/* * Cryptographic API. * * Support for OMAP AES HW acceleration. * * Copyright (c) 2010 Nokia Corporation * Author: Dmitry Kasatkin * Copyright (c) 2011 Texas Instruments Incorporated * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DST_MAXBURST 4 #define DMA_MIN (DST_MAXBURST * sizeof(u32)) /* OMAP TRM gives bitfields as start:end, where start is the higher bit number. For example 7:0 */ #define FLD_MASK(start, end) (((1 << ((start) - (end) + 1)) - 1) << (end)) #define FLD_VAL(val, start, end) (((val) << (end)) & FLD_MASK(start, end)) #define AES_REG_KEY(dd, x) ((dd)->pdata->key_ofs - \ ((x ^ 0x01) * 0x04)) #define AES_REG_IV(dd, x) ((dd)->pdata->iv_ofs + ((x) * 0x04)) #define AES_REG_CTRL(dd) ((dd)->pdata->ctrl_ofs) #define AES_REG_CTRL_CTR_WIDTH_MASK (3 << 7) #define AES_REG_CTRL_CTR_WIDTH_32 (0 << 7) #define AES_REG_CTRL_CTR_WIDTH_64 (1 << 7) #define AES_REG_CTRL_CTR_WIDTH_96 (2 << 7) #define AES_REG_CTRL_CTR_WIDTH_128 (3 << 7) #define AES_REG_CTRL_CTR (1 << 6) #define AES_REG_CTRL_CBC (1 << 5) #define AES_REG_CTRL_KEY_SIZE (3 << 3) #define AES_REG_CTRL_DIRECTION (1 << 2) #define AES_REG_CTRL_INPUT_READY (1 << 1) #define AES_REG_CTRL_OUTPUT_READY (1 << 0) #define AES_REG_DATA_N(dd, x) ((dd)->pdata->data_ofs + ((x) * 0x04)) #define AES_REG_REV(dd) ((dd)->pdata->rev_ofs) #define AES_REG_MASK(dd) ((dd)->pdata->mask_ofs) #define AES_REG_MASK_SIDLE (1 << 6) #define AES_REG_MASK_START (1 << 5) #define AES_REG_MASK_DMA_OUT_EN (1 << 3) #define AES_REG_MASK_DMA_IN_EN (1 << 2) #define AES_REG_MASK_SOFTRESET (1 << 1) #define AES_REG_AUTOIDLE (1 << 0) #define AES_REG_LENGTH_N(x) (0x54 + ((x) * 0x04)) #define DEFAULT_TIMEOUT (5*HZ) #define FLAGS_MODE_MASK 0x000f #define FLAGS_ENCRYPT BIT(0) #define FLAGS_CBC BIT(1) #define FLAGS_GIV BIT(2) #define FLAGS_CTR BIT(3) #define FLAGS_INIT BIT(4) #define FLAGS_FAST BIT(5) #define FLAGS_BUSY BIT(6) struct omap_aes_ctx { struct omap_aes_dev *dd; int keylen; u32 key[AES_KEYSIZE_256 / sizeof(u32)]; unsigned long flags; }; struct omap_aes_reqctx { unsigned long mode; }; #define OMAP_AES_QUEUE_LENGTH 1 #define OMAP_AES_CACHE_SIZE 0 struct omap_aes_algs_info { struct crypto_alg *algs_list; unsigned int size; unsigned int registered; }; struct omap_aes_pdata { struct omap_aes_algs_info *algs_info; unsigned int algs_info_size; void (*trigger)(struct omap_aes_dev *dd, int length); u32 key_ofs; u32 iv_ofs; u32 ctrl_ofs; u32 data_ofs; u32 rev_ofs; u32 mask_ofs; u32 dma_enable_in; u32 dma_enable_out; u32 dma_start; u32 major_mask; u32 major_shift; u32 minor_mask; u32 minor_shift; }; struct omap_aes_dev { struct list_head list; unsigned long phys_base; void __iomem *io_base; struct omap_aes_ctx *ctx; struct device *dev; unsigned long flags; int err; spinlock_t lock; struct crypto_queue queue; struct tasklet_struct done_task; struct tasklet_struct queue_task; struct ablkcipher_request *req; size_t total; struct scatterlist *in_sg; struct scatterlist in_sgl; size_t in_offset; struct scatterlist *out_sg; struct scatterlist out_sgl; size_t out_offset; size_t buflen; void *buf_in; size_t dma_size; int dma_in; struct dma_chan *dma_lch_in; dma_addr_t dma_addr_in; void *buf_out; int dma_out; struct dma_chan *dma_lch_out; dma_addr_t dma_addr_out; const struct omap_aes_pdata *pdata; }; /* keep registered devices data here */ static LIST_HEAD(dev_list); static