/* * Copyright (c) International Business Machines Corp., 2006 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See * the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Author: Artem Bityutskiy (Битюцкий Артём) */ /* This file mostly implements UBI kernel API functions */ #include #include #include #include #include #include #include "ubi.h" /** * ubi_do_get_device_info - get information about UBI device. * @ubi: UBI device description object * @di: the information is stored here * * This function is the same as 'ubi_get_device_info()', but it assumes the UBI * device is locked and cannot disappear. */ void ubi_do_get_device_info(struct ubi_device *ubi, struct ubi_device_info *di) { di->ubi_num = ubi->ubi_num; di->leb_size = ubi->leb_size; di->leb_start = ubi->leb_start; di->min_io_size = ubi->min_io_size; di->max_write_size = ubi->max_write_size; di->ro_mode = ubi->ro_mode; di->cdev = ubi->cdev.dev; } EXPORT_SYMBOL_GPL(ubi_do_get_device_info); /** * ubi_get_device_info - get information about UBI device. * @ubi_num: UBI device number * @di: the information is stored here * * This function returns %0 in case of success, %-EINVAL if the UBI device * number is invalid, and %-ENODEV if there is no such UBI device. */ int ubi_get_device_info(int ubi_num, struct ubi_device_info *di) { struct ubi_device *ubi; if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) return -EINVAL; ubi = ubi_get_device(ubi_num); if (!ubi) return -ENODEV; ubi_do_get_device_info(ubi, di); ubi_put_device(ubi); return 0; } EXPORT_SYMBOL_GPL(ubi_get_device_info); /** * ubi_do_get_volume_info - get information about UBI volume. * @ubi: UBI device description object * @vol: volume description object * @vi: the information is stored here */ void ubi_do_get_volume_info(struct ubi_device *ubi, struct ubi_volume *vol, struct ubi_volume_info *vi) { vi->vol_id = vol->vol_id; vi->ubi_num = ubi->ubi_num; vi->size = vol->reserved_pebs; vi->used_bytes = vol->used_bytes; vi->vol_type = vol->vol_type; vi->corrupted = vol->corrupted; vi->upd_marker = vol->upd_marker; vi->alignment = vol->alignment; vi->usable_leb_size = vol->usable_leb_size; vi->name_len = vol->name_len; vi->name = vol->name; vi->cdev = vol->cdev.dev; } /** * ubi_get_volume_info - get information about UBI volume. * @desc: volume descriptor * @vi: the information is stored here */ void ubi_get_volume_info(struct ubi_volume_desc *desc, struct ubi_volume_info *vi) { ubi_do_get_volume_info(desc->vol->ubi, desc->vol, vi); } EXPORT_SYMBOL_GPL(ubi_get_volume_info); /** * ubi_open_volume - open UBI volume. * @ubi_num: UBI device number * @vol_id: volume ID * @mode: open mode * * The @mode parameter specifies if the volume should be opened in read-only * mode, read-write mode, or exclusive mode. The exclusive mode guarantees that * nobody else will be able to open this volume. UBI allows to have many volume * readers and one writer at a time. * * If a static volume is being opened for the first time since boot, it will be * checked by this function, which means it will be fully read and the CRC * checksum of each logical eraseblock will be checked. * * This function returns volume descriptor in case of success and a negative * error code in case of failure. */ struct ubi_volume_desc *ubi_open_volume(int ubi_num, int vol_id, int mode) { int err; struct ubi_volume_desc *desc; struct ubi_device *ubi; struct ubi_volume *vol; dbg_gen("open device %d, volume %d, mode %d", ubi_num, vol_id, mode); if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) return ERR_PTR(-EINVAL); if (mode != UBI_READONLY && mode != UBI_READWRITE && mode != UBI_EXCLUSIVE) return ERR_PTR(-EINVAL); /* * First of all, we have to get the UBI device to prevent its removal. */ ubi = ubi_get_device(ubi_num); if (!ubi) return ERR_PTR(-ENODEV); if (vol_id < 0 || vol_id >= ubi->vtbl_slots) { err = -EINVAL; goto out_put_ubi; } desc = kmalloc(sizeof(struct ubi_volume_desc), GFP_KERNEL); if (!desc) { err = -ENOMEM; goto out_put_ubi; } err = -ENODEV; if (!try_module_get(THIS_MODULE)) goto out_free; spin_lock(&ubi->volumes_lock); vol = ubi->volumes[vol_id]; if (!vol) goto out_unlock; err = -EBUSY; switch (mode) { case UBI_READONLY: if (vol->exclusive) goto out_unlock; vol->readers += 1; break; case UBI_READWRITE: if (vol->exclusive || vol->writers > 0) goto out_unlock; vol->writers += 1; break; case UBI_EXCLUSIVE: