> 3] |= 1 << (crc_bits & 7); } asix_write_cmd_async(dev, AX_CMD_WRITE_MULTI_FILTER, 0, 0, AX_MCAST_FILTER_SIZE, data->multi_filter); rx_ctl |= AX_RX_CTL_AM; } asix_write_cmd_async(dev, AX_CMD_WRITE_RX_CTL, rx_ctl, 0, 0, NULL); } int asix_mdio_read(struct net_device *netdev, int phy_id, int loc) { struct usbnet *dev = netdev_priv(netdev); __le16 res; mutex_lock(&dev->phy_mutex); asix_set_sw_mii(dev); asix_read_cmd(dev, AX_CMD_READ_MII_REG, phy_id, (__u16)loc, 2, &res); asix_set_hw_mii(dev); mutex_unlock(&dev->phy_mutex); netdev_dbg(dev->net, "asix_mdio_read() phy_id=0x%02x, loc=0x%02x, returns=0x%04x\n", phy_id, loc, le16_to_cpu(res)); return le16_to_cpu(res); } void asix_mdio_write(struct net_device *netdev, int phy_id, int loc, int val) { struct usbnet *dev = netdev_priv(netdev); __le16 res = cpu_to_le16(val); netdev_dbg(dev->net, "asix_mdio_write() phy_id=0x%02x, loc=0x%02x, val=0x%04x\n", phy_id, loc, val); mutex_lock(&dev->phy_mutex); asix_set_sw_mii(dev); asix_write_cmd(dev, AX_CMD_WRITE_MII_REG, phy_id, (__u16)loc, 2, &res); asix_set_hw_mii(dev); mutex_unlock(&dev->phy_mutex); } void asix_get_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo) { struct usbnet *dev = netdev_priv(net); u8 opt; if (asix_read_cmd(dev, AX_CMD_READ_MONITOR_MODE, 0, 0, 1, &opt) < 0) { wolinfo->supported = 0; wolinfo->wolopts = 0; return; } wolinfo->supported = WAKE_PHY | WAKE_MAGIC; wolinfo->wolopts = 0; if (opt & AX_MONITOR_LINK) wolinfo->wolopts |= WAKE_PHY; if (opt & AX_MONITOR_MAGIC) wolinfo->wolopts |= WAKE_MAGIC; } int asix_set_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo) { struct usbnet *dev = netdev_priv(net); u8 opt = 0; if (wolinfo->wolopts & WAKE_PHY) opt |= AX_MONITOR_LINK; if (wolinfo->wolopts & WAKE_MAGIC) opt |= AX_MONITOR_MAGIC; if (asix_write_cmd(dev, AX_CMD_WRITE_MONITOR_MODE, opt, 0, 0, NULL) < 0) return -EINVAL; return 0; } int asix_get_eeprom_len(struct net_device *net) { return AX_EEPROM_LEN; } int asix_get_eeprom(struct net_device *net, struct ethtool_eeprom *eeprom, u8 *data) { struct usbnet *dev = netdev_priv(net); u16 *eeprom_buff; int first_word, last_word; int i; if (eeprom->len == 0) return -EINVAL; eeprom->magic = AX_EEPROM_MAGIC; first_word = eeprom->offset >> 1; last_word = (eeprom->offset + eeprom->len - 1) >> 1; eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1), GFP_KERNEL); if (!eeprom_buff) return -ENOMEM; /* ax8817x returns 2 bytes from eeprom on read */ for (i = first_word; i <= last_word; i++) { if (asix_read_cmd(dev, AX_CMD_READ_EEPROM, i, 0, 2, &(eeprom_buff[i - first_word])) < 0) { kfree(eeprom_buff); return -EIO; } } memcpy(data, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); kfree(eeprom_buff); return 0; } int asix_set_eeprom(struct net_device *net, struct ethtool_eeprom *eeprom, u8 *data) { struct usbnet *dev = netdev_priv(net); u16 *eeprom_buff; int first_word, last_word; int i; int ret; netdev_dbg(net, "write EEPROM len %d, offset %d, magic 0x%x\n", eeprom->len, eeprom->offset, eeprom->magic); if (eeprom->len == 0) return -EINVAL; if (eeprom->magic != AX_EEPROM_MAGIC) return -EINVAL; first_word = eeprom->offset >> 1; last_word = (eeprom->offset + eeprom->len - 1) >> 1; eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1), GFP_KERNEL); if (!eeprom_buff) return -ENOMEM; /* align data to 16 bit boundaries, read the missing data from the EEPROM */ if (eeprom->offset & 1) { ret = asix_read_cmd(dev, AX_CMD_READ_EEPROM, first_word, 0, 2, &(eeprom_buff[0])); if (ret < 0) { netdev_err(net, "Failed to read EEPROM at offset 0x%02x.\n", first_word); goto free; } } if ((eeprom->offset + eeprom->len) & 1) { ret = asix_read_cmd(dev, AX_CMD_READ_EEPROM, last_word, 0, 2, &(eeprom_buff[last_word - first_word])); if (ret < 0) { netdev_err(net, "Failed to read EEPROM at offset 0x%02x.\n", last_word); goto free; } } memcpy((u8 *)eeprom_buff + (eeprom->offset & 1), data, eeprom->len); /* write data to EEPROM */ ret = asix_write_cmd(dev, AX_CMD_WRITE_ENABLE, 0x0000, 0, 0, NULL); if (ret < 0) { netdev_err(net, "Failed to enable EEPROM write\n"); goto free; } msleep(20); for (i = first_word; i <= last_word; i++) { netdev_dbg(net, "write to EEPROM at offset 0x%02x, data 0x%04x\n", i, eeprom_buff[i - first_word]); ret = asix_write_cmd(dev, AX_CMD_WRITE_EEPROM, i, eeprom_buff[i - first_word], 0, NULL); if (ret < 0) { netdev_err(net, "Failed to write EEPROM at offset 0x%02x.\n", i); goto free; } msleep(20); } ret = asix_write_cmd(dev, AX_CMD_WRITE_DISABLE, 0x0000, 0, 0, NULL); if (ret < 0) { netdev_err(net, "Failed to disable EEPROM write\n"); goto free; } ret = 0; free: kfree(eeprom_buff); return ret; } void asix_get_drvinfo(struct net_device *net, struct ethtool_drvinfo *info) { /* Inherit standard device info */ usbnet_get_drvinfo(net, info); strncpy (info->driver, DRIVER_NAME, sizeof info->driver); strncpy (info->version, DRIVER_VERSION, sizeof info->version); info->eedump_len = AX_EEPROM_LEN; } int asix_set_mac_address(struct net_device *net, void *p) { struct usbnet *dev = netdev_priv(net); struct asix_data *data = (struct asix_data *)&dev->data; struct sockaddr *addr = p; if (netif_running(net)) return -EBUSY; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(net->dev_addr, addr->sa_data, ETH_ALEN); /* We use the 20 byte dev->data * for our 6 byte mac buffer * to avoid allocating memory that * is tricky to free later */ memcpy(data->mac_addr, addr->sa_data, ETH_ALEN); asix_write_cmd_async(dev, AX_CMD_WRITE_NODE_ID, 0, 0, ETH_ALEN, data->mac_addr); return 0; }