DEFINE_SPINLOCK(list_lock); static inline u32 omap_aes_read(struct omap_aes_dev *dd, u32 offset) { return __raw_readl(dd->io_base + offset); } static inline void omap_aes_write(struct omap_aes_dev *dd, u32 offset, u32 value) { __raw_writel(value, dd->io_base + offset); } static inline void omap_aes_write_mask(struct omap_aes_dev *dd, u32 offset, u32 value, u32 mask) { u32 val; val = omap_aes_read(dd, offset); val &= ~mask; val |= value; omap_aes_write(dd, offset, val); } static void omap_aes_write_n(struct omap_aes_dev *dd, u32 offset, u32 *value, int count) { for (; count--; value++, offset += 4) omap_aes_write(dd, offset, *value); } static int omap_aes_hw_init(struct omap_aes_dev *dd) { /* * clocks are enabled when request starts and disabled when finished. * It may be long delays between requests. * Device might go to off mode to save power. */ pm_runtime_get_sync(dd->dev); if (!(dd->flags & FLAGS_INIT)) { dd->flags |= FLAGS_INIT; dd->err = 0; } return 0; } static int omap_aes_write_ctrl(struct omap_aes_dev *dd) { unsigned int key32; int i, err; u32 val, mask = 0; err = omap_aes_hw_init(dd); if (err) return err; key32 = dd->ctx->keylen / sizeof(u32); /* it seems a key should always be set even if it has not changed */ for (i = 0; i < key32; i++) { omap_aes_write(dd, AES_REG_KEY(dd, i), __le32_to_cpu(dd->ctx->key[i])); } if ((dd->flags & (FLAGS_CBC | FLAGS_CTR)) && dd->req->info) omap_aes_write_n(dd, AES_REG_IV(dd, 0), dd->req->info, 4); val = FLD_VAL(((dd->ctx->keylen >> 3) - 1), 4, 3); if (dd->flags & FLAGS_CBC) val |= AES_REG_CTRL_CBC; if (dd->flags & FLAGS_CTR) { val |= AES_REG_CTRL_CTR | AES_REG_CTRL_CTR_WIDTH_32; mask = AES_REG_CTRL_CTR | AES_REG_CTRL_CTR_WIDTH_MASK; } if (dd->flags & FLAGS_ENCRYPT) val |= AES_REG_CTRL_DIRECTION; mask |= AES_REG_CTRL_CBC | AES_REG_CTRL_DIRECTION | AES_REG_CTRL_KEY_SIZE; omap_aes_write_mask(dd, AES_REG_CTRL(dd), val, mask); return 0; } static void omap_aes_dma_trigger_omap2(struct omap_aes_dev *dd, int length) { u32 mask, val; val = dd->pdata->dma_start; if (dd->dma_lch_out != NULL) val |= dd->pdata->dma_enable_out; if (dd->dma_lch_in != NULL) val |= dd->pdata->dma_enable_in; mask = dd->pdata->dma_enable_out | dd->pdata->dma_enable_in | dd->pdata->dma_start; omap_aes_write_mask(dd, AES_REG_MASK(dd), val, mask); } static void omap_aes_dma_trigger_omap4(struct omap_aes_dev *dd, int length) { omap_aes_write(dd, AES_REG_LENGTH_N(0), length); omap_aes_write(dd, AES_REG_LENGTH_N(1), 0); omap_aes_dma_trigger_omap2(dd, length); } static void omap_aes_dma_stop(struct omap_aes_dev *dd) { u32 mask; mask = dd->pdata->dma_enable_out | dd->pdata->dma_enable_in | dd->pdata->dma_start; omap_aes_write_mask(dd, AES_REG_MASK(dd), 0, mask); } static struct omap_aes_dev *omap_aes_find_dev(struct omap_aes_ctx *ctx) { struct omap_aes_dev *dd = NULL, *tmp; spin_lock_bh(&list_lock); if (!ctx->dd) { list_for_each_entry(tmp, &dev_list, list) { /* FIXME: take fist available aes core */ dd = tmp; break; } ctx->dd = dd; } else { /* already found before */ dd = ctx->dd; } spin_unlock_bh(&list_lock); return dd; } static void omap_aes_dma_out_callback(void *data) { struct omap_aes_dev *dd = data; /* dma_lch_out - completed */ tasklet_schedule(&dd->done_task); } static int omap_aes_dma_init(struct omap_aes_dev *dd) { int err = -ENOMEM; dma_cap_mask_t mask; dd->dma_lch_out = NULL; dd->dma_lch_in = NULL; dd->buf_in = (void *)__get_free_pages(GFP_KERNEL, OMAP_AES_CACHE_SIZE); dd->buf_out = (void *)__get_free_pages(GFP_KERNEL, OMAP_AES_CACHE_SIZE); dd->buflen = PAGE_SIZE << OMAP_AES_CACHE_SIZE; dd->buflen &= ~(AES_BLOCK_SIZE - 1); if (!dd->buf_in || !dd->buf_out) { dev_err(dd->dev, "unable to alloc pages.