if (vol->exclusive || vol->writers || vol->readers) goto out_unlock; vol->exclusive = 1; break; } get_device(&vol->dev); vol->ref_count += 1; spin_unlock(&ubi->volumes_lock); desc->vol = vol; desc->mode = mode; mutex_lock(&ubi->ckvol_mutex); if (!vol->checked) { /* This is the first open - check the volume */ err = ubi_check_volume(ubi, vol_id); if (err < 0) { mutex_unlock(&ubi->ckvol_mutex); ubi_close_volume(desc); return ERR_PTR(err); } if (err == 1) { ubi_warn("volume %d on UBI device %d is corrupted", vol_id, ubi->ubi_num); vol->corrupted = 1; } vol->checked = 1; } mutex_unlock(&ubi->ckvol_mutex); return desc; out_unlock: spin_unlock(&ubi->volumes_lock); module_put(THIS_MODULE); out_free: kfree(desc); out_put_ubi: ubi_put_device(ubi); ubi_err("cannot open device %d, volume %d, error %d", ubi_num, vol_id, err); return ERR_PTR(err); } EXPORT_SYMBOL_GPL(ubi_open_volume); /** * ubi_open_volume_nm - open UBI volume by name. * @ubi_num: UBI device number * @name: volume name * @mode: open mode * * This function is similar to 'ubi_open_volume()', but opens a volume by name. */ struct ubi_volume_desc *ubi_open_volume_nm(int ubi_num, const char *name, int mode) { int i, vol_id = -1, len; struct ubi_device *ubi; struct ubi_volume_desc *ret; dbg_gen("open device %d, volume %s, mode %d", ubi_num, name, mode); if (!name) return ERR_PTR(-EINVAL); len = strnlen(name, UBI_VOL_NAME_MAX + 1); if (len > UBI_VOL_NAME_MAX) return ERR_PTR(-EINVAL); if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) return ERR_PTR(-EINVAL); ubi = ubi_get_device(ubi_num); if (!ubi) return ERR_PTR(-ENODEV); spin_lock(&ubi->volumes_lock); /* Walk all volumes of this UBI device */ for (i = 0; i < ubi->vtbl_slots; i++) { struct ubi_volume *vol = ubi->volumes[i]; if (vol && len == vol->name_len && !strcmp(name, vol->name)) { vol_id = i; break; } } spin_unlock(&ubi->volumes_lock); if (vol_id >= 0) ret = ubi_open_volume(ubi_num, vol_id, mode); else ret = ERR_PTR(-ENODEV); /* * We should put the UBI device even in case of success, because * 'ubi_open_volume()' took a reference as well. */ ubi_put_device(ubi); return ret; } EXPORT_SYMBOL_GPL(ubi_open_volume_nm); /** * ubi_open_volume_path - open UBI volume by its character device node path. * @pathname: volume character device node path * @mode: open mode * * This function is similar to 'ubi_open_volume()', but opens a volume the path * to its character device node. */ struct ubi_volume_desc *ubi_open_volume_path(const char *pathname, int mode) { int error, ubi_num, vol_id, mod; struct inode *inode; struct path path; dbg_gen("open volume %s, mode %d", pathname, mode); if (!pathname || !*pathname) return ERR_PTR(-EINVAL); error = kern_path(pathname, LOOKUP_FOLLOW, &path); if (error) return ERR_PTR(error); inode = path.dentry->d_inode; mod = inode->i_mode; ubi_num = ubi_major2num(imajor(inode)); vol_id = iminor(inode) - 1; path_put(&path); if (!S_ISCHR(mod)) return ERR_PTR(-EINVAL); if (vol_id >= 0 && ubi_num >= 0) return ubi_open_volume(ubi_num, vol_id, mode); return ERR_PTR(-ENODEV); } EXPORT_SYMBOL_GPL(ubi_open_volume_path); /** * ubi_close_volume - close UBI volume. * @desc: volume descriptor */ void ubi_close_volume(struct ubi_volume_desc *desc) { struct ubi_volume *vol = desc->vol; struct ubi_device *ubi = vol->ubi; dbg_gen("close device %d, volume %d, mode %d", ubi->ubi_num, vol->vol_id, desc->mode); spin_lock(&ubi->volumes_lock); switch (desc->mode) { case UBI_READONLY: vol->readers -= 1; break; case UBI_READWRITE: vol->writers -= 1; break; case UBI_EXCLUSIVE: vol->exclusive = 0; } vol->ref_count -= 1; spin_unlock(&ubi->volumes_lock); kfree(desc); put_device(&vol->dev); ubi_put_device(ubi); module_put(THIS_MODULE); } EXPORT_SYMBOL_GPL(ubi_close_volume); /** * ubi_leb_read - read data. * @desc: volume descriptor * @lnum: logical eraseblock number to read from * @buf: buffer where to store the read data * @offset: offset within the logical eraseblock to read from * @len: how many bytes to read * @check: whether UBI has to check the read data's CRC or not. * * This function reads data from offset @offset of logical eraseblock @lnum and * stores the data at @buf. When reading from static volumes, @check specifies * whether the data has to be checked or not. If yes, the whole logical * eraseblock will be read and its CRC checksum will be checked (i.e., the CRC * checksum is