/* * Copyright © 2004 Texas Instruments, Jian Zhang * Copyright © 2004 Micron Technology Inc. * Copyright © 2004 David Brownell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_MTD_NAND_OMAP_BCH #include #include #endif #include #define DRIVER_NAME "omap2-nand" #define OMAP_NAND_TIMEOUT_MS 5000 #define NAND_Ecc_P1e (1 << 0) #define NAND_Ecc_P2e (1 << 1) #define NAND_Ecc_P4e (1 << 2) #define NAND_Ecc_P8e (1 << 3) #define NAND_Ecc_P16e (1 << 4) #define NAND_Ecc_P32e (1 << 5) #define NAND_Ecc_P64e (1 << 6) #define NAND_Ecc_P128e (1 << 7) #define NAND_Ecc_P256e (1 << 8) #define NAND_Ecc_P512e (1 << 9) #define NAND_Ecc_P1024e (1 << 10) #define NAND_Ecc_P2048e (1 << 11) #define NAND_Ecc_P1o (1 << 16) #define NAND_Ecc_P2o (1 << 17) #define NAND_Ecc_P4o (1 << 18) #define NAND_Ecc_P8o (1 << 19) #define NAND_Ecc_P16o (1 << 20) #define NAND_Ecc_P32o (1 << 21) #define NAND_Ecc_P64o (1 << 22) #define NAND_Ecc_P128o (1 << 23) #define NAND_Ecc_P256o (1 << 24) #define NAND_Ecc_P512o (1 << 25) #define NAND_Ecc_P1024o (1 << 26) #define NAND_Ecc_P2048o (1 << 27) #define TF(value) (value ? 1 : 0) #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0) #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1) #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2) #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3) #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4) #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5) #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6) #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7) #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0) #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1) #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2) #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3) #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4) #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5) #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6) #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7) #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0) #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1) #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2) #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3) #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4) #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5) #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6) #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7) #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0) #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1) #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2) #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3) #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4) #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5) #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6) #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7) #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0) #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1) #define PREFETCH_CONFIG1_CS_SHIFT 24 #define ECC_CONFIG_CS_SHIFT 1 #define CS_MASK 0x7 #define ENABLE_PREFETCH (0x1 << 7) #define DMA_MPU_MODE_SHIFT 2 #define ECCSIZE0_SHIFT 12 #define ECCSIZE1_SHIFT 22 #define ECC1RESULTSIZE 0x1 #define ECCCLEAR 0x100 #define ECC1 0x1 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8) #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff) #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F) #define STATUS_BUFF_EMPTY 0x00000001 #define OMAP24XX_DMA_GPMC 4 #define BCH8_MAX_ERROR 8 /* upto 8 bit correctable */ #define BCH4_MAX_ERROR 4 /* upto 4 bit correctable */ #define SECTOR_BYTES 512 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */ #define BCH4_BIT_PAD 4 #define BCH8_ECC_MAX ((SECTOR_BYTES + BCH8_ECC_OOB_BYTES) * 8) #define BCH4_ECC_MAX ((SECTOR_BYTES + BCH4_ECC_OOB_BYTES) * 8) /* GPMC ecc engine settings for read */ #define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */ #define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */ #define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */ #define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */ #define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */ /* GPMC ecc engine settings for write */ #define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */ #define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */ #define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */ #ifdef CONFIG_MTD_NAND_OMAP_BCH static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc, 0xac, 0x6b, 0xff, 0x99, 0x7b}; static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10}; #endif /* oob info generated runtime depending on ecc algorithm and layout selected */ static struct nand_ecclayout omap_oobinfo; /* Define some generic bad / good block scan pattern which are used * while scanning a device for factory marked good / bad blocks */ static uint8_t scan_ff_pattern[] = { 0xff }; static struct nand_bbt_descr bb_descrip_flashbased = { .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES, .offs = 0, .len = 1, .pattern = scan_ff_pattern, }; struct omap_nand_info { struct nand_hw_control controller; struct omap_nand_platform_data *pdata; struct mtd_info mtd; struct nand_chip nand; struct platform_device *pdev; int gpmc_cs; unsigned long phys_base; unsigned long mem_size; struct completion comp; struct dma_chan *dma; int gpmc_irq_fifo; int gpmc_irq_count; enum { OMAP_NAND_IO_READ = 0, /* read */ OMAP_NAND_IO_WRITE, /* write */ } iomode; u_char *buf; int buf_len; struct gpmc_nand_regs reg; #ifdef CONFIG_MTD_NAND_OMAP_BCH struct bch_control *bch; struct nand_ecclayout ecclayout; bool is_elm_used; struct device *elm_dev; struct device_node *of_node; #endif }; /** * omap_prefetch_enable - configures and starts prefetch transfer * @cs: cs (chip select) number * @fifo_th: fifo threshold to be used for read/ write * @dma_mode: dma mode enable (1) or disable (0) * @u32_count: number of bytes to be transferred * @is_write: prefetch read(0) or write post(1) mode */ static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode, unsigned int u32_count, int is_write, struct omap_nand_info *info) { u32 val; if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX) return -1; if (readl(info->reg.gpmc_prefetch_control)) return -EBUSY; /* Set the amount of bytes to be prefetched */ writel(u32_count, info->reg.gpmc_prefetch_config2); /* Set dma/mpu mode, the prefetch read / post write and * enable the engine. Set which cs is has requested for. */ val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) | PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH | (dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write)); writel(val, info->reg.gpmc_prefetch_config1); /* Start