/* * ARM big.LITTLE Platforms CPUFreq support * * Copyright (C) 2013 ARM Ltd. * Sudeep KarkadaNagesha * * Copyright (C) 2013 Linaro. * Viresh Kumar * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed "as is" WITHOUT ANY WARRANTY of any * kind, whether express or implied; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include "arm_big_little.h" #ifdef CONFIG_BL_SWITCHER bool bL_switching_enabled; #endif #define ACTUAL_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq << 1 : freq) #define VIRT_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq >> 1 : freq) static struct cpufreq_arm_bL_ops *arm_bL_ops; static struct clk *clk[MAX_CLUSTERS]; static struct cpufreq_frequency_table *freq_table[MAX_CLUSTERS + 1]; static atomic_t cluster_usage[MAX_CLUSTERS + 1] = {ATOMIC_INIT(0), ATOMIC_INIT(0)}; static unsigned int clk_big_min; /* (Big) clock frequencies */ static unsigned int clk_little_max; /* Maximum clock frequency (Little) */ static DEFINE_PER_CPU(unsigned int, physical_cluster); static DEFINE_PER_CPU(unsigned int, cpu_last_req_freq); static struct mutex cluster_lock[MAX_CLUSTERS]; static unsigned int find_cluster_maxfreq(int cluster) { int j; u32 max_freq = 0, cpu_freq; for_each_online_cpu(j) { cpu_freq = per_cpu(cpu_last_req_freq, j); if ((cluster == per_cpu(physical_cluster, j)) && (max_freq < cpu_freq)) max_freq = cpu_freq; } pr_debug("%s: cluster: %d, max freq: %d\n", __func__, cluster, max_freq); return max_freq; } static unsigned int clk_get_cpu_rate(unsigned int cpu) { u32 cur_cluster = per_cpu(physical_cluster, cpu); u32 rate = clk_get_rate(clk[cur_cluster]) / 1000; /* For switcher we use virtual A15 clock rates */ if (is_bL_switching_enabled()) rate = VIRT_FREQ(cur_cluster, rate); pr_debug("%s: cpu: %d, cluster: %d, freq: %u\n", __func__, cpu, cur_cluster, rate); return rate; } static unsigned int bL_cpufreq_get_rate(unsigned int cpu) { if (is_bL_switching_enabled()) { pr_debug("%s: freq: %d\n", __func__, per_cpu(cpu_last_req_freq, cpu)); return per_cpu(cpu_last_req_freq, cpu); } else { return clk_get_cpu_rate(cpu); } } static unsigned int bL_cpufreq_set_rate(u32 cpu, u32 old_cluster, u32 new_cluster, u32 rate) { u32 new_rate, prev_rate; int ret; bool bLs = is_bL_switching_enabled(); mutex_lock(&cluster_lock[new_cluster]); if (bLs) { prev_rate = per_cpu(cpu_last_req_freq, cpu); per_cpu(cpu_last_req_freq, cpu) = rate; per_cpu(physical_cluster, cpu) = new_cluster; new_rate = find_cluster_maxfreq(new_cluster); new_rate = ACTUAL_FREQ(new_cluster, new_rate); } else { new_rate = rate; } pr_debug("%s: cpu: %d, old cluster: %d, new cluster: %d, freq: %d\n", __func__, cpu, old_cluster, new_cluster, new_rate); ret = clk_set_rate(clk[new_cluster], new_rate * 1000); if (WARN_ON(ret)) { pr_err("clk_set_rate failed: %d, new cluster: %d\n", ret, new_cluster); if (bLs) { per_cpu(cpu_last_req_freq, cpu) = prev_rate; per_cpu(physical_cluster, cpu) = old_cluster; } mutex_unlock(&cluster_lock[new_cluster]); return ret; } mutex_unlock(&cluster_lock[new_cluster]); /* Recalc freq for old cluster when switching clusters */ if (old_cluster != new_cluster) { pr_debug("%s: cpu: %d, old cluster: %d, new cluster: %d\n", __func__, cpu, old_cluster, new_cluster); /* Switch cluster */ bL_switch_request(cpu, new_cluster); mutex_lock(&cluster_lock[old_cluster]); /* Set freq of old cluster if there are cpus left on it */ new_rate = find_cluster_maxfreq(old_cluster); new_rate = ACTUAL_FREQ(old_cluster, new_rate); if (new_rate) { pr_debug("%s: Updating rate of old cluster: %d, to freq: %d\n", __func__, old_cluster, new_rate); if (clk_set_rate(clk[old_cluster], new_rate * 1000)) pr_err("%s: clk_set_rate failed: %d, old cluster: %d\n", __func__, ret, old_cluster); } mutex_unlock(&cluster_lock[old_cluster]); } return 0; } /* Validate policy frequency range */ static int bL_cpufreq_verify_policy(struct cpufreq_policy *policy) { u32 cur_cluster = cpu_to_cluster(policy->cpu); return cpufreq_frequency_table_verify(policy, freq_table[cur_cluster]); } /* Set clock frequency */ static int bL_cpufreq_set_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation) { struct cpufreq_freqs freqs; u32 cpu = policy->cpu, freq_tab_idx, cur_cluster, new_cluster, actual_cluster; int ret = 0; cur_cluster = cpu_to_cluster(cpu); new_cluster = actual_cluster = per_cpu(physical_cluster, cpu); freqs.old = bL_cpufreq_get_rate(cpu); /* Determine valid target frequency using freq_table */ cpufreq_frequency_table_target(policy, freq_table[cur_cluster], target_freq, relation, &freq_tab_idx); freqs.new = freq_table[cur_cluster][freq_tab_idx].frequency; pr_debug("%s: cpu: %d, cluster: %d, oldfreq: %d, target freq: %d, new freq: %d\n", __func__, cpu, cur_cluster, freqs.old, target_freq, freqs.new); if (freqs.old == freqs.new) return 0; if (is_bL_switching_enabled()) { if ((actual_cluster == A15_CLUSTER) && (freqs.new < clk_big_min)) { new_cluster = A7_CLUSTER; } else if ((actual_cluster == A7_CLUSTER) && (freqs.new > clk_little_max)) { new_cluster = A15_CLUSTER; } } cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE); ret = bL_cpufreq_set_rate(cpu, actual_cluster, new_cluster, freqs.new); if (ret) return ret; policy->cur = freqs.new; cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE); return ret; } static inline u32 get_table_count(struct cpufreq_frequency_table *table) { int count; for (count = 0; table[count].frequency != CPUFREQ_TABLE_END; count++) ; return count; } /* get the minimum frequency in the cpufreq_frequency_table */ static inline u32 get_table_min(struct cpufreq_frequency_table *table) { int i; uint32_t min_freq = ~0; for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++) if (table[i].frequency < min_freq) min_freq = table[i].frequency; return min_freq; } /* get the maximum frequency in the cpufreq_frequency_table */ static inline u32 get_table_max(struct cpufreq_frequency_table *table) { int i; uint32_t max_freq = 0; for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++) if (table[i].frequency > max_freq) max_freq = table[i].frequency; return max_freq; } static int merge_cluster_tables(void) { int i, j, k = 0, count = 1; struct cpufreq_frequency_table *table; for (i = 0; i < MAX_CLUSTERS; i++) count += get_table_count(freq_table[i]); table = kzalloc(sizeof(*table) * count, GFP_KERNEL); if (!table) return -ENOMEM; freq_table[MAX_CLUSTERS] = table; /* Add in reverse order to get freqs in increasing order */ for (i = MAX_CLUSTERS - 1; i >= 0; i--) { for (j = 0; freq_table[i][j].frequency != CPUFREQ_TABLE_END; j++) { table[k].frequency = VIRT_FREQ(i, freq_table[i][j].frequency); pr_debug("%s: index: %d, freq: %d\n", __func__, k, table[k].frequency); k++; } } table[k].index = k; table[k].frequency = CPUFREQ_TABLE_END; pr_debug("%s: End, table: %p, count: %d\n", __func__, table, k); return 0; } static void _put_cluster_clk_and_freq_table(struct device *cpu_dev) { u32 cluster = cpu_to_cluster(cpu_dev->id); if (!atomic_dec_return(&cluster_usage[cluster])) { clk_put(clk[cluster]); opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]); dev_dbg(cpu_dev, "%s: cluster: %d\n", __func__, cluster); } } static void put_cluster_clk_and_freq_table(struct device *cpu_dev) { u32 cluster = cpu_to_cluster(cpu_dev->id); int i; if (cluster < MAX_CLUSTERS) return _put_cluster_clk_and_freq_table(cpu_dev); if (atomic_dec_return(&cluster_usage[MAX_CLUSTERS])) return; for (i = 0; i < MAX_CLUSTERS; i++) { struct device *cdev = get_cpu_device(i); if (!cdev) { pr_err("%s: failed to get cpu%d device\n", __func__, i); return; } _put_cluster_clk_and_freq_table(cdev); } /* free virtual table */ kfree(freq_table[MAX_CLUSTERS]); } static int _get_cluster_clk_and_freq_table(struct device *cpu_dev) { u32 cluster = cpu_to_cluster(cpu_dev->id); char name[14] = "cpu-cluster.X"; int ret; if (atomic_inc_return(&cluster_usage[cluster]) != 1) return 0; ret = arm_bL_ops->init_opp_table(cpu_dev); if (ret) { dev_err(cpu_dev, "%s: init_opp_table failed, cpu: %d, err: %d\n", __func__, cpu_dev->id, ret); goto atomic_dec; } ret = opp_init_cpufreq_table(cpu_dev, &freq_table[cluster]); if (ret) { dev_err(cpu_dev, "%s: failed to init cpufreq table, cpu: %d, err: %d\n", __func__, cpu_dev->id, ret); goto atomic_dec; } name[12] = cluster + '0'; clk[cluster] = clk_get_sys(name, NULL); if (!IS_ERR(clk[cluster])) { dev_dbg(cpu_dev, "%s: clk: %p & freq table: %p, cluster: %d\n", __func__, clk[cluster], freq_table[cluster], cluster); return 0; } dev_err(cpu_dev, "%s: Failed to get clk for cpu: %d, cluster: %d\n", __func__, cpu_dev->id, cluster); ret = PTR_ERR(clk[cluster]); opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]); atomic_dec: atomic_dec(&cluster_usage[cluster]); dev_err(cpu_dev, "%s: Failed to get data for cluster: %d\n", __func__, cluster); return ret; } static int get_cluster_clk_and_freq_table(struct device *cpu_dev) { u32 cluster = cpu_to_cluster(cpu_dev->id); int i, ret; if (cluster < MAX_CLUSTERS) return _get_cluster_clk_and_freq_table(cpu_dev); if (atomic_inc_return(&cluster_usage[MAX_CLUSTERS]) != 1) return 0; /* * Get data for all clusters and fill virtual cluster with a merge of * both */ for (i = 0; i < MAX_CLUSTERS; i++) { struct device *cdev = get_cpu_device(i); if (!cdev) { pr_err("%s: failed to get cpu%d device\n", __func__, i); return -ENODEV; } ret = _get_cluster_clk_and_freq_table(cdev); if (ret) goto put_clusters; } ret = merge_cluster_tables(); if (ret) goto put_clusters; /* Assuming 2 cluster, set clk_big_min and clk_little_max */ clk_big_min = get_table_min(freq_table[0]); clk_little_max = VIRT_FREQ(1, get_table_max(freq_table[1])); pr_debug("%s: cluster: %d, clk_big_min: %d, clk_little_max: %d\n", __func__, cluster, clk_big_min, clk_little_max); return 0; put_clusters: while (i--) { struct device *cdev = get_cpu_device(i); if (!cdev) { pr_err("%s: failed to get cpu%d device\n", __func__, i); return -ENODEV; } _put_cluster_clk_and_freq_table(cdev); } atomic_dec(&cluster_usage[MAX_CLUSTERS]); return ret; } /* Per-CPU initialization */ static int bL_cpufreq_init(struct cpufreq_policy *policy) { u32 cur_cluster = cpu_to_cluster(policy->cpu); struct device *cpu_dev; int ret; cpu_dev = get_cpu_device(policy->cpu); if (!cpu_dev) { pr_err("%s: failed to get cpu%d device\n", __func__, policy->cpu); return -ENODEV; } ret = get_cluster_clk_and_freq_table(cpu_dev); if (ret) return ret; ret = cpufreq_frequency_table_cpuinfo(policy, freq_table[cur_cluster]); if (ret) { dev_err(cpu_dev, "CPU %d, cluster: %d invalid freq table\n", policy->cpu, cur_cluster); put_cluster_clk_and_freq_table(cpu_dev); return ret; } cpufreq_frequency_table_get_attr(freq_table[cur_cluster], policy->cpu); if (cur_cluster < MAX_CLUSTERS) { cpumask_copy(policy->cpus, topology_core_cpumask(policy->cpu)); per_cpu(physical_cluster, policy->cpu) = cur_cluster; } else { /* Assumption: during init, we are always running on A15 */ per_cpu(physical_cluster, policy->cpu) = A15_CLUSTER; } if (arm_bL_ops->get_transition_latency) policy->cpuinfo.transition_latency = arm_bL_ops->get_transition_latency(cpu_dev); else policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; policy->cur = clk_get_cpu_rate(policy->cpu); if (is_bL_switching_enabled()) per_cpu(cpu_last_req_freq, policy->cpu) = policy->cur; dev_info(cpu_dev, "%s: CPU %d initialized\n", __func__, policy->cpu); return 0; } /* Export freq_table to sysfs */ static struct freq_attr *bL_cpufreq_attr[] = { &cpufreq_freq_attr_scaling_available_freqs, NULL, }; static struct cpufreq_driver bL_cpufreq_driver = { .name = "arm-big-little", .flags = CPUFREQ_STICKY, .verify = bL_cpufreq_verify_policy, .target = bL_cpufreq_set_target, .get = bL_cpufreq_get_rate, .init = bL_cpufreq_init, .have_governor_per_policy = true, .attr = bL_cpufreq_attr, }; static int bL_cpufreq_switcher_notifier(struct notifier_block *nfb, unsigned long action, void *_arg) { pr_debug("%s: action: %ld\n", __func__, action); switch (action) { case BL_NOTIFY_PRE_ENABLE: case BL_NOTIFY_PRE_DISABLE: cpufreq_unregister_driver(&bL_cpufreq_driver); break; case BL_NOTIFY_POST_ENABLE: set_switching_enabled(true); cpufreq_register_driver(&bL_cpufreq_driver); break; case BL_NOTIFY_POST_DISABLE: set_switching_enabled(false); cpufreq_register_driver(&bL_cpufreq_driver); break; default: return NOTIFY_DONE; } return NOTIFY_OK; } static struct notifier_block bL_switcher_notifier = { .notifier_call = bL_cpufreq_switcher_notifier, }; int bL_cpufreq_register(struct cpufreq_arm_bL_ops *ops) { int ret, i; if (arm_bL_ops) { pr_debug("%s: Already registered: %s, exiting\n", __func__, arm_bL_ops->name); return -EBUSY; } if (!ops || !strlen(ops->name) || !ops->init_opp_table) { pr_err("%s: Invalid arm_bL_ops, exiting\n", __func__); return -ENODEV; } arm_bL_ops = ops; ret = bL_switcher_get_enabled(); set_switching_enabled(ret); for (i = 0; i < MAX_CLUSTERS; i++) mutex_init(&cluster_lock[i]); ret = cpufreq_register_driver(&bL_cpufreq_driver); if (ret) { pr_info("%s: Failed registering platform driver: %s, err: %d\n", __func__, ops->name, ret); arm_bL_ops = NULL; } else { ret = bL_switcher_register_notifier(&bL_switcher_notifier); if (ret) { cpufreq_unregister_driver(&bL_cpufreq_driver); arm_bL_ops = NULL; } else { pr_info("%s: Registered platform driver: %s\n", __func__, ops->name); } } bL_switcher_put_enabled(); return ret; } EXPORT_SYMBOL_GPL(bL_cpufreq_register); void bL_cpufreq_unregister(struct cpufreq_arm_bL_ops *ops) { if (arm_bL_ops != ops) { pr_err("%s: Registered with: %s, can't unregister, exiting\n", __func__, arm_bL_ops->name); return; } bL_switcher_get_enabled(); bL_switcher_unregister_notifier(&bL_switcher_notifier); cpufreq_unregister_driver(&bL_cpufreq_driver); bL_switcher_put_enabled(); pr_info("%s: Un-registered platform driver: %s\n", __func__, arm_bL_ops->name); /* For saving table get/put on every cpu in/out */ if (is_bL_switching_enabled()) { put_cluster_clk_and_freq_table(get_cpu_device(0)); } else { int i; for (i = 0; i < MAX_CLUSTERS; i++) { struct device *cdev = get_cpu_device(i); if (!cdev) { pr_err("%s: failed to get cpu%d device\n", __func__, i); return; } put_cluster_clk_and_freq_table(cdev); } } arm_bL_ops = NULL; } EXPORT_SYMBOL_GPL(bL_cpufreq_unregister);