\n"); goto err_alloc; } /* MAP here */ dd->dma_addr_in = dma_map_single(dd->dev, dd->buf_in, dd->buflen, DMA_TO_DEVICE); if (dma_mapping_error(dd->dev, dd->dma_addr_in)) { dev_err(dd->dev, "dma %d bytes error\n", dd->buflen); err = -EINVAL; goto err_map_in; } dd->dma_addr_out = dma_map_single(dd->dev, dd->buf_out, dd->buflen, DMA_FROM_DEVICE); if (dma_mapping_error(dd->dev, dd->dma_addr_out)) { dev_err(dd->dev, "dma %d bytes error\n", dd->buflen); err = -EINVAL; goto err_map_out; } dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); dd->dma_lch_in = dma_request_slave_channel_compat(mask, omap_dma_filter_fn, &dd->dma_in, dd->dev, "rx"); if (!dd->dma_lch_in) { dev_err(dd->dev, "Unable to request in DMA channel\n"); goto err_dma_in; } dd->dma_lch_out = dma_request_slave_channel_compat(mask, omap_dma_filter_fn, &dd->dma_out, dd->dev, "tx"); if (!dd->dma_lch_out) { dev_err(dd->dev, "Unable to request out DMA channel\n"); goto err_dma_out; } return 0; err_dma_out: dma_release_channel(dd->dma_lch_in); err_dma_in: dma_unmap_single(dd->dev, dd->dma_addr_out, dd->buflen, DMA_FROM_DEVICE); err_map_out: dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen, DMA_TO_DEVICE); err_map_in: free_pages((unsigned long)dd->buf_out, OMAP_AES_CACHE_SIZE); free_pages((unsigned long)dd->buf_in, OMAP_AES_CACHE_SIZE); err_alloc: if (err) pr_err("error: %d\n", err); return err; } static void omap_aes_dma_cleanup(struct omap_aes_dev *dd) { dma_release_channel(dd->dma_lch_out); dma_release_channel(dd->dma_lch_in); dma_unmap_single(dd->dev, dd->dma_addr_out, dd->buflen, DMA_FROM_DEVICE); dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen, DMA_TO_DEVICE); free_pages((unsigned long)dd->buf_out, OMAP_AES_CACHE_SIZE); free_pages((unsigned long)dd->buf_in, OMAP_AES_CACHE_SIZE); } static void sg_copy_buf(void *buf, struct scatterlist *sg, unsigned int start, unsigned int nbytes, int out) { struct scatter_walk walk; if (!nbytes) return; scatterwalk_start(&walk, sg); scatterwalk_advance(&walk, start); scatterwalk_copychunks(buf, &walk, nbytes, out); scatterwalk_done(&walk, out, 0); } static int sg_copy(struct scatterlist **sg, size_t *offset, void *buf, size_t buflen, size_t total, int out) { unsigned int count, off = 0; while (buflen && total) { count = min((*sg)->length - *offset, total); count = min(count, buflen); if (!count) return off; /* * buflen and total are AES_BLOCK_SIZE size aligned, * so count should be also aligned */ sg_copy_buf(buf + off, *sg, *offset, count, out); off += count; buflen -= count; *offset += count; total -= count; if (*offset == (*sg)->length) { *sg = sg_next(*sg); if (*sg) *offset = 0; else total = 0; } } return off; } static int omap_aes_crypt_dma(struct crypto_tfm *tfm, struct scatterlist *in_sg, struct scatterlist *out_sg) { struct omap_aes_ctx *ctx = crypto_tfm_ctx(tfm); struct omap_aes_dev *dd = ctx->dd; struct dma_async_tx_descriptor *tx_in, *tx_out; struct dma_slave_config cfg; dma_addr_t dma_addr_in = sg_dma_address(in_sg); int ret, length = sg_dma_len(in_sg); pr_debug("len: %d\n", length); dd->dma_size = length; if (!