the prefetch engine */ writel(0x1, info->reg.gpmc_prefetch_control); return 0; } /** * omap_prefetch_reset - disables and stops the prefetch engine */ static int omap_prefetch_reset(int cs, struct omap_nand_info *info) { u32 config1; /* check if the same module/cs is trying to reset */ config1 = readl(info->reg.gpmc_prefetch_config1); if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs) return -EINVAL; /* Stop the PFPW engine */ writel(0x0, info->reg.gpmc_prefetch_control); /* Reset/disable the PFPW engine */ writel(0x0, info->reg.gpmc_prefetch_config1); return 0; } /** * omap_hwcontrol - hardware specific access to control-lines * @mtd: MTD device structure * @cmd: command to device * @ctrl: * NAND_NCE: bit 0 -> don't care * NAND_CLE: bit 1 -> Command Latch * NAND_ALE: bit 2 -> Address Latch * * NOTE: boards may use different bits for these!! */ static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); if (cmd != NAND_CMD_NONE) { if (ctrl & NAND_CLE) writeb(cmd, info->reg.gpmc_nand_command); else if (ctrl & NAND_ALE) writeb(cmd, info->reg.gpmc_nand_address); else /* NAND_NCE */ writeb(cmd, info->reg.gpmc_nand_data); } } /** * omap_read_buf8 - read data from NAND controller into buffer * @mtd: MTD device structure * @buf: buffer to store date * @len: number of bytes to read */ static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len) { struct nand_chip *nand = mtd->priv; ioread8_rep(nand->IO_ADDR_R, buf, len); } /** * omap_write_buf8 - write buffer to NAND controller * @mtd: MTD device structure * @buf: data buffer * @len: number of bytes to write */ static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); u_char *p = (u_char *)buf; u32 status = 0; while (len--) { iowrite8(*p++, info->nand.IO_ADDR_W); /* wait until buffer is available for write */ do { status = readl(info->reg.gpmc_status) & STATUS_BUFF_EMPTY; } while (!status); } } /** * omap_read_buf16 - read data from NAND controller into buffer * @mtd: MTD device structure * @buf: buffer to store date * @len: number of bytes to read */ static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len) { struct nand_chip *nand = mtd->priv; ioread16_rep(nand->IO_ADDR_R, buf, len / 2); } /** * omap_write_buf16 - write buffer to NAND controller * @mtd: MTD device structure * @buf: data buffer * @len: number of bytes to write */ static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); u16 *p = (u16 *) buf; u32 status = 0; /* FIXME try bursts of writesw() or DMA ... */ len >>= 1; while (len--) { iowrite16(*p++, info->nand.IO_ADDR_W); /* wait until buffer is available for write */ do { status = readl(info->reg.gpmc_status) & STATUS_BUFF_EMPTY; } while (!status); } } /** * omap_read_buf_pref - read data from NAND controller into buffer * @mtd: MTD device structure * @buf: buffer to store date * @len: number of bytes to read */ static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); uint32_t r_count = 0; int ret = 0; u32 *p = (u32 *)buf; /* take care of subpage reads */ if (len % 4) { if (info->nand.options & NAND_BUSWIDTH_16) omap_read_buf16(mtd, buf, len % 4); else omap_read_buf8(mtd, buf, len % 4); p = (u32 *) (buf + len % 4); len -= len % 4; } /* configure and start prefetch transfer */ ret = omap_prefetch_enable(info->gpmc_cs, PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info); if (ret) { /* PFPW engine is busy, use cpu copy method */ if (info->nand.options & NAND_BUSWIDTH_16) omap_read_buf16(mtd, (u_char *)p, len); else omap_read_buf8(mtd, (u_char *)p, len); } else { do { r_count = readl(info->reg.gpmc_prefetch_status); r_count = PREFETCH_STATUS_FIFO_CNT(r_count); r_count = r_count >> 2; ioread32_rep(info->nand.IO_ADDR_R, p, r_count); p += r_count; len -= r_count << 2; } while (len); /* disable and stop the PFPW engine */ omap_prefetch_reset(info->gpmc_cs, info); } } /** * omap_write_buf_pref - write buffer to NAND controller * @mtd: MTD device structure * @buf: data buffer * @len: number of bytes to write */ static void omap_write_buf_pref(struct mtd_info *mtd, const u_char *buf, int len) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); uint32_t w_count = 0; int i = 0, ret = 0; u16 *p = (u16 *)buf; unsigned long tim, limit; u32 val; /* take care of subpage writes */ if (len % 2 != 0) { writeb(*buf, info->nand.IO_ADDR_W); p = (u16 *)(buf + 1); len--; } /* configure and start prefetch transfer */ ret = omap_prefetch_enable(info->gpmc_cs, PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info); if (ret) { /* PFPW engine is busy, use cpu copy method */ if (info->nand.options & NAND_BUSWIDTH_16) omap_write_buf16(mtd, (u_char *)p, len); else omap_write_buf8(mtd, (u_char *)p, len); } else { while (len) { w_count = readl(info->reg.gpmc_prefetch_status); w_count = PREFETCH_STATUS_FIFO_CNT(w_count); w_count = w_count >> 1; for (i = 0; (i < w_count) && len; i++, len -= 2) iowrite16(*p++, info->nand.IO_ADDR_W); } /* wait for data to flushed-out before reset the prefetch */ tim = 0; limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); do { cpu_relax(); val = readl(info->reg.gpmc_prefetch_status); val = PREFETCH_STATUS_COUNT(val); } while (val && (tim++ < limit)); /* disable and stop the PFPW engine */ omap_prefetch_reset(info->gpmc_cs, info); } } /* * omap_nand_dma_callback: callback on the completion of dma transfer * @data: pointer to completion data structure */ static void omap_nand_dma_callback(void *data) { complete((struct completion *) data); } /* * omap_nand_dma_transfer: configure and start dma transfer * @mtd: MTD device structure * @addr: virtual address in RAM of source/destination * @len: number of data bytes to be transferred * @is_write: flag for read/write operation */ static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr, unsigned int len, int is_write) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); struct dma_async_tx_descriptor *tx; enum dma_data_direction dir = is_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE; struct scatterlist sg; unsigned long tim, limit; unsigned n; int ret; u32 val; if (addr >= high_memory) { struct page *p1; if (((size_t)addr & PAGE_MASK) != ((size_t)(addr + len - 1) & PAGE_MASK)) goto out_copy; p1 = vmalloc_to_page(addr); if (!p1) goto out_copy; addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK); } sg_init_one(&sg, addr, len); n = dma_map_sg(info->dma->device->dev, &sg, 1, dir); if (n == 0) { dev_err(&info->pdev->dev, "Couldn't DMA map a %d byte buffer\n", len); goto out_copy; } tx = dmaengine_prep_slave_sg(info->dma, &sg, n, is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!tx) goto out_copy_unmap; tx->callback = omap_nand_dma_callback; tx->callback_param = &info->comp; dmaengine_submit(tx); /* configure and start prefetch transfer */ ret = omap_prefetch_enable(info->gpmc_cs, PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info); if (ret) /* PFPW engine is busy, use cpu copy method */ goto out_copy_unmap; init_completion(&info->comp); dma_async_issue_pending(info->dma); /* setup and start DMA using dma_addr */ wait_for_completion(&info->comp); tim = 0; limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); do { cpu_relax(); val = readl(info->reg.gpmc_prefetch_status); val = PREFETCH_STATUS_COUNT(val); } while (val && (tim++ < limit)); /* disable and stop the PFPW engine */ omap_prefetch_reset(info->gpmc_cs, info); dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); return 0; out_copy_unmap: dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); out_copy: if (info->nand.options & NAND_BUSWIDTH_16) is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len) : omap_write_buf16(mtd, (u_char *) addr, len); else is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len) : omap_write_buf8(mtd, (u_char *) addr, len); return 0; } /** * omap_read_buf_dma_pref - read data from NAND controller into buffer * @mtd: MTD device structure * @buf: buffer to store date * @len: number of bytes to read */ static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len) { if (len <= mtd->oobsize) omap_read_buf_pref(mtd, buf, len); else /* start transfer in DMA mode */ omap_nand_dma_transfer(mtd, buf, len, 0x0); } /** * omap_write_buf_dma_pref - write buffer to NAND controller * @mtd: MTD device structure * @buf: data buffer * @len: number of bytes to write */ static void omap_write_buf_dma_pref(struct mtd_info *mtd, const u_char *buf, int len) { if (len <= mtd->oobsize) omap_write_buf_pref(mtd, buf, len); else /* start transfer in DMA mode */ omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1); } /* * omap_nand_irq - GPMC irq handler * @this_irq: gpmc irq number * @dev: omap_nand_info structure pointer is passed here */ static irqreturn_t omap_nand_irq(int this_irq, void *dev) { struct omap_nand_info *info = (struct omap_nand_info *) dev; u32 bytes; bytes = readl(info->reg.gpmc_prefetch_status); bytes = PREFETCH_STATUS_FIFO_CNT(bytes); bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */ if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */ if (this_irq == info->gpmc_irq_count) goto done; if (info->buf_len && (info->buf_len < bytes)) bytes = info->buf_len; else if (!info->buf_len) bytes = 0; iowrite32_rep(info->nand.IO_ADDR_W, (u32 *)info->buf, bytes >> 2); info->buf = info->buf + bytes; info->buf_len -= bytes; } else { ioread32_rep(info->nand.IO_ADDR_R, (u32 *)info->buf, bytes >> 2); info->buf = info->buf + bytes; if (this_irq == info->gpmc_irq_count) goto done; } return IRQ_HANDLED; done: complete(&info->comp); disable_irq_nosync(info->gpmc_irq_fifo); disable_irq_nosync(info->gpmc_irq_count); return IRQ_HANDLED; } /* * omap_read_buf_irq_pref - read data from NAND controller into buffer * @mtd: MTD device structure * @buf: buffer to store date * @len: number of bytes to read */ static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); int ret = 0; if (len <= mtd->oobsize) { omap_read_buf_pref(mtd, buf, len); return; } info->iomode = OMAP_NAND_IO_READ; info->buf = buf; init_completion(&info->comp); /* configure and start prefetch transfer */ ret = omap_prefetch_enable(info->gpmc_cs, PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info); if (ret) /* PFPW engine is busy, use cpu copy method */ goto out_copy; info->buf_len = len; enable_irq(info->gpmc_irq_count); enable_irq(info->gpmc_irq_fifo); /* waiting for read to complete */ wait_for_completion(&info->comp); /* disable and stop the PFPW engine */ omap_prefetch_reset(info->gpmc_cs, info); return; out_copy: if (info->nand.options & NAND_BUSWIDTH_16) omap_read_buf16(mtd, buf, len); else omap_read_buf8(mtd, buf, len); } /* * omap_write_buf_irq_pref - write buffer to NAND controller * @mtd: MTD device structure * @buf: data buffer * @len: number of bytes to write */ static void omap_write_buf_irq_pref(struct mtd_info *mtd, const u_char *buf, int len) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); int ret = 0; unsigned long tim, limit; u32 val; if (len <= mtd->oobsize) { omap_write_buf_pref(mtd, buf, len); return; } info->iomode = OMAP_NAND_IO_WRITE; info->buf = (u_char *) buf; init_completion(&info->comp); /* configure and start prefetch transfer : size=24 */ ret = omap_prefetch_enable(info->gpmc_cs, (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info); if (ret) /* PFPW engine is busy, use cpu copy method */ goto out_copy; info->buf_len = len; enable_irq(info->gpmc_irq_count); enable_irq(info->gpmc_irq_fifo); /* waiting for write to complete */ wait_for_completion(&info->comp); /* wait for data to flushed-out before reset the prefetch */ tim = 0; limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); do { val = readl(info->reg.gpmc_prefetch_status); val = PREFETCH_STATUS_COUNT(val); cpu_relax(); } while (val && (tim++ < limit)); /* disable and stop the PFPW engine */ omap_prefetch_reset(info->gpmc_cs, info); return; out_copy: if (info->nand.options & NAND_BUSWIDTH_16) omap_write_buf16(mtd, buf, len); else omap_write_buf8(mtd, buf, len); } /** * gen_true_ecc - This function will generate true ECC value * @ecc_buf: buffer to store ecc code * * This generated true ECC value can be used when correcting * data read from NAND flash memory core */ static void gen_true_ecc(u8 *ecc_buf) { u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8); ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) | P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp)); ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) | P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp)); ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) | P1e(tmp) | P2048o(tmp) | P2048e(tmp)); } /** * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data * @ecc_data1: ecc code from nand spare area * @ecc_data2: ecc code from hardware register obtained from hardware ecc * @page_data: page data * * This function compares two ECC's and indicates if there is an error. * If the error can be corrected it will be corrected to the buffer. * If there is no error, %0 is returned. If there is an error but it * was corrected, %1 is returned. Otherwise, %-1 is returned. */ static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ u8 *ecc_data2, /* read from register */ u8 *page_data) { uint i; u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8]; u8 comp0_bit[8], comp1_bit[8], comp2_bit[8]; u8 ecc_bit[24]; u8 ecc_sum = 0; u8 find_bit = 0; uint find_byte = 0; int isEccFF; isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF); gen_true_ecc(ecc_data1); gen_true_ecc(ecc_data2); for (i = 0; i <= 2; i++) { *(ecc_data1 + i) = ~(*(ecc_data1 + i)); *(ecc_data2 + i) = ~(*(ecc_data2 + i)); } for (i = 0; i < 8; i++) { tmp0_bit[i] = *ecc_data1 % 2; *ecc_data1 = *ecc_data1 / 2; } for (i = 0; i < 8; i++) { tmp1_bit[i] = *(ecc_data1 + 1) % 2; *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2; } for (i = 0; i < 8; i++) { tmp2_bit[i] = *(ecc_data1 + 2) % 2; *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2; } for (i = 0; i < 8; i++) { comp0_bit[i] = *ecc_data2 % 2; *ecc_data2 = *ecc_data2 / 2; } for (i = 0; i < 8; i++) { comp1_bit[i] = *(ecc_data2 + 1) % 2; *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2; } for (i = 0; i < 8; i++) { comp2_bit[i] = *(ecc_data2 + 2) % 2; *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2; } for (i = 0; i < 6; i++) ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2]; for (i = 0; i < 8; i++) ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i]; for (i = 0; i < 8; i++) ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i]; ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0]; ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1]; for (i = 0; i < 24; i++) ecc_sum += ecc_bit[i]; switch (ecc_sum) { case 0: /* Not reached because this function is not called if * ECC values are equal */ return 0; case 1: /* Uncorrectable error */ pr_debug("ECC UNCORRECTED_ERROR 1\n"); return -1; case 11: /* UN-Correctable error */ pr_debug("ECC UNCORRECTED_ERROR B\n"); return -1; case 12: /* Correctable error */ find_byte = (ecc_bit[23] << 8) + (ecc_bit[21] << 7) + (ecc_bit[19] << 6) + (ecc_bit[17] << 5) + (ecc_bit[15] << 4) + (ecc_bit[13] << 3) + (ecc_bit[11] << 2) + (ecc_bit[9] << 1) + ecc_bit[7]; find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1]; pr_debug("Correcting single bit ECC error at offset: " "%d, bit: %d\n", find_byte, find_bit); page_data[find_byte] ^= (1 << find_bit); return 1; default: if (isEccFF) { if (ecc_data2[0] == 0 && ecc_data2[1] == 0 && ecc_data2[2] == 0) return 0; } pr_debug("UNCORRECTED_ERROR default\n"); return -1; } } /** * omap_correct_data - Compares the ECC read with HW generated ECC * @mtd: MTD device structure * @dat: page data * @read_ecc: ecc read from nand flash * @calc_ecc: ecc read from HW ECC registers * * Compares the ecc read from nand spare area with ECC registers values * and if ECC's mismatched, it will call 'omap_compare_ecc' for error * detection and correction. If there are no errors, %0 is returned. If * there were errors and all of the errors were corrected, the number of * corrected errors is returned. If uncorrectable errors exist, %-1 is * returned. */ static int omap_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); int blockCnt = 0, i = 0, ret = 0; int stat = 0; /* Ex NAND_ECC_HW12_2048 */ if ((info->nand.ecc.mode == NAND_ECC_HW) && (info->nand.ecc.size == 2048)) blockCnt = 4; else blockCnt = 1; for (i = 0; i < blockCnt; i++) { if (memcmp(read_ecc, calc_ecc, 3) != 0) { ret = omap_compare_ecc(read_ecc, calc_ecc, dat); if (ret < 0) return ret; /* keep track of the number of corrected errors */ stat += ret; } read_ecc += 3; calc_ecc += 3; dat += 512; } return stat; } /** * omap_calcuate_ecc - Generate non-inverted ECC bytes. * @mtd: MTD device structure * @dat: The pointer to data on which ecc is computed * @ecc_code: The ecc_code buffer * * Using noninverted ECC can be considered ugly since writing a blank * page ie. padding will clear the ECC bytes. This is no problem as long * nobody is trying to write data on the seemingly unused page. Reading * an erased page will produce an ECC mismatch between generated and read * ECC bytes that has to be dealt with separately. */ static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); u32 val; val = readl(info->reg.gpmc_ecc_config); if (((val >> ECC_CONFIG_CS_SHIFT) & ~CS_MASK) != info->gpmc_cs) return -EINVAL; /* read ecc result */ val = readl(info->reg.gpmc_ecc1_result); *ecc_code++ = val; /* P128e, ..., P1e */ *ecc_code++ = val >> 16; /* P128o, ..., P1o */ /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */ *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0); return 0; } /** * omap_enable_hwecc - This function enables the hardware ecc functionality * @mtd: MTD device structure * @mode: Read/Write mode */ static void omap_enable_hwecc(struct mtd_info *mtd, int mode) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); struct nand_chip *chip = mtd->priv; unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; u32 val; /* clear ecc and enable bits */ val = ECCCLEAR | ECC1; writel(val, info->reg.gpmc_ecc_control); /* program ecc and result sizes */ val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) | ECC1RESULTSIZE); writel(val, info->reg.gpmc_ecc_size_config); switch (mode) { case NAND_ECC_READ: case NAND_ECC_WRITE: writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); break; case NAND_ECC_READSYN: writel(ECCCLEAR, info->reg.gpmc_ecc_control); break; default: dev_info(&info->pdev->dev, "error: unrecognized Mode[%d]!\n", mode); break; } /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); writel(val, info->reg.gpmc_ecc_config); } /** * omap_wait - wait until the command is done * @mtd: MTD device structure * @chip: NAND Chip structure * * Wait function is called during Program and erase operations and * the way it is called from MTD layer, we should wait till the NAND * chip is ready after the programming/erase operation has completed. * * Erase can take up to 400ms and program up to 20ms according to * general NAND and SmartMedia specs */ static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip) { struct nand_chip *this = mtd->priv; struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); unsigned long timeo = jiffies; int status, state = this->state; if (state == FL_ERASING) timeo += msecs_to_jiffies(400); else timeo += msecs_to_jiffies(20); writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command); while (time_before(jiffies, timeo)) { status = readb(info->reg.gpmc_nand_data); if (status & NAND_STATUS_READY) break; cond_resched(); } status = readb(info->reg.gpmc_nand_data); return status; } /** * omap_dev_ready - calls the platform specific dev_ready function * @mtd: MTD device structure */ static int omap_dev_ready(struct mtd_info *mtd) { unsigned int val = 0; struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); val = readl(info->reg.gpmc_status); if ((val & 0x100) == 0x100) { return 1; } else { return 0; } } #ifdef CONFIG_MTD_NAND_OMAP_BCH /** * omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction * @mtd: MTD device structure * @mode: Read/Write mode * * When using BCH, sector size is hardcoded to 512 bytes. * Using wrapping