#ifndef _ASM_X86_VM86_H #define _ASM_X86_VM86_H #include #include /* * This is the (kernel) stack-layout when we have done a "SAVE_ALL" from vm86 * mode - the main change is that the old segment descriptors aren't * useful any more and are forced to be zero by the kernel (and the * hardware when a trap occurs), and the real segment descriptors are * at the end of the structure. Look at ptrace.h to see the "normal" * setup. For user space layout see 'struct vm86_regs' above. */ struct kernel_vm86_regs { /* * normal regs, with special meaning for the segment descriptors.. */ struct pt_regs pt; /* * these are specific to v86 mode: */ unsigned short es, __esh; unsigned short ds, __dsh; unsigned short fs, __fsh; unsigned short gs, __gsh; }; struct kernel_vm86_struct { struct kernel_vm86_regs regs; /* * the below part remains on the kernel stack while we are in VM86 mode. * 'tss.esp0' then contains the address of VM86_TSS_ESP0 below, and when we * get forced back from VM86, the CPU and "SAVE_ALL" will restore the above * 'struct kernel_vm86_regs' with the then actual values. * Therefore, pt_regs in fact points to a complete 'kernel_vm86_struct' * in kernelspace, hence we need not reget the data from userspace. */ #define VM86_TSS_ESP0 flags unsigned long flags; unsigned long screen_bitmap; unsigned long cpu_type; struct revectored_struct int_revectored; struct revectored_struct int21_revectored; struct vm86plus_info_struct vm86plus; struct pt_regs *regs32; /* here we save the pointer to the old regs */ /* * The below is not part of the structure, but the stack layout continues * this way. In front of 'return-eip' may be some data, depending on * compilation, so we don't rely on this and save the pointer to 'oldregs' * in 'regs32' above. * However, with GCC-2.7.2 and the current CFLAGS you see exactly this: long return-eip; from call to vm86() struct pt_regs oldregs; user space registers as saved by syscall */ }; #ifdef CONFIG_VM86 void handle_vm86_fault(struct kernel_vm86_regs *, long); int handle_vm86_trap(struct kernel_vm86_regs *, long, int); struct pt_regs *save_v86_state(struct kernel_vm86_regs *); struct task_struct; void release_vm86_irqs(struct task_struct *); #else #define handle_vm86_fault(a, b) #define release_vm86_irqs(a) static inline int handle_vm86_trap(struct kernel_vm86_regs *a, long b, int c) { return 0; } #endif /* CONFIG_VM86 */ #endif /* _ASM_X86_VM86_H */