per-eraseblock). So checking may substantially slow down the * read speed. The @check argument is ignored for dynamic volumes. * * In case of success, this function returns zero. In case of failure, this * function returns a negative error code. * * %-EBADMSG error code is returned: * o for both static and dynamic volumes if MTD driver has detected a data * integrity problem (unrecoverable ECC checksum mismatch in case of NAND); * o for static volumes in case of data CRC mismatch. * * If the volume is damaged because of an interrupted update this function just * returns immediately with %-EBADF error code. */ int ubi_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset, int len, int check) { struct ubi_volume *vol = desc->vol; struct ubi_device *ubi = vol->ubi; int err, vol_id = vol->vol_id; dbg_gen("read %d bytes from LEB %d:%d:%d", len, vol_id, lnum, offset); if (vol_id < 0 || vol_id >= ubi->vtbl_slots || lnum < 0 || lnum >= vol->used_ebs || offset < 0 || len < 0 || offset + len > vol->usable_leb_size) return -EINVAL; if (vol->vol_type == UBI_STATIC_VOLUME) { if (vol->used_ebs == 0) /* Empty static UBI volume */ return 0; if (lnum == vol->used_ebs - 1 && offset + len > vol->last_eb_bytes) return -EINVAL; } if (vol->upd_marker) return -EBADF; if (len == 0) return 0; err = ubi_eba_read_leb(ubi, vol, lnum, buf, offset, len, check); if (err && mtd_is_eccerr(err) && vol->vol_type == UBI_STATIC_VOLUME) { ubi_warn("mark volume %d as corrupted", vol_id); vol->corrupted = 1; } return err; } EXPORT_SYMBOL_GPL(ubi_leb_read); /** * ubi_leb_write - write data. * @desc: volume descriptor * @lnum: logical eraseblock number to write to * @buf: data to write * @offset: offset within the logical eraseblock where to write * @len: how many bytes to write * * This function writes @len bytes of data from @buf to offset @offset of * logical eraseblock @lnum. * * This function takes care of physical eraseblock write failures. If write to * the physical eraseblock write operation fails, the logical eraseblock is * re-mapped to another physical eraseblock, the data is recovered, and the * write finishes. UBI has a pool of reserved physical eraseblocks for this. * * If all the data were successfully written, zero is returned. If an error * occurred and UBI has not been able to recover from it, this function returns * a negative error code. Note, in case of an error, it is possible that * something was still written to the flash media, but that may be some * garbage. * * If the volume is damaged because of an interrupted update this function just * returns immediately with %-EBADF code. */ int ubi_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf, int offset, int len) { struct ubi_volume *vol = desc->vol; struct ubi_device *ubi = vol->ubi; int vol_id = vol->vol_id; dbg_gen("write %d bytes to LEB %d:%d:%d", len, vol_id, lnum, offset); if (vol_id < 0 || vol_id >= ubi->vtbl_slots) return -EINVAL; if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME) return -EROFS; if (lnum < 0 || lnum >= vol->reserved_pebs || offset < 0 || len < 0 || offset + len > vol->usable_leb_size || offset & (ubi->min_io_size - 1) || len & (ubi->min_io_size - 1)) return -EINVAL; if (vol->upd_marker) return -EBADF; if (len == 0) return 0; return ubi_eba_write_leb(ubi, vol, lnum, buf, offset, len); } EXPORT_SYMBOL_GPL(ubi_leb_write); /* * ubi_leb_change - change logical eraseblock atomically. * @desc: volume descriptor * @lnum: logical eraseblock number to change * @buf: data to write * @len: how many bytes to write * * This function changes the contents of a logical eraseblock atomically. @buf * has to contain new logical eraseblock data, and @len - the length of the * data, which has to be aligned. The length may be shorter than the logical * eraseblock size, ant the logical eraseblock may be appended to more times * later on. This function guarantees that in case of an unclean reboot the old * contents is preserved. Returns zero in case of success and a negative error * code in case of failure. */ int ubi_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf, int len) { struct ubi_volume *vol = desc->vol; struct ubi_device *ubi = vol->ubi; int vol_id = vol->vol_id; dbg_gen("atomically write %d bytes to LEB %d:%d", len, vol_id, lnum); if (vol_id < 0 || vol_id >= ubi->vtbl_slots) return -EINVAL; if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME) return -EROFS; if (lnum < 0 || lnum >= vol->reserved_pebs || len < 0 || len > vol->usable_leb_size || len & (ubi->min_io_size - 1)) return -EINVAL; if (vol->upd_marker) return -EBADF; if (len == 0) return 0; return ubi_eba_atomic_leb_change(ubi, vol, lnum, buf, len); } EXPORT_SYMBOL_GPL(ubi_leb_change); /** * ubi_leb_erase - erase logical eraseblock. * @desc: volume descriptor * @lnum: logical eraseblock number * * This function un-maps logical eraseblock @lnum and synchronously erases the * correspondent physical eraseblock. Returns zero in case of success and a * negative error code in case of failure. * * If the volume is damaged because of an interrupted update this function just * returns immediately with %-EBADF code. */ int ubi_leb_erase(struct ubi_volume_desc *desc, int lnum) { struct ubi_volume *vol = desc->vol; struct ubi_device *ubi = vol->ubi; int err; dbg_gen("erase LEB %d:%d", vol->vol_id, lnum); if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME) return -EROFS; if (lnum < 0 || lnum >= vol->reserved_pebs) return -EINVAL; if (vol->upd_marker) return -EBADF; err = ubi_eba_unmap_leb(ubi, vol, lnum); if (err) return err; return ubi_wl_flush(ubi, vol->vol_id, lnum); } EXPORT_SYMBOL_GPL(ubi_leb_erase); /** * ubi_leb_unmap - un-map logical eraseblock. * @desc: volume descriptor * @lnum: logical eraseblock number * * This function un-maps logical eraseblock @lnum and schedules the * corresponding physical eraseblock for erasure, so that it will eventually be * physically erased in background. This operation is much faster than the * erase operation. * * Unlike erase, the un-map operation does not guarantee that the logical * eraseblock will contain all 0xFF bytes when UBI is initialized again. For * example, if several logical eraseblocks are un-mapped, and an unclean reboot * happens after this, the logical eraseblocks will not necessarily be * un-mapped again when this MTD device is attached. They may actually be * mapped to the same physical eraseblocks again. So, this function has to be * used with care. * * In other words, when un-mapping a logical eraseblock, UBI does not store * any information about this on the flash media, it just marks the logical * eraseblock as "un-mapped" in RAM. If UBI is detached before the physical * eraseblock is physically erased, it will be mapped again to the same logical * eraseblock when the MTD device is attached again. * * The main and obvious use-case of this function is when the contents of a * logical eraseblock has to be re-written. Then it is much more efficient to * first un-map it, then write new data, rather than first erase it, then write * new data. Note, once new data has been written to the logical eraseblock, * UBI guarantees that the old contents has gone forever. In other words, if an * unclean reboot happens after the logical eraseblock has been un-mapped and * then written to, it will contain the last written data. * * This function returns zero in case of success and a negative error code in * case of failure. If the volume is damaged because of an interrupted update * this function just returns immediately with %-EBADF code. */ int ubi_leb_unmap(struct ubi_volume_desc *desc, int lnum) { struct ubi_volume *vol = desc->vol; struct ubi_device *ubi = vol->ubi; dbg_gen("unmap LEB %d:%d", vol->vol_id, lnum); if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME) return -EROFS; if (lnum < 0 || lnum >= vol->reserved_pebs) return -EINVAL; if (vol->upd_marker) return -EBADF; return ubi_eba_unmap_leb(ubi, vol, lnum); } EXPORT_SYMBOL_GPL(ubi_leb_unmap); /** * ubi_leb_map - map logical eraseblock to a physical eraseblock. * @desc: volume descriptor * @lnum: logical eraseblock number * * This function maps an un-mapped logical eraseblock @lnum to a physical * eraseblock. This means, that after a successful invocation of this * function the logical eraseblock @lnum will be empty (contain only %0xFF * bytes) and be mapped to a physical eraseblock, even if an unclean reboot * happens. * * This function returns zero in case of success, %-EBADF if the volume is * damaged because of an interrupted update, %-EBADMSG if the logical * eraseblock is already mapped, and other negative error codes in case of * other failures. */ int ubi_leb_map(struct ubi_volume_desc *desc, int lnum) { struct ubi_volume *vol = desc->vol; struct