aboutsummaryrefslogtreecommitdiff
path: root/fs/jffs2/scan.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/jffs2/scan.c')
-rw-r--r--fs/jffs2/scan.c916
1 files changed, 916 insertions, 0 deletions
diff --git a/fs/jffs2/scan.c b/fs/jffs2/scan.c
new file mode 100644
index 00000000000..ded53584a89
--- /dev/null
+++ b/fs/jffs2/scan.c
@@ -0,0 +1,916 @@
+/*
+ * JFFS2 -- Journalling Flash File System, Version 2.
+ *
+ * Copyright (C) 2001-2003 Red Hat, Inc.
+ *
+ * Created by David Woodhouse <dwmw2@infradead.org>
+ *
+ * For licensing information, see the file 'LICENCE' in this directory.
+ *
+ * $Id: scan.c,v 1.115 2004/11/17 12:59:08 dedekind Exp $
+ *
+ */
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/mtd/mtd.h>
+#include <linux/pagemap.h>
+#include <linux/crc32.h>
+#include <linux/compiler.h>
+#include "nodelist.h"
+
+#define EMPTY_SCAN_SIZE 1024
+
+#define DIRTY_SPACE(x) do { typeof(x) _x = (x); \
+ c->free_size -= _x; c->dirty_size += _x; \
+ jeb->free_size -= _x ; jeb->dirty_size += _x; \
+ }while(0)
+#define USED_SPACE(x) do { typeof(x) _x = (x); \
+ c->free_size -= _x; c->used_size += _x; \
+ jeb->free_size -= _x ; jeb->used_size += _x; \
+ }while(0)
+#define UNCHECKED_SPACE(x) do { typeof(x) _x = (x); \
+ c->free_size -= _x; c->unchecked_size += _x; \
+ jeb->free_size -= _x ; jeb->unchecked_size += _x; \
+ }while(0)
+
+#define noisy_printk(noise, args...) do { \
+ if (*(noise)) { \
+ printk(KERN_NOTICE args); \
+ (*(noise))--; \
+ if (!(*(noise))) { \
+ printk(KERN_NOTICE "Further such events for this erase block will not be printed\n"); \
+ } \
+ } \
+} while(0)
+
+static uint32_t pseudo_random;
+
+static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
+ unsigned char *buf, uint32_t buf_size);
+
+/* These helper functions _must_ increase ofs and also do the dirty/used space accounting.
+ * Returning an error will abort the mount - bad checksums etc. should just mark the space
+ * as dirty.
+ */
+static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
+ struct jffs2_raw_inode *ri, uint32_t ofs);
+static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
+ struct jffs2_raw_dirent *rd, uint32_t ofs);
+
+#define BLK_STATE_ALLFF 0
+#define BLK_STATE_CLEAN 1
+#define BLK_STATE_PARTDIRTY 2
+#define BLK_STATE_CLEANMARKER 3
+#define BLK_STATE_ALLDIRTY 4
+#define BLK_STATE_BADBLOCK 5
+
+static inline int min_free(struct jffs2_sb_info *c)
+{
+ uint32_t min = 2 * sizeof(struct jffs2_raw_inode);
+#if defined CONFIG_JFFS2_FS_NAND || defined CONFIG_JFFS2_FS_NOR_ECC
+ if (!jffs2_can_mark_obsolete(c) && min < c->wbuf_pagesize)
+ return c->wbuf_pagesize;
+#endif
+ return min;
+
+}
+int jffs2_scan_medium(struct jffs2_sb_info *c)
+{
+ int i, ret;
+ uint32_t empty_blocks = 0, bad_blocks = 0;
+ unsigned char *flashbuf = NULL;
+ uint32_t buf_size = 0;
+#ifndef __ECOS
+ size_t pointlen;