(dd->flags & FLAGS_FAST)) dma_sync_single_for_device(dd->dev, dma_addr_in, length, DMA_TO_DEVICE); memset(&cfg, 0, sizeof(cfg)); cfg.src_addr = dd->phys_base + AES_REG_DATA_N(dd, 0); cfg.dst_addr = dd->phys_base + AES_REG_DATA_N(dd, 0); cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; cfg.src_maxburst = DST_MAXBURST; cfg.dst_maxburst = DST_MAXBURST; /* IN */ ret = dmaengine_slave_config(dd->dma_lch_in, &cfg); if (ret) { dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n", ret); return ret; } tx_in = dmaengine_prep_slave_sg(dd->dma_lch_in, in_sg, 1, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!tx_in) { dev_err(dd->dev, "IN prep_slave_sg() failed\n"); return -EINVAL; } /* No callback necessary */ tx_in->callback_param = dd; /* OUT */ ret = dmaengine_slave_config(dd->dma_lch_out, &cfg); if (ret) { dev_err(dd->dev, "can't configure OUT dmaengine slave: %d\n", ret); return ret; } tx_out = dmaengine_prep_slave_sg(dd->dma_lch_out, out_sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!tx_out) { dev_err(dd->dev, "OUT prep_slave_sg() failed\n"); return -EINVAL; } tx_out->callback = omap_aes_dma_out_callback; tx_out->callback_param = dd; dmaengine_submit(tx_in); dmaengine_submit(tx_out); dma_async_issue_pending(dd->dma_lch_in); dma_async_issue_pending(dd->dma_lch_out); /* start DMA */ dd->pdata->trigger(dd, length); return 0; } static int omap_aes_crypt_dma_start(struct omap_aes_dev *dd) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm( crypto_ablkcipher_reqtfm(dd->req)); int err, fast = 0, in, out; size_t count; dma_addr_t addr_in, addr_out; struct scatterlist *in_sg, *out_sg; int len32; pr_debug("total: %d\n", dd->total); if (sg_is_last(dd->in_sg) && sg_is_last(dd->out_sg)) { /* check for alignment */ in = IS_ALIGNED((u32)dd->in_sg->offset, sizeof(u32)); out = IS_ALIGNED((u32)dd->out_sg->offset, sizeof(u32)); fast = in && out; } if (fast) { count = min(dd->total, sg_dma_len(dd->in_sg)); count = min(count, sg_dma_len(dd->out_sg)); if (count != dd->total) { pr_err("request length != buffer length\n"); return -EINVAL; } pr_debug("fast\n"); err = dma_map_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE); if (!err) { dev_err(dd->dev, "dma_map_sg() error\n"); return -EINVAL; } err = dma_map_sg(dd->dev, dd->out_sg, 1, DMA_FROM_DEVICE); if (!err) { dev_err(dd->dev, "dma_map_sg() error\n"); dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE); return -EINVAL; } addr_in = sg_dma_address(dd->in_sg); addr_out = sg_dma_address(dd->out_sg); in_sg = dd->in_sg; out_sg = dd->out_sg; dd->flags |= FLAGS_FAST; } else { /* use cache buffers */ count = sg_copy(&dd->in_sg, &dd->in_offset, dd->buf_in, dd->buflen, dd->total, 0); len32 = DIV_ROUND_UP(count, DMA_MIN) * DMA_MIN; /* * The data going into the AES module has been copied * to a local buffer and the data coming out will go * into a local buffer so set up local SG entries for * both. */ sg_init_table(&dd->in_sgl, 1); dd->in_sgl.offset = dd->in_offset; sg_dma_len(&dd->in_sgl) = len32; sg_dma_address(&dd->in_sgl) = dd->dma_addr_in; sg_init_table(&dd->out_sgl, 1); dd->out_sgl.offset = dd->out_offset; sg_dma_len(&dd->out_sgl) = len32; sg_dma_address(&dd->out_sgl) = dd->dma_addr_out; in_sg = &dd->in_sgl; out_sg = &dd->out_sgl; addr_in = dd->dma_addr_in; addr_out = dd->dma_addr_out; dd->flags &= ~FLAGS_FAST; } dd->total -= count; err = omap_aes_crypt_dma(tfm, in_sg, out_sg); if (err) { dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE); dma_unmap_sg(dd->dev, dd->out_sg, 1, DMA_TO_DEVICE); } return err; } static void omap_aes_finish_req(struct omap_aes_dev *dd, int err) { struct ablkcipher_request *req = dd->req; pr_debug("err: %d\n", err); pm_runtime_put(dd->dev); dd->flags &= ~FLAGS_BUSY; req->base.complete(&req->base, err); } static int omap_aes_crypt_dma_stop(struct omap_aes_dev *dd) { int err = 0; size_t count; pr_debug("total: %d\n", dd->total); omap_aes_dma_stop(dd); dmaengine_terminate_all(dd->dma_lch_in); dmaengine_terminate_all(dd->dma_lch_out); if (dd->flags & FLAGS_FAST) { dma_unmap_sg(dd->dev, dd->out_sg, 1, DMA_FROM_DEVICE); dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE); } else { dma_sync_single_for_device(dd->dev, dd->dma_addr_out, dd->dma_size, DMA_FROM_DEVICE); /* copy data */ count = sg_copy(&dd->out_sg, &dd->out_offset, dd->buf_out, dd->buflen, dd->dma_size, 1); if (count != dd->dma_size) { err = -EINVAL; pr_err("not all data converted: %u\n", count); } } return err; } static int omap_aes_handle_queue(struct omap_aes_dev *dd, struct ablkcipher_request *req) { struct crypto_async_request *async_req, *backlog; struct omap_aes_ctx *ctx; struct omap_aes_reqctx *rctx; unsigned long flags; int err, ret = 0; spin_lock_irqsave(&dd->lock, flags); if (req) ret = ablkcipher_enqueue_request(&dd->queue, req); if (dd->flags & FLAGS_BUSY) { spin_unlock_irqrestore(&dd->lock, flags); return ret; } backlog = crypto_get_backlog(&dd->queue); async_req = crypto_dequeue_request(&dd->queue); if (async_req) dd->flags |= FLAGS_BUSY; spin_unlock_irqrestore(&dd->lock, flags); if (!async_req) return ret; if (backlog) backlog->complete(backlog, -EINPROGRESS); req = ablkcipher_request_cast(async_req); /* assign new request to device */ dd->req = req; dd->total = req->nbytes; dd->in_offset = 0; dd->in_sg = req->src; dd->out_offset = 0; dd->out_sg = req->dst; rctx = ablkcipher_request_ctx(req); ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)); rctx->mode &= FLAGS_MODE_MASK; dd->flags = (dd->flags & ~FLAGS_MODE_MASK) | rctx->mode; dd->ctx = ctx; ctx->dd = dd; err = omap_aes_write_ctrl(dd); if (!err) err = omap_aes_crypt_dma_start(dd); if (err) { /* aes_task will not finish it, so do it here */ omap_aes_finish_req(dd, err); tasklet_schedule(&dd->queue_task); } return ret; /* return ret, which is enqueue return value */ } static void omap_aes_done_task(unsigned long data) { struct omap_aes_dev *dd = (struct omap_aes_dev *)data; int err; pr_debug("enter\n"); err = omap_aes_crypt_dma_stop(dd); err = dd->err ? : err; if (dd->total && !err) { err = omap_aes_crypt_dma_start(dd); if (!err) return; /* DMA started. Not fininishing. */ } omap_aes_finish_req(dd, err); omap_aes_handle_queue(dd, NULL); pr_debug("exit\n"); } static void omap_aes_queue_task(unsigned long data) { struct omap_aes_dev *dd = (struct omap_aes_dev *)data; omap_aes_handle_queue(dd, NULL); } static int omap_aes_crypt(struct ablkcipher_request *req, unsigned long mode) { struct omap_aes_ctx *ctx = crypto_ablkcipher_ctx( crypto_ablkcipher_reqtfm(req)); struct omap_aes_reqctx *rctx = ablkcipher_request_ctx(req); struct omap_aes_dev *dd; pr_debug("nbytes: %d, enc: %d, cbc: %d\n", req->nbytes, !!