ubi_device *ubi = vol->ubi; dbg_gen("unmap LEB %d:%d", vol->vol_id, lnum); if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME) return -EROFS; if (lnum < 0 || lnum >= vol->reserved_pebs) return -EINVAL; if (vol->upd_marker) return -EBADF; if (vol->eba_tbl[lnum] >= 0) return -EBADMSG; return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0); } EXPORT_SYMBOL_GPL(ubi_leb_map); /** * ubi_is_mapped - check if logical eraseblock is mapped. * @desc: volume descriptor * @lnum: logical eraseblock number * * This function checks if logical eraseblock @lnum is mapped to a physical * eraseblock. If a logical eraseblock is un-mapped, this does not necessarily * mean it will still be un-mapped after the UBI device is re-attached. The * logical eraseblock may become mapped to the physical eraseblock it was last * mapped to. * * This function returns %1 if the LEB is mapped, %0 if not, and a negative * error code in case of failure. If the volume is damaged because of an * interrupted update this function just returns immediately with %-EBADF error * code. */ int ubi_is_mapped(struct ubi_volume_desc *desc, int lnum) { struct ubi_volume *vol = desc->vol; dbg_gen("test LEB %d:%d", vol->vol_id, lnum); if (lnum < 0 || lnum >= vol->reserved_pebs) return -EINVAL; if (vol->upd_marker) return -EBADF; return vol->eba_tbl[lnum] >= 0; } EXPORT_SYMBOL_GPL(ubi_is_mapped); /** * ubi_sync - synchronize UBI device buffers. * @ubi_num: UBI device to synchronize * * The underlying MTD device may cache data in hardware or in software. This * function ensures the caches are flushed. Returns zero in case of success and * a negative error code in case of failure. */ int ubi_sync(int ubi_num) { struct ubi_device *ubi; ubi = ubi_get_device(ubi_num); if (!ubi) return -ENODEV; mtd_sync(ubi->mtd); ubi_put_device(ubi); return 0; } EXPORT_SYMBOL_GPL(ubi_sync); /** * ubi_flush - flush UBI work queue. * @ubi_num: UBI device to flush work queue * @vol_id: volume id to flush for * @lnum: logical eraseblock number to flush for * * This function executes all pending works for a particular volume id / logical * eraseblock number pair. If either value is set to %UBI_ALL, then it acts as * a wildcard for all of the corresponding volume numbers or logical * eraseblock numbers. It returns zero in case of success and a negative error * code in case of failure. */ int ubi_flush(int ubi_num, int vol_id, int lnum) { struct ubi_device *ubi; int err = 0; ubi = ubi_get_device(ubi_num); if (!ubi) return -ENODEV; err = ubi_wl_flush(ubi, vol_id, lnum); ubi_put_device(ubi); return err; } EXPORT_SYMBOL_GPL(ubi_flush); BLOCKING_NOTIFIER_HEAD(ubi_notifiers); /** * ubi_register_volume_notifier - register a volume notifier. * @nb: the notifier description object * @ignore_existing: if non-zero, do not send "added" notification for all * already existing volumes * * This function registers a volume notifier, which means that * 'nb->notifier_call()' will be invoked when an UBI volume is created, * removed, re-sized, re-named, or updated. The first argument of the function * is the notification type. The second argument is pointer to a * &struct ubi_notification object which describes the notification event. * Using UBI API from the volume notifier is prohibited. * * This function returns zero in case of success and a negative error code * in case of failure. */ int ubi_register_volume_notifier(struct notifier_block *nb, int ignore_existing) { int err; err = blocking_notifier_chain_register(&ubi_notifiers, nb); if (err != 0) return err; if (ignore_existing) return 0; /* * We are going to walk all UBI devices and all volumes, and * notify the user about existing volumes by the %UBI_VOLUME_ADDED * event. We have to lock the @ubi_devices_mutex to make sure UBI * devices do not disappear. */ mutex_lock(&ubi_devices_mutex); ubi_enumerate_volumes(nb); mutex_unlock(&ubi_devices_mutex); return err; } EXPORT_SYMBOL_GPL(ubi_register_volume_notifier); /** * ubi_unregister_volume_notifier - unregister the volume notifier. * @nb: the notifier description object * * This function unregisters volume notifier @nm and returns zero in case of * success and a negative error code in case of failure. */ int ubi_unregister_volume_notifier(struct notifier_block *nb) { return blocking_notifier_chain_unregister(&ubi_notifiers, nb); } EXPORT_SYMBOL_GPL(ubi_unregister_volume_notifier);