+
+ if (c->mtd->point) {
+ ret = c->mtd->point (c->mtd, 0, c->mtd->size, &pointlen, &flashbuf);
+ if (!ret && pointlen < c->mtd->size) {
+ /* Don't muck about if it won't let us point to the whole flash */
+ D1(printk(KERN_DEBUG "MTD point returned len too short: 0x%zx\n", pointlen));
+ c->mtd->unpoint(c->mtd, flashbuf, 0, c->mtd->size);
+ flashbuf = NULL;
+ }
+ if (ret)
+ D1(printk(KERN_DEBUG "MTD point failed %d\n", ret));
+ }
+#endif
+ if (!flashbuf) {
+ /* For NAND it's quicker to read a whole eraseblock at a time,
+ apparently */
+ if (jffs2_cleanmarker_oob(c))
+ buf_size = c->sector_size;
+ else
+ buf_size = PAGE_SIZE;
+
+ /* Respect kmalloc limitations */
+ if (buf_size > 128*1024)
+ buf_size = 128*1024;
+
+ D1(printk(KERN_DEBUG "Allocating readbuf of %d bytes\n", buf_size));
+ flashbuf = kmalloc(buf_size, GFP_KERNEL);
+ if (!flashbuf)
+ return -ENOMEM;
+ }
+
+ for (i=0; i<c->nr_blocks; i++) {
+ struct jffs2_eraseblock *jeb = &c->blocks[i];
+
+ ret = jffs2_scan_eraseblock(c, jeb, buf_size?flashbuf:(flashbuf+jeb->offset), buf_size);
+
+ if (ret < 0)
+ goto out;
+
+ ACCT_PARANOIA_CHECK(jeb);
+
+ /* Now decide which list to put it on */
+ switch(ret) {
+ case BLK_STATE_ALLFF:
+ /*
+ * Empty block. Since we can't be sure it
+ * was entirely erased, we just queue it for erase
+ * again. It will be marked as such when the erase
+ * is complete. Meanwhile we still count it as empty
+ * for later checks.
+ */
+ empty_blocks++;
+ list_add(&jeb->list, &c->erase_pending_list);
+ c->nr_erasing_blocks++;
+ break;
+
+ case BLK_STATE_CLEANMARKER:
+ /* Only a CLEANMARKER node is valid */
+ if (!jeb->dirty_size) {
+ /* It's actually free */
+ list_add(&jeb->list, &c->free_list);
+ c->nr_free_blocks++;
+ } else {
+ /* Dirt */
+ D1(printk(KERN_DEBUG "Adding all-dirty block at 0x%08x to erase_pending_list\n", jeb->offset));
+ list_add(&jeb->list, &c->erase_pending_list);
+ c->nr_erasing_blocks++;
+ }
+ break;
+
+ case BLK_STATE_CLEAN:
+ /* Full (or almost full) of clean data. Clean list */
+ list_add(&jeb->list, &c->clean_list);
+ break;
+
+ case BLK_STATE_PARTDIRTY:
+ /* Some data, but not full. Dirty list. */
+ /* We want to remember the block with most free space
+ and stick it in the 'nextblock' position to start writing to it. */
+ if (jeb->free_size > min_free(c) &&
+ (!c->nextblock || c->nextblock->free_size < jeb->free_size)) {
+ /* Better candidate for the next writes to go to */
+ if (c->nextblock) {
+ c->nextblock->dirty_size += c->nextblock->free_size + c->nextblock->wasted_size;
+ c->dirty_size += c->nextblock->free_size + c->nextblock->wasted_size;
+ c->free_size -= c->nextblock->free_size;
+ c->wasted_size -= c->nextblock->wasted_size;
+ c->nextblock->free_size = c->nextblock->wasted_size = 0;
+ if (VERYDIRTY(c, c->nextblock->dirty_size)) {
+ list_add(&c->nextblock->list, &c->very_dirty_list);