(mode & FLAGS_ENCRYPT), !!(mode & FLAGS_CBC)); if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) { pr_err("request size is not exact amount of AES blocks\n"); return -EINVAL; } dd = omap_aes_find_dev(ctx); if (!dd) return -ENODEV; rctx->mode = mode; return omap_aes_handle_queue(dd, req); } /* ********************** ALG API ************************************ */ static int omap_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int keylen) { struct omap_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm); if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 && keylen != AES_KEYSIZE_256) return -EINVAL; pr_debug("enter, keylen: %d\n", keylen); memcpy(ctx->key, key, keylen); ctx->keylen = keylen; return 0; } static int omap_aes_ecb_encrypt(struct ablkcipher_request *req) { return omap_aes_crypt(req, FLAGS_ENCRYPT); } static int omap_aes_ecb_decrypt(struct ablkcipher_request *req) { return omap_aes_crypt(req, 0); } static int omap_aes_cbc_encrypt(struct ablkcipher_request *req) { return omap_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CBC); } static int omap_aes_cbc_decrypt(struct ablkcipher_request *req) { return omap_aes_crypt(req, FLAGS_CBC); } static int omap_aes_ctr_encrypt(struct ablkcipher_request *req) { return omap_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CTR); } static int omap_aes_ctr_decrypt(struct ablkcipher_request *req) { return omap_aes_crypt(req, FLAGS_CTR); } static int omap_aes_cra_init(struct crypto_tfm *tfm) { pr_debug("enter\n"); tfm->crt_ablkcipher.reqsize = sizeof(struct omap_aes_reqctx); return 0; } static void omap_aes_cra_exit(struct crypto_tfm *tfm) { pr_debug("enter\n"); } /* ********************** ALGS ************************************ */ static struct crypto_alg algs_ecb_cbc[] = { { .cra_name = "ecb(aes)", .cra_driver_name = "ecb-aes-omap", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct omap_aes_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = omap_aes_cra_init, .cra_exit = omap_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = omap_aes_setkey, .encrypt = omap_aes_ecb_encrypt, .decrypt = omap_aes_ecb_decrypt, } }, { .cra_name = "cbc(aes)", .cra_driver_name = "cbc-aes-omap", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct omap_aes_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = omap_aes_cra_init, .cra_exit = omap_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = omap_aes_setkey, .encrypt = omap_aes_cbc_encrypt, .decrypt = omap_aes_cbc_decrypt, } } }; static struct crypto_alg algs_ctr[] = { { .cra_name = "ctr(aes)", .cra_driver_name = "ctr-aes-omap", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct omap_aes_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = omap_aes_cra_init, .cra_exit = omap_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .geniv = "eseqiv", .ivsize = AES_BLOCK_SIZE, .setkey = omap_aes_setkey, .encrypt = omap_aes_ctr_encrypt, .decrypt = omap_aes_ctr_decrypt, } } , }; static struct omap_aes_algs_info omap_aes_algs_info_ecb_cbc[] = { { .algs_list = algs_ecb_cbc, .size = ARRAY_SIZE(algs_ecb_cbc), }, }; static const struct omap_aes_pdata omap_aes_pdata_omap2 = { .algs_info = omap_aes_algs_info_ecb_cbc, .algs_info_size = ARRAY_SIZE(omap_aes_algs_info_ecb_cbc), .trigger = omap_aes_dma_trigger_omap2, .key_ofs = 0x1c, .iv_ofs = 0x20, .ctrl_ofs = 0x30, .data_ofs = 0x34, .rev_ofs = 0x44, .mask_ofs = 0x48, .dma_enable_in = BIT(2), .dma_enable_out = BIT(3), .dma_start = BIT(5), .major_mask = 0xf0, .major_shift = 4, .minor_mask = 0x0f, .minor_shift = 0, }; #ifdef CONFIG_OF static struct omap_aes_algs_info omap_aes_algs_info_ecb_cbc_ctr[] = { { .algs_list = algs_ecb_cbc, .size = ARRAY_SIZE(algs_ecb_cbc), }, { .algs_list = algs_ctr, .size = ARRAY_SIZE(algs_ctr), }, }; static const struct omap_aes_pdata omap_aes_pdata_omap3 = { .algs_info = omap_aes_algs_info_ecb_cbc_ctr, .algs_info_size = ARRAY_SIZE(omap_aes_algs_info_ecb_cbc_ctr), .trigger = omap_aes_dma_trigger_omap2, .key_ofs = 0x1c, .iv_ofs = 0x20, .ctrl_ofs = 0x30, .data_ofs = 0x34, .rev_ofs = 0x44, .mask_ofs = 0x48, .dma_enable_in = BIT(2), .dma_enable_out = BIT(3), .dma_start = BIT(5), .major_mask = 0xf0, .major_shift = 4, .minor_mask = 0x0f, .minor_shift = 0, }; static const struct omap_aes_pdata omap_aes_pdata_omap4 = { .algs_info = omap_aes_algs_info_ecb_cbc_ctr, .algs_info_size = ARRAY_SIZE(omap_aes_algs_info_ecb_cbc_ctr), .trigger = omap_aes_dma_trigger_omap4, .key_ofs = 0x3c, .iv_ofs = 0x40, .ctrl_ofs = 0x50, .data_ofs = 0x60, .rev_ofs = 0x80, .mask_ofs = 0x84, .dma_enable_in = BIT(5), .dma_enable_out = BIT(6), .major_mask = 0x0700, .major_shift = 8, .minor_mask = 0x003f, .minor_shift = 0, }; static const struct of_device_id omap_aes_of_match[] = { { .compatible = "ti,omap2-aes", .data = &omap_aes_pdata_omap2, }, { .compatible = "ti,omap3-aes", .data = &omap_aes_pdata_omap3, }, { .compatible = "ti,omap4-aes", .data = &omap_aes_pdata_omap4, }, {}, }; MODULE_DEVICE_TABLE(of, omap_aes_of_match); static int omap_aes_get_res_of(struct omap_aes_dev *dd, struct device *dev, struct resource *res) { struct device_node *node = dev->of_node; const struct of_device_id *match; int err = 0; match = of_match_device(of_match_ptr(omap_aes_of_match), dev); if (!match) { dev_err(dev, "no compatible OF match\n"); err = -EINVAL; goto err; } err = of_address_to_resource(node, 0, res); if (err < 0) { dev_err(dev, "can't translate OF node address\n"); err = -EINVAL; goto err; } dd->dma_out = -1; /* Dummy value that's unused */ dd->dma_in = -1; /* Dummy value that's unused */ dd->pdata = match->data; err: return err; } #else static const struct of_device_id omap_aes_of_match[] = { {}, }; static int omap_aes_get_res_of(struct omap_aes_dev *dd, struct device *dev, struct resource *res) { return -EINVAL; } #endif static int omap_aes_get_res_pdev(struct omap_aes_dev *dd, struct platform_device *pdev, struct resource *res) { struct device *dev = &pdev->dev; struct resource *r; int err = 0; /* Get the base address */ r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!r) { dev_err(dev, "no MEM resource info\n"); err = -ENODEV; goto err; } memcpy(res, r, sizeof(*res)); /* Get the DMA out channel */ r = platform_get_resource(pdev, IORESOURCE_DMA, 0); if (!r) { dev_err(dev, "no DMA out resource info\n"); err = -ENODEV; goto err; } dd->dma_out = r->start; /* Get the DMA in channel */ r = platform_get_resource(pdev, IORESOURCE_DMA, 1); if (!r) { dev_err(dev, "no DMA in resource info\n"); err = -ENODEV; goto err; } dd->dma_in = r->start; /* Only OMAP2/3 can be non-DT */ dd->pdata = &omap_aes_pdata_omap2; err: return err; } static int omap_aes_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct omap_aes_dev *dd; struct crypto_alg *algp; struct resource res; int err = -ENOMEM, i, j; u32 reg; dd = kzalloc(sizeof(struct omap_aes_dev), GFP_KERNEL); if (dd == NULL) { dev_err(dev, "unable to alloc data struct.