mode 6 both for reading and writing if ELM module not uses * for error correction. * On writing, * eccsize0 = 0 (no additional protected byte in spare area) * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area) */ static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode) { int nerrors; unsigned int dev_width, nsectors; struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); struct nand_chip *chip = mtd->priv; u32 val, wr_mode; unsigned int ecc_size1, ecc_size0; /* Using wrapping mode 6 for writing */ wr_mode = BCH_WRAPMODE_6; /* * ECC engine enabled for valid ecc_size0 nibbles * and disabled for ecc_size1 nibbles. */ ecc_size0 = BCH_ECC_SIZE0; ecc_size1 = BCH_ECC_SIZE1; /* Perform ecc calculation on 512-byte sector */ nsectors = 1; /* Update number of error correction */ nerrors = info->nand.ecc.strength; /* Multi sector reading/writing for NAND flash with page size < 4096 */ if (info->is_elm_used && (mtd->writesize <= 4096)) { if (mode == NAND_ECC_READ) { /* Using wrapping mode 1 for reading */ wr_mode = BCH_WRAPMODE_1; /* * ECC engine enabled for ecc_size0 nibbles * and disabled for ecc_size1 nibbles. */ ecc_size0 = (nerrors == 8) ? BCH8R_ECC_SIZE0 : BCH4R_ECC_SIZE0; ecc_size1 = (nerrors == 8) ? BCH8R_ECC_SIZE1 : BCH4R_ECC_SIZE1; } /* Perform ecc calculation for one page (< 4096) */ nsectors = info->nand.ecc.steps; } writel(ECC1, info->reg.gpmc_ecc_control); /* Configure ecc size for BCH */ val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT); writel(val, info->reg.gpmc_ecc_size_config); dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; /* BCH configuration */ val = ((1 << 16) | /* enable BCH */ (((nerrors == 8) ? 1 : 0) << 12) | /* 8 or 4 bits */ (wr_mode << 8) | /* wrap mode */ (dev_width << 7) | /* bus width */ (((nsectors-1) & 0x7) << 4) | /* number of sectors */ (info->gpmc_cs << 1) | /* ECC CS */ (0x1)); /* enable ECC */ writel(val, info->reg.gpmc_ecc_config); /* Clear ecc and enable bits */ writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); } /** * omap3_calculate_ecc_bch4 - Generate 7 bytes of ECC bytes * @mtd: MTD device structure * @dat: The pointer to data on which ecc is computed * @ecc_code: The ecc_code buffer */ static int omap3_calculate_ecc_bch4(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); unsigned long nsectors, val1, val2; int i; nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1; for (i = 0; i < nsectors; i++) { /* Read hw-computed remainder */ val1 = readl(info->reg.gpmc_bch_result0[i]); val2 = readl(info->reg.gpmc_bch_result1[i]); /* * Add constant polynomial to remainder, in order to get an ecc * sequence of 0xFFs for a buffer filled with 0xFFs; and * left-justify the resulting polynomial. */ *ecc_code++ = 0x28 ^ ((val2 >> 12) & 0xFF); *ecc_code++ = 0x13 ^ ((val2 >> 4) & 0xFF); *ecc_code++ = 0xcc ^ (((val2 & 0xF) << 4)|((val1 >> 28) & 0xF)); *ecc_code++ = 0x39 ^ ((val1 >> 20) & 0xFF); *ecc_code++ = 0x96 ^ ((val1 >> 12) & 0xFF); *ecc_code++ = 0xac ^ ((val1 >> 4) & 0xFF); *ecc_code++ = 0x7f ^ ((val1 & 0xF) << 4); } return 0; } /** * omap3_calculate_ecc_bch8 - Generate 13 bytes of ECC bytes * @mtd: MTD device structure * @dat: The pointer to data on which ecc is computed * @ecc_code: The ecc_code buffer */ static int omap3_calculate_ecc_bch8(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); unsigned long nsectors, val1, val2, val3, val4; int i; nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1; for (i = 0; i < nsectors; i++) { /* Read hw-computed remainder */ val1 = readl(info->reg.gpmc_bch_result0[i]); val2 = readl(info->reg.gpmc_bch_result1[i]); val3 = readl(info->reg.gpmc_bch_result2[i]); val4 = readl(info->reg.gpmc_bch_result3[i]); /* * Add constant polynomial to remainder, in order to get an ecc * sequence of 0xFFs for a buffer filled with 0xFFs. */ *ecc_code++ = 0xef ^ (val4 & 0xFF); *ecc_code++ = 0x51 ^ ((val3 >> 24) & 0xFF); *ecc_code++ = 0x2e ^ ((val3 >> 16) & 0xFF); *ecc_code++ = 0x09 ^ ((val3 >> 8) & 0xFF); *ecc_code++ = 0xed ^ (val3 & 0xFF); *ecc_code++ = 0x93 ^ ((val2 >> 24) & 0xFF); *ecc_code++ = 0x9a ^ ((val2 >> 16) & 0xFF); *ecc_code++ = 0xc2 ^ ((val2 >> 8) & 0xFF); *ecc_code++ = 0x97 ^ (val2 & 0xFF); *ecc_code++ = 0x79 ^ ((val1 >> 24) & 0xFF); *ecc_code++ = 0xe5 ^ ((val1 >> 16) & 0xFF); *ecc_code++ = 0x24 ^ ((val1 >> 8) & 0xFF); *ecc_code++ = 0xb5 ^ (val1 & 0xFF); } return 0; } /** * omap3_calculate_ecc_bch - Generate bytes of ECC bytes * @mtd: MTD device structure * @dat: The pointer to data on which ecc is computed * @ecc_code: The ecc_code buffer * * Support calculating of BCH4/8 ecc vectors for the page */ static int omap3_calculate_ecc_bch(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4; int i, eccbchtsel; nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1; /* * find BCH scheme used * 0 -> BCH4 * 1 -> BCH8 */ eccbchtsel = ((readl(info->reg.gpmc_ecc_config) >> 12) & 0x3); for (i = 0; i < nsectors; i++) { /* Read hw-computed remainder */ bch_val1 = readl(info->reg.gpmc_bch_result0[i]); bch_val2 = readl(info->reg.gpmc_bch_result1[i]); if (eccbchtsel) { bch_val3 = readl(info->reg.gpmc_bch_result2[i]); bch_val4 = readl(info->reg.gpmc_bch_result3[i]); } if (eccbchtsel) { /* BCH8 ecc scheme */ *ecc_code++ = (bch_val4 & 0xFF); *ecc_code++ = ((bch_val3 >> 24) & 0xFF); *ecc_code++ = ((bch_val3 >> 16) & 0xFF); *ecc_code++ = ((bch_val3 >> 8) & 0xFF); *ecc_code++ = (bch_val3 & 0xFF); *ecc_code++ = ((bch_val2 >> 24) & 0xFF); *ecc_code++ = ((bch_val2 >> 16) & 0xFF); *ecc_code++ = ((bch_val2 >> 8) & 0xFF); *ecc_code++ = (bch_val2 & 0xFF); *ecc_code++ = ((bch_val1 >> 24) & 0xFF); *ecc_code++ = ((bch_val1 >> 16) & 0xFF); *ecc_code++ = ((bch_val1 >> 8) & 0xFF); *ecc_code++ = (bch_val1 & 0xFF); /* * Setting 14th byte to zero to handle * erased page & maintain compatibility * with RBL */ *ecc_code++ = 0x0; } else { /* BCH4 ecc scheme */ *ecc_code++ = ((bch_val2 >> 12) & 0xFF); *ecc_code++ = ((bch_val2 >> 4) & 0xFF); *ecc_code++ = ((bch_val2 & 0xF) << 4) | ((bch_val1 >> 28) & 0xF); *ecc_code++ = ((bch_val1 >> 20) & 0xFF); *ecc_code++ = ((bch_val1 >> 12) & 0xFF); *ecc_code++ = ((bch_val1 >> 4) & 0xFF); *ecc_code++ = ((bch_val1 & 0xF) << 4); /* * Setting 8th byte to zero to handle * erased page */ *ecc_code++ = 0x0; } } return 0; } /** * erased_sector_bitflips - count bit flips * @data: data sector buffer * @oob: oob buffer * @info: omap_nand_info * * Check the bit flips in erased page falls below correctable level. * If falls below, report the page as erased with correctable bit * flip, else report as uncorrectable page. */ static int erased_sector_bitflips(u_char *data, u_char *oob, struct omap_nand_info *info) { int flip_bits = 0, i; for (i = 0; i < info->nand.ecc.size; i++) { flip_bits += hweight8(~data[i]); if (flip_bits > info->nand.ecc.strength) return 0; } for (i = 0; i < info->nand.ecc.bytes - 1; i++) { flip_bits += hweight8(~oob[i]); if (flip_bits > info->nand.ecc.strength) return 0; } /* * Bit flips falls in correctable level. * Fill data area with 0xFF */ if (flip_bits) { memset(data, 0xFF, info->nand.ecc.size); memset(oob, 0xFF, info->nand.ecc.bytes); } return flip_bits; } /** * omap_elm_correct_data - corrects page data area in case error reported * @mtd: MTD device structure * @data: page data * @read_ecc: ecc read from nand flash * @calc_ecc: ecc read from HW ECC registers * * Calculated ecc vector reported as zero in case of non-error pages. * In case of error/erased pages non-zero error vector is reported. * In case of non-zero ecc vector, check read_ecc at fixed offset * (x = 13/7 in case of BCH8/4 == 0) to find page programmed or not. * To handle bit flips in this data, count the number of 0's in * read_ecc[x] and check if it greater than 4. If it is less, it is * programmed page, else erased page. * * 1. If page is erased, check with standard ecc vector (ecc vector * for erased page to find any bit flip). If check fails, bit flip * is present in erased page. Count the bit flips in erased page and * if it falls under correctable level, report page with 0xFF and * update the correctable bit information. * 2. If error is reported on programmed page, update elm error * vector and correct the page with ELM error correction routine. * */ static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data, u_char *read_ecc, u_char *calc_ecc) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); int eccsteps = info->nand.ecc.steps; int i , j, stat = 0; int eccsize, eccflag, ecc_vector_size; struct elm_errorvec err_vec[ERROR_VECTOR_MAX]; u_char *ecc_vec = calc_ecc; u_char *spare_ecc = read_ecc; u_char *erased_ecc_vec; enum bch_ecc type; bool is_error_reported = false; /* Initialize elm error vector to zero */ memset(err_vec, 0, sizeof(err_vec)); if (info->nand.ecc.strength == BCH8_MAX_ERROR) { type = BCH8_ECC; erased_ecc_vec = bch8_vector; } else { type = BCH4_ECC; erased_ecc_vec = bch4_vector; } ecc_vector_size = info->nand.ecc.bytes; /* * Remove extra byte padding for BCH8 RBL * compatibility and erased page handling */ eccsize = ecc_vector_size - 1; for (i = 0; i < eccsteps ; i++) { eccflag = 0; /* initialize eccflag */ /* * Check any error reported, * In case of error, non zero ecc reported. */ for (j = 0; (j < eccsize); j++) { if (calc_ecc[j] != 0) { eccflag = 1; /* non zero ecc, error present */ break; } } if (eccflag == 1) { /* * Set threshold to minimum of 4, half of ecc.strength/2 * to allow max bit flip in byte to 4 */ unsigned int threshold = min_t(unsigned int, 4, info->nand.ecc.strength / 2); /* * Check data area is programmed by counting * number of 0's at fixed offset in spare area. * Checking count of 0's against threshold. * In case programmed page expects at least threshold * zeros in byte. * If zeros are less than threshold for programmed page/ * zeros are more than threshold erased page, either * case page reported as uncorrectable. */ if (hweight8(~read_ecc[eccsize]) >= threshold) { /* * Update elm error vector as * data area is programmed */ err_vec[i].error_reported = true; is_error_reported = true; } else { /* Error reported in erased page */ int bitflip_count; u_char *buf = &data[info->nand.ecc.size * i]; if (memcmp(calc_ecc, erased_ecc_vec, eccsize)) { bitflip_count = erased_sector_bitflips( buf, read_ecc, info); if (bitflip_count) stat += bitflip_count; else return -EINVAL; } } } /* Update the ecc vector */ calc_ecc += ecc_vector_size; read_ecc += ecc_vector_size; } /* Check if any error reported */ if (!is_error_reported) return 0; /* Decode BCH error using ELM module */ elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec); for (i = 0; i < eccsteps; i++) { if (err_vec[i].error_reported) { for (j = 0; j < err_vec[i].error_count; j++) { u32 bit_pos, byte_pos, error_max, pos; if (type == BCH8_ECC) error_max = BCH8_ECC_MAX; else error_max = BCH4_ECC_MAX; if (info->nand.ecc.strength == BCH8_MAX_ERROR) pos = err_vec[i].error_loc[j]; else /* Add 4 to take care 4 bit padding */ pos = err_vec[i].error_loc[j] + BCH4_BIT_PAD; /* Calculate bit position of error */ bit_pos = pos % 8; /* Calculate byte position of error */ byte_pos = (error_max - pos - 1) / 8; if (pos < error_max) { if (byte_pos < 512) data[byte_pos] ^= 1 << bit_pos; else spare_ecc[byte_pos - 512] ^= 1 << bit_pos; } /* else, not interested to correct ecc */ } } /* Update number of correctable errors */ stat += err_vec[i].error_count; /* Update page data with sector size */ data += info->nand.ecc.size; spare_ecc += ecc_vector_size; } for (i = 0; i < eccsteps; i++) /* Return error if uncorrectable error present */ if (err_vec[i].error_uncorrectable) return -EINVAL; return stat; } /** * omap3_correct_data_bch - Decode received data and correct errors * @mtd: MTD device structure * @data: page data * @read_ecc: ecc read from nand flash * @calc_ecc: ecc read from HW ECC registers */ static int omap3_correct_data_bch(struct mtd_info *mtd, u_char *data, u_char *read_ecc, u_char *calc_ecc) { int i, count; /* cannot correct more than 8 errors */ unsigned int errloc[8]; struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); count = decode_bch(info->bch, NULL, 512, read_ecc, calc_ecc, NULL, errloc); if (count > 0) { /* correct errors */ for (i = 0; i < count; i++) { /* correct data only, not ecc bytes */ if (errloc[i] < 8*512) data[errloc[i]/8] ^= 1 << (errloc[i] & 7); pr_debug("corrected bitflip %u\n", errloc[i]); } } else if (count < 0) { pr_err("ecc unrecoverable error\n"); } return count; } /** * omap_write_page_bch - BCH ecc based write page function for entire page * @mtd: mtd info structure * @chip: nand chip info structure * @buf: data buffer * @oob_required: must write chip->oob_poi to OOB * * Custom write page method evolved to support multi sector writing in one shot */ static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { int i; uint8_t *ecc_calc = chip->buffers->ecccalc; uint32_t *eccpos = chip->ecc.layout->eccpos; /* Enable GPMC ecc engine */ chip->ecc.hwctl(mtd, NAND_ECC_WRITE); /* Write data */ chip->write_buf(mtd, buf, mtd->writesize); /* Update ecc vector from GPMC result registers */ chip->ecc.calculate(mtd, buf, &ecc_calc[0]); for (i = 0; i < chip->ecc.total; i++) chip->oob_poi[eccpos[i]] = ecc_calc[i]; /* Write ecc vector to OOB area */ chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); return 0; } /** * omap_read_page_bch - BCH ecc based page read function for entire page * @mtd: mtd info structure * @chip: nand chip info structure * @buf: buffer to store read data * @oob_required: caller requires OOB data read to chip->oob_poi * @page: page number to read * * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module * used for error correction. * Custom method evolved to support ELM error correction & multi sector * reading. On reading page data area is read along with OOB data with * ecc engine enabled. ecc vector updated after read of OOB data. * For non error pages ecc vector reported as zero. */ static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { uint8_t *ecc_calc = chip->buffers->ecccalc; uint8_t *ecc_code = chip->buffers->ecccode; uint32_t *eccpos = chip->ecc.layout->eccpos; uint8_t *oob = &chip->oob_poi[eccpos[0]]; uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0]; int stat; unsigned int max_bitflips = 0; /* Enable GPMC ecc engine */ chip->ecc.hwctl(mtd, NAND_ECC_READ); /* Read data */ chip->read_buf(mtd, buf, mtd->writesize); /* Read oob bytes */ chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1); chip->read_buf(mtd, oob, chip->ecc.total); /* Calculate ecc bytes */ chip->ecc.calculate(mtd, buf, ecc_calc); memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total); stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc); if (stat < 0) { mtd->ecc_stats.failed++; } else { mtd->ecc_stats.corrected += stat; max_bitflips = max_t(unsigned int, max_bitflips, stat); } return max_bitflips; } /** * omap3_free_bch - Release BCH ecc resources * @mtd: MTD device structure */ static void omap3_free_bch(struct mtd_info *mtd) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); if (info->bch) { free_bch(info->bch); info->bch = NULL; } } /** * omap3_init_bch - Initialize BCH ECC * @mtd: MTD device structure * @ecc_opt: OMAP ECC mode (OMAP_ECC_BCH4_CODE_HW or OMAP_ECC_BCH8_CODE_HW) */ static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt) { int max_errors; struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); #ifdef CONFIG_MTD_NAND_OMAP_BCH8 const int hw_errors = BCH8_MAX_ERROR; #else const int hw_errors = BCH4_MAX_ERROR; #endif enum bch_ecc bch_type; const __be32 *parp; int lenp; struct device_node *elm_node; info->bch = NULL; max_errors = (ecc_opt == OMAP_ECC_BCH8_CODE_HW) ? BCH8_MAX_ERROR : BCH4_MAX_ERROR; if (max_errors != hw_errors) { pr_err("cannot configure %d-bit BCH ecc, only %d-bit supported", max_errors, hw_errors); goto fail; } info->nand.ecc.size = 512; info->nand.ecc.hwctl = omap3_enable_hwecc_bch; info->nand.ecc.mode = NAND_ECC_HW; info->nand.ecc.strength = max_errors; if (hw_errors == BCH8_MAX_ERROR) bch_type = BCH8_ECC; else bch_type = BCH4_ECC; /* Detect availability of ELM module */ parp = of_get_property(info->of_node, "elm_id", &lenp); if ((parp == NULL) && (lenp != (sizeof(void *) * 2))) { pr_err("Missing elm_id property, fall back to Software BCH\n"); info->is_elm_used = false; } else { struct platform_device *pdev; elm_node = of_find_node_by_phandle(be32_to_cpup(parp)); pdev = of_find_device_by_node(elm_node); info->elm_dev = &pdev->dev; if (elm_config(info->elm_dev, bch_type) == 0) info->is_elm_used = true; } if (info->is_elm_used && (mtd->writesize <= 4096)) { if (hw_errors == BCH8_MAX_ERROR) info->nand.ecc.bytes = BCH8_SIZE; else info->nand.ecc.bytes = BCH4_SIZE; info->nand.ecc.correct = omap_elm_correct_data; info->nand.ecc.calculate = omap3_calculate_ecc_bch; info->nand.ecc.read_page = omap_read_page_bch; info->nand.ecc.write_page = omap_write_page_bch; } else { /* * software bch library is only used to detect and * locate errors */ info->bch = init_bch(13, max_errors, 0x201b /* hw polynomial */); if (!info->bch) goto fail; info->nand.ecc.correct = omap3_correct_data_bch; /* * The number of corrected errors in an ecc block that will * trigger block scrubbing defaults to the ecc strength (4 or 8) * Set mtd->bitflip_threshold here to define a custom threshold. */ if (max_errors == 8) { info->nand.ecc.bytes = 13; info->nand.ecc.calculate = omap3_calculate_ecc_bch8; } else { info->nand.ecc.bytes = 7; info->nand.ecc.calculate = omap3_calculate_ecc_bch4; } } pr_info("enabling NAND BCH ecc with %d-bit correction\n", max_errors); return 0; fail: omap3_free_bch(mtd); return -1; } /** * omap3_init_bch_tail - Build an oob layout for BCH ECC correction. * @mtd: MTD device structure */ static int omap3_init_bch_tail(struct mtd_info *mtd) { int i, steps, offset; struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); struct nand_ecclayout *layout = &info->ecclayout; /* build oob layout */ steps = mtd->writesize/info->nand.ecc.size; layout->eccbytes = steps*info->nand.ecc.bytes; /* do not bother creating special oob layouts for small page devices */ if (mtd->oobsize < 64) { pr_err("BCH ecc is not supported on small page devices\n"); goto fail; } /* reserve 2 bytes for bad block marker */ if (layout->eccbytes+2 > mtd->oobsize) { pr_err("no oob layout available for oobsize %d eccbytes %u\n", mtd->oobsize, layout->eccbytes); goto fail; } /* ECC layout compatible with RBL for BCH8 */ if (info->is_elm_used && (info->nand.ecc.bytes == BCH8_SIZE)) offset = 2; else offset = mtd->oobsize - layout->eccbytes; /* put ecc bytes at oob tail */ for (i = 0; i < layout->eccbytes; i++) layout->eccpos[i] = offset + i; if (info->is_elm_used && (info->nand.ecc.bytes == BCH8_SIZE)) layout->oobfree[0].offset = 2 + layout->eccbytes * steps; else layout->oobfree[0].offset = 2; layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes; info->nand.ecc.layout = layout; if (!(info->nand.options & NAND_BUSWIDTH_16)) info->nand.badblock_pattern = &bb_descrip_flashbased; return 0; fail: omap3_free_bch(mtd); return -1; } #else static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt) { pr_err("CONFIG_MTD_NAND_OMAP_BCH is not enabled\n"); return -1; } static int omap3_init_bch_tail(struct mtd_info *mtd) { return -1; } static void omap3_free_bch(struct mtd_info *mtd) { } #endif /* CONFIG_MTD_NAND_OMAP_BCH */ static int omap_nand_probe(struct platform_device *pdev) { struct omap_nand_info *info; struct omap_nand_platform_data *pdata; int err; int i, offset; dma_cap_mask_t mask; unsigned sig; struct resource *res; struct mtd_part_parser_data ppdata = {}; pdata = pdev->dev.platform_data; if (pdata == NULL) { dev_err(&pdev->dev, "platform data missing\n"); return -ENODEV; } info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL); if (!info) return -ENOMEM; platform_set_drvdata(pdev, info); spin_lock_init(&info->controller.lock); init_waitqueue_head(&info->controller.wq); info->pdev = pdev; info->gpmc_cs = pdata->cs; info->reg = pdata->reg; info->mtd.priv = &info->nand; info->mtd.name = dev_name(&pdev->dev); info->mtd.owner = THIS_MODULE; info->nand.options = pdata->devsize; info->nand.options |= NAND_SKIP_BBTSCAN; #ifdef CONFIG_MTD_NAND_OMAP_BCH