+ } else {
+ list_add(&c->nextblock->list, &c->dirty_list);
+ }
+ }
+ c->nextblock = jeb;
+ } else {
+ jeb->dirty_size += jeb->free_size + jeb->wasted_size;
+ c->dirty_size += jeb->free_size + jeb->wasted_size;
+ c->free_size -= jeb->free_size;
+ c->wasted_size -= jeb->wasted_size;
+ jeb->free_size = jeb->wasted_size = 0;
+ if (VERYDIRTY(c, jeb->dirty_size)) {
+ list_add(&jeb->list, &c->very_dirty_list);
+ } else {
+ list_add(&jeb->list, &c->dirty_list);
+ }
+ }
+ break;
+
+ case BLK_STATE_ALLDIRTY:
+ /* Nothing valid - not even a clean marker. Needs erasing. */
+ /* For now we just put it on the erasing list. We'll start the erases later */
+ D1(printk(KERN_NOTICE "JFFS2: Erase block at 0x%08x is not formatted. It will be erased\n", jeb->offset));
+ list_add(&jeb->list, &c->erase_pending_list);
+ c->nr_erasing_blocks++;
+ break;
+
+ case BLK_STATE_BADBLOCK:
+ D1(printk(KERN_NOTICE "JFFS2: Block at 0x%08x is bad\n", jeb->offset));
+ list_add(&jeb->list, &c->bad_list);
+ c->bad_size += c->sector_size;
+ c->free_size -= c->sector_size;
+ bad_blocks++;
+ break;
+ default:
+ printk(KERN_WARNING "jffs2_scan_medium(): unknown block state\n");
+ BUG();
+ }
+ }
+
+ /* Nextblock dirty is always seen as wasted, because we cannot recycle it now */
+ if (c->nextblock && (c->nextblock->dirty_size)) {
+ c->nextblock->wasted_size += c->nextblock->dirty_size;
+ c->wasted_size += c->nextblock->dirty_size;
+ c->dirty_size -= c->nextblock->dirty_size;
+ c->nextblock->dirty_size = 0;
+ }
+#if defined CONFIG_JFFS2_FS_NAND || defined CONFIG_JFFS2_FS_NOR_ECC
+ if (!jffs2_can_mark_obsolete(c) && c->nextblock && (c->nextblock->free_size & (c->wbuf_pagesize-1))) {
+ /* If we're going to start writing into a block which already
+ contains data, and the end of the data isn't page-aligned,
+ skip a little and align it. */
+
+ uint32_t skip = c->nextblock->free_size & (c->wbuf_pagesize-1);
+
+ D1(printk(KERN_DEBUG "jffs2_scan_medium(): Skipping %d bytes in nextblock to ensure page alignment\n",
+ skip));
+ c->nextblock->wasted_size += skip;
+ c->wasted_size += skip;
+
+ c->nextblock->free_size -= skip;
+ c->free_size -= skip;
+ }
+#endif
+ if (c->nr_erasing_blocks) {
+ if ( !c->used_size && ((c->nr_free_blocks+empty_blocks+bad_blocks)!= c->nr_blocks || bad_blocks == c->nr_blocks) ) {
+ printk(KERN_NOTICE "Cowardly refusing to erase blocks on filesystem with no valid JFFS2 nodes\n");
+ printk(KERN_NOTICE "empty_blocks %d, bad_blocks %d, c->nr_blocks %d\n",empty_blocks,bad_blocks,c->nr_blocks);
+ ret = -EIO;
+ goto out;
+ }
+ jffs2_erase_pending_trigger(c);
+ }
+ ret = 0;
+ out:
+ if (buf_size)
+ kfree(flashbuf);
+#ifndef __ECOS
+ else
+ c->mtd->unpoint(c->mtd, flashbuf, 0, c->mtd->size);
+#endif
+ return ret;
+}
+
+static int jffs2_fill_scan_buf (struct jffs2_sb_info *c, unsigned char *buf,
+ uint32_t ofs, uint32_t len)