\n"); goto err_data; } dd->dev = dev; platform_set_drvdata(pdev, dd); spin_lock_init(&dd->lock); crypto_init_queue(&dd->queue, OMAP_AES_QUEUE_LENGTH); err = (dev->of_node) ? omap_aes_get_res_of(dd, dev, &res) : omap_aes_get_res_pdev(dd, pdev, &res); if (err) goto err_res; dd->io_base = devm_request_and_ioremap(dev, &res); if (!dd->io_base) { dev_err(dev, "can't ioremap\n"); err = -ENOMEM; goto err_res; } dd->phys_base = res.start; pm_runtime_enable(dev); pm_runtime_get_sync(dev); omap_aes_dma_stop(dd); reg = omap_aes_read(dd, AES_REG_REV(dd)); pm_runtime_put_sync(dev); dev_info(dev, "OMAP AES hw accel rev: %u.%u\n", (reg & dd->pdata->major_mask) >> dd->pdata->major_shift, (reg & dd->pdata->minor_mask) >> dd->pdata->minor_shift); tasklet_init(&dd->done_task, omap_aes_done_task, (unsigned long)dd); tasklet_init(&dd->queue_task, omap_aes_queue_task, (unsigned long)dd); err = omap_aes_dma_init(dd); if (err) goto err_dma; INIT_LIST_HEAD(&dd->list); spin_lock(&list_lock); list_add_tail(&dd->list, &dev_list); spin_unlock(&list_lock); for (i = 0; i < dd->pdata->algs_info_size; i++) { for (j = 0; j < dd->pdata->algs_info[i].size; j++) { algp = &dd->pdata->algs_info[i].algs_list[j]; pr_debug("reg alg: %s\n", algp->cra_name); INIT_LIST_HEAD(&algp->cra_list); err = crypto_register_alg(algp); if (err) goto err_algs; dd->pdata->algs_info[i].registered++; } } return 0; err_algs: for (i = dd->pdata->algs_info_size - 1; i >= 0; i--) for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--) crypto_unregister_alg( &dd->pdata->algs_info[i].algs_list[j]); omap_aes_dma_cleanup(dd); err_dma: tasklet_kill(&dd->done_task); tasklet_kill(&dd->queue_task); pm_runtime_disable(dev); err_res: kfree(dd); dd = NULL; err_data: dev_err(dev, "initialization failed.\n"); return err; } static int omap_aes_remove(struct platform_device *pdev) { struct omap_aes_dev *dd = platform_get_drvdata(pdev); int i, j; if (!dd) return -ENODEV; spin_lock(&list_lock); list_del(&dd->list); spin_unlock(&list_lock); for (i = dd->pdata->algs_info_size - 1; i >= 0; i--) for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--) crypto_unregister_alg( &dd->pdata->algs_info[i].algs_list[j]); tasklet_kill(&dd->done_task); tasklet_kill(&dd->queue_task); omap_aes_dma_cleanup(dd); pm_runtime_disable(dd->dev); kfree(dd); dd = NULL; return 0; } #ifdef CONFIG_PM_SLEEP static int omap_aes_suspend(struct device *dev) { pm_runtime_put_sync(dev); return 0; } static int omap_aes_resume(struct device *dev) { pm_runtime_get_sync(dev); return 0; } #endif static const struct dev_pm_ops omap_aes_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(omap_aes_suspend, omap_aes_resume) }; static struct platform_driver omap_aes_driver = { .probe = omap_aes_probe, .remove = omap_aes_remove, .driver = { .name = "omap-aes", .owner = THIS_MODULE, .pm = &omap_aes_pm_ops, .of_match_table = omap_aes_of_match, }, }; module_platform_driver(omap_aes_driver); MODULE_DESCRIPTION("OMAP AES hw acceleration support."); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Dmitry Kasatkin");