info->of_node = pdata->of_node; #endif res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (res == NULL) { err = -EINVAL; dev_err(&pdev->dev, "error getting memory resource\n"); goto out_free_info; } info->phys_base = res->start; info->mem_size = resource_size(res); if (!request_mem_region(info->phys_base, info->mem_size, pdev->dev.driver->name)) { err = -EBUSY; goto out_free_info; } info->nand.IO_ADDR_R = ioremap(info->phys_base, info->mem_size); if (!info->nand.IO_ADDR_R) { err = -ENOMEM; goto out_release_mem_region; } info->nand.controller = &info->controller; info->nand.IO_ADDR_W = info->nand.IO_ADDR_R; info->nand.cmd_ctrl = omap_hwcontrol; /* * If RDY/BSY line is connected to OMAP then use the omap ready * function and the generic nand_wait function which reads the status * register after monitoring the RDY/BSY line. Otherwise use a standard * chip delay which is slightly more than tR (AC Timing) of the NAND * device and read status register until you get a failure or success */ if (pdata->dev_ready) { info->nand.dev_ready = omap_dev_ready; info->nand.chip_delay = 0; } else { info->nand.waitfunc = omap_wait; info->nand.chip_delay = 50; } switch (pdata->xfer_type) { case NAND_OMAP_PREFETCH_POLLED: info->nand.read_buf = omap_read_buf_pref; info->nand.write_buf = omap_write_buf_pref; break; case NAND_OMAP_POLLED: if (info->nand.options & NAND_BUSWIDTH_16) { info->nand.read_buf = omap_read_buf16; info->nand.write_buf = omap_write_buf16; } else { info->nand.read_buf = omap_read_buf8; info->nand.write_buf = omap_write_buf8; } break; case NAND_OMAP_PREFETCH_DMA: dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); sig = OMAP24XX_DMA_GPMC; info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig); if (!info->dma) { dev_err(&pdev->dev, "DMA engine request failed\n"); err = -ENXIO; goto out_release_mem_region; } else { struct dma_slave_config cfg; memset(&cfg, 0, sizeof(cfg)); cfg.src_addr = info->phys_base; cfg.dst_addr = info->phys_base; cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; cfg.src_maxburst = 16; cfg.dst_maxburst = 16; err = dmaengine_slave_config(info->dma, &cfg); if (err) { dev_err(&pdev->dev, "DMA engine slave config failed: %d\n", err); goto out_release_mem_region; } info->nand.read_buf = omap_read_buf_dma_pref; info->nand.write_buf = omap_write_buf_dma_pref; } break; case NAND_OMAP_PREFETCH_IRQ: info->gpmc_irq_fifo = platform_get_irq(pdev, 0); if (info->gpmc_irq_fifo <= 0) { dev_err(&pdev->dev, "error getting fifo irq\n"); err = -ENODEV; goto out_release_mem_region; } err = request_irq(info->gpmc_irq_fifo, omap_nand_irq, IRQF_SHARED, "gpmc-nand-fifo", info); if (err) { dev_err(&pdev->dev, "requesting irq(%d) error:%d", info->gpmc_irq_fifo, err); info->gpmc_irq_fifo = 0; goto out_release_mem_region; } info->gpmc_irq_count = platform_get_irq(pdev, 1); if (info->gpmc_irq_count <= 0) { dev_err(&pdev->dev, "error getting count irq\n"); err = -ENODEV; goto out_release_mem_region; } err = request_irq(info->gpmc_irq_count, omap_nand_irq, IRQF_SHARED, "gpmc-nand-count", info); if (err) { dev_err(&pdev->dev, "requesting irq(%d) error:%d", info->gpmc_irq_count, err); info->gpmc_irq_count = 0; goto out_release_mem_region; } info->nand.read_buf = omap_read_buf_irq_pref; info->nand.write_buf = omap_write_buf_irq_pref; break; default: dev_err(&pdev->dev, "xfer_type(%d) not supported!\n", pdata->xfer_type); err = -EINVAL; goto out_release_mem_region; } /* select the ecc type */ if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT) info->nand.ecc.mode = NAND_ECC_SOFT; else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) || (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) { info->nand.ecc.bytes = 3; info->nand.ecc.size = 512; info->nand.ecc.strength = 1; info->nand.ecc.calculate = omap_calculate_ecc; info->nand.ecc.hwctl = omap_enable_hwecc; info->nand.ecc.correct = omap_correct_data; info->nand.ecc.mode = NAND_ECC_HW; } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) || (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) { err = omap3_init_bch(&info->mtd, pdata->ecc_opt); if (err) { err = -EINVAL; goto out_release_mem_region; } } /* DIP switches on some boards change between 8 and 16 bit * bus widths for flash. Try the other width if the first try fails. */ if (nand_scan_ident(&info->mtd, 1, NULL)) { info->nand.options ^= NAND_BUSWIDTH_16; if (nand_scan_ident(&info->mtd, 1, NULL)) { err = -ENXIO; goto out_release_mem_region; } } /* rom code layout */ if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) { if (info->nand.options & NAND_BUSWIDTH_16) offset = 2; else { offset = 1; info->nand.badblock_pattern = &bb_descrip_flashbased; } omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16); for (i = 0; i < omap_oobinfo.eccbytes; i++) omap_oobinfo.eccpos[i] = i+offset; omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes; omap_oobinfo.oobfree->length = info->mtd.oobsize - (offset + omap_oobinfo.eccbytes); info->nand.ecc.layout = &omap_oobinfo; } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) || (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) { /* build OOB layout for BCH ECC correction */ err = omap3_init_bch_tail(&info->mtd); if (err) { err = -EINVAL; goto out_release_mem_region; } } /* second phase scan */ if (nand_scan_tail(&info->mtd)) { err = -ENXIO; goto out_release_mem_region; } ppdata.of_node = pdata->of_node; mtd_device_parse_register(&info->mtd, NULL, &ppdata, pdata->parts, pdata->nr_parts); platform_set_drvdata(pdev, &info->mtd); return 0; out_release_mem_region: if (info->dma) dma_release_channel(info->dma); if (info->gpmc_irq_count > 0) free_irq(info->gpmc_irq_count, info); if (info->gpmc_irq_fifo > 0) free_irq(info->gpmc_irq_fifo, info); release_mem_region(info->phys_base, info->mem_size); out_free_info: kfree(info); return err; } static int omap_nand_remove(struct platform_device *pdev) { struct mtd_info *mtd = platform_get_drvdata(pdev); struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); omap3_free_bch(&info->mtd); platform_set_drvdata(pdev, NULL); if (info->dma) dma_release_channel(info->dma); if (info->gpmc_irq_count > 0) free_irq(info->gpmc_irq_count, info); if (info->gpmc_irq_fifo > 0) free_irq(info->gpmc_irq_fifo, info); /* Release NAND device, its internal structures and partitions */ nand_release(&info->mtd); iounmap(info->nand.IO_ADDR_R); release_mem_region(info->phys_base, info->mem_size); kfree(info); return 0; } static struct platform_driver omap_nand_driver = { .probe = omap_nand_probe, .remove = omap_nand_remove, .driver = { .name = DRIVER_NAME, .owner = THIS_MODULE, }, }; module_platform_driver(omap_nand_driver); MODULE_ALIAS("platform:" DRIVER_NAME); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");