+{
+ int ret;
+ size_t retlen;
+
+ ret = jffs2_flash_read(c, ofs, len, &retlen, buf);
+ if (ret) {
+ D1(printk(KERN_WARNING "mtd->read(0x%x bytes from 0x%x) returned %d\n", len, ofs, ret));
+ return ret;
+ }
+ if (retlen < len) {
+ D1(printk(KERN_WARNING "Read at 0x%x gave only 0x%zx bytes\n", ofs, retlen));
+ return -EIO;
+ }
+ D2(printk(KERN_DEBUG "Read 0x%x bytes from 0x%08x into buf\n", len, ofs));
+ D2(printk(KERN_DEBUG "000: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
+ buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7], buf[8], buf[9], buf[10], buf[11], buf[12], buf[13], buf[14], buf[15]));
+ return 0;
+}
+
+static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
+ unsigned char *buf, uint32_t buf_size) {
+ struct jffs2_unknown_node *node;
+ struct jffs2_unknown_node crcnode;
+ uint32_t ofs, prevofs;
+ uint32_t hdr_crc, buf_ofs, buf_len;
+ int err;
+ int noise = 0;
+#ifdef CONFIG_JFFS2_FS_NAND
+ int cleanmarkerfound = 0;
+#endif
+
+ ofs = jeb->offset;
+ prevofs = jeb->offset - 1;
+
+ D1(printk(KERN_DEBUG "jffs2_scan_eraseblock(): Scanning block at 0x%x\n", ofs));
+
+#ifdef CONFIG_JFFS2_FS_NAND
+ if (jffs2_cleanmarker_oob(c)) {
+ int ret = jffs2_check_nand_cleanmarker(c, jeb);
+ D2(printk(KERN_NOTICE "jffs_check_nand_cleanmarker returned %d\n",ret));
+ /* Even if it's not found, we still scan to see
+ if the block is empty. We use this information
+ to decide whether to erase it or not. */
+ switch (ret) {
+ case 0: cleanmarkerfound = 1; break;
+ case 1: break;
+ case 2: return BLK_STATE_BADBLOCK;
+ case 3: return BLK_STATE_ALLDIRTY; /* Block has failed to erase min. once */
+ default: return ret;
+ }
+ }
+#endif
+ buf_ofs = jeb->offset;
+
+ if (!buf_size) {
+ buf_len = c->sector_size;
+ } else {
+ buf_len = EMPTY_SCAN_SIZE;
+ err = jffs2_fill_scan_buf(c, buf, buf_ofs, buf_len);
+ if (err)
+ return err;
+ }
+
+ /* We temporarily use 'ofs' as a pointer into the buffer/jeb */
+ ofs = 0;
+
+ /* Scan only 4KiB of 0xFF before declaring it's empty */
+ while(ofs < EMPTY_SCAN_SIZE && *(uint32_t *)(&buf[ofs]) == 0xFFFFFFFF)
+ ofs += 4;
+
+ if (ofs == EMPTY_SCAN_SIZE) {
+#ifdef CONFIG_JFFS2_FS_NAND
+ if (jffs2_cleanmarker_oob(c)) {
+ /* scan oob, take care of cleanmarker */
+ int ret = jffs2_check_oob_empty(c, jeb, cleanmarkerfound);
+ D2(printk(KERN_NOTICE "jffs2_check_oob_empty returned %d\n",ret));
+ switch (ret) {
+ case 0: return cleanmarkerfound ? BLK_STATE_CLEANMARKER : BLK_STATE_ALLFF;
+ case 1: return BLK_STATE_ALLDIRTY;
+ default: return ret;
+ }
+ }
+#endif
+ D1(printk(KERN_DEBUG "Block at 0x%08x is empty (erased)\n", jeb->offset));
+ return BLK_STATE_ALLFF; /* OK to erase if all blocks are like this */
+ }
+ if (ofs) {
+ D1(printk(KERN_DEBUG "Free space at %08x ends at %08x\n", jeb->offset,
+ jeb->offset + ofs));
+ DIRTY_SPACE(ofs);
+ }
+
+ /* Now ofs is a complete physical flash offset as it always was... */
+ ofs += jeb->offset;
+
+ noise = 10;
+
+scan_more:
+ while(ofs < jeb->offset + c->sector_size) {
+
+ D1(ACCT_PARANOIA_CHECK(jeb));
+
+ cond_resched();
+
+ if (ofs & 3) {
+ printk(KERN_WARNING "Eep. ofs 0x%08x not word-aligned!\n", ofs);
+ ofs = PAD(ofs);
+ continue;
+ }
+ if (ofs == prevofs) {
+ printk(KERN_WARNING "ofs 0x%08x has already been seen. Skipping\n", ofs);
+ DIRTY_SPACE(4);
+ ofs += 4;
+ continue;
+ }
+ prevofs = ofs;
+
+ if (jeb->offset + c->sector_size < ofs + sizeof(*node)) {
+ D1(printk(KERN_DEBUG "Fewer than %zd bytes left to end of block. (%x+%x<%x+%zx) Not reading\n", sizeof(struct jffs2_unknown_node),
+ jeb->offset, c->sector_size, ofs, sizeof(*node)));
+ DIRTY_SPACE((jeb->offset + c->sector_size)-ofs);
+ break;
+ }
+
+ if (buf_ofs + buf_len < ofs + sizeof(*node)) {
+ buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
+ D1(printk(KERN_DEBUG "Fewer than %zd bytes (node header) left to end of buf. Reading 0x%x at 0x%08x\n",
+ sizeof(struct jffs2_unknown_node), buf_len, ofs));
+ err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
+ if (err)
+ return err;
+ buf_ofs = ofs;
+ }
+
+ node = (struct jffs2_unknown_node *)&buf[ofs-buf_ofs];
+
+ if (*(uint32_t *)(&buf[ofs-buf_ofs]) == 0xffffffff) {
+ uint32_t inbuf_ofs;
+ uint32_t empty_start;
+
+ empty_start = ofs;
+ ofs += 4;
+
+ D1(printk(KERN_DEBUG "Found empty flash at 0x%08x\n", ofs));
+ more_empty:
+ inbuf_ofs = ofs - buf_ofs;
+ while (inbuf_ofs < buf_len) {
+ if (*(uint32_t *)(&buf[inbuf_ofs]) != 0xffffffff) {
+ printk(KERN_WARNING "Empty flash at 0x%08x ends at 0x%08x\n",
+ empty_start, ofs);
+ DIRTY_SPACE(ofs-empty_start);
+ goto scan_more;
+ }
+
+ inbuf_ofs+=4;
+ ofs += 4;
+ }
+ /* Ran off end. */
+ D1(printk(KERN_DEBUG "Empty flash to end of buffer at 0x%08x\n", ofs));
+
+ /* If we're only checking the beginning of a block with a cleanmarker,
+ bail now */
+ if (buf_ofs == jeb->offset && jeb->used_size == PAD(c->cleanmarker_size) &&
+ c->cleanmarker_size && !jeb->dirty_size && !jeb->first_node->next_in_ino) {
+ D1(printk(KERN_DEBUG "%d bytes at start of block seems clean... assuming all clean\n", EMPTY_SCAN_SIZE));
+ return BLK_STATE_CLEANMARKER;
+ }
+
+ /* See how much more there is to read in this eraseblock... */
+ buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
+ if (!buf_len) {
+ /* No more to read. Break out of main loop without marking
+ this range of empty space as dirty (because it's not) */
+ D1(printk(KERN_DEBUG "Empty flash at %08x runs to end of block. Treating as free_space\n",
+ empty_start));
+ break;
+ }
+ D1(printk(KERN_DEBUG "Reading another 0x%x at 0x%08x\n", buf_len, ofs));
+ err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
+ if (err)
+ return err;
+ buf_ofs = ofs;
+ goto more_empty;
+ }
+
+ if (ofs == jeb->offset && je16_to_cpu(node->magic) == KSAMTIB_CIGAM_2SFFJ) {
+ printk(KERN_WARNING "Magic bitmask is backwards at offset 0x%08x. Wrong endian filesystem?\n", ofs);
+ DIRTY_SPACE(4);
+ ofs += 4;
+ continue;
+ }
+ if (je16_to_cpu(node->magic) == JFFS2_DIRTY_BITMASK) {
+ D1(printk(KERN_DEBUG "Dirty bitmask at 0x%08x\n", ofs));
+ DIRTY_SPACE(4);
+ ofs += 4;
+ continue;
+ }
+ if (je16_to_cpu(node->magic) == JFFS2_OLD_MAGIC_BITMASK) {
+ printk(KERN_WARNING "Old JFFS2 bitmask found at 0x%08x\n", ofs);
+ printk(KERN_WARNING "You cannot use older JFFS2 filesystems with newer kernels\n");
+ DIRTY_SPACE(4);
+ ofs += 4;
+ continue;
+ }
+ if (je16_to_cpu(node->magic) != JFFS2_MAGIC_BITMASK) {
+ /* OK. We're out of possibilities. Whinge and move on */
+ noisy_printk(&noise, "jffs2_scan_eraseblock(): Magic bitmask 0x%04x not found at 0x%08x: 0x%04x instead\n",
+ JFFS2_MAGIC_BITMASK, ofs,
+ je16_to_cpu(node->magic));
+ DIRTY_SPACE(4);
+ ofs += 4;
+ continue;
+ }
+ /* We seem to have a node of sorts. Check the CRC */
+ crcnode.magic = node->magic;
+ crcnode.nodetype = cpu_to_je16( je16_to_cpu(node->nodetype) | JFFS2_NODE_ACCURATE);
+ crcnode.totlen = node->totlen;
+ hdr_crc = crc32(0, &crcnode, sizeof(crcnode)-4);
+
+ if (hdr_crc != je32_to_cpu(node->hdr_crc)) {
+ noisy_printk(&noise, "jffs2_scan_eraseblock(): Node at 0x%08x {0x%04x, 0x%04x, 0x%08x) has invalid CRC 0x%08x (calculated 0x%08x)\n",
+ ofs, je16_to_cpu(node->magic),
+ je16_to_cpu(node->nodetype),
+ je32_to_cpu(node->totlen),
+ je32_to_cpu(node->hdr_crc),
+ hdr_crc);
+ DIRTY_SPACE(4);
+ ofs += 4;
+ continue;
+ }
+
+ if (ofs + je32_to_cpu(node->totlen) >
+ jeb->offset + c->sector_size) {
+ /* Eep. Node goes over the end of the erase block. */
+ printk(KERN_WARNING "Node at 0x%08x with length 0x%08x would run over the end of the erase block\n",
+ ofs, je32_to_cpu(node->totlen));
+ printk(KERN_WARNING "Perhaps the file system was created with the wrong erase size?\n");
+ DIRTY_SPACE(4);
+ ofs += 4;
+ continue;
+ }
+
+ if (!(je16_to_cpu(node->nodetype) & JFFS2_NODE_ACCURATE)) {
+ /* Wheee. This is an obsoleted node */
+ D2(printk(KERN_DEBUG "Node at 0x%08x is obsolete. Skipping\n", ofs));
+ DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
+ ofs += PAD(je32_to_cpu(node->totlen));
+ continue;
+ }
+
+ switch(je16_to_cpu(node->nodetype)) {
+ case JFFS2_NODETYPE_INODE:
+ if (buf_ofs + buf_len < ofs + sizeof(struct jffs2_raw_inode)) {
+ buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
+ D1(printk(KERN_DEBUG "Fewer than %zd bytes (inode node) left to end of buf. Reading 0x%x at 0x%08x\n",
+ sizeof(struct jffs2_raw_inode), buf_len, ofs));
+ err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
+ if (err)
+ return err;
+ buf_ofs = ofs;
+ node = (void *)buf;
+ }
+ err = jffs2_scan_inode_node(c, jeb, (void *)node, ofs);
+ if (err) return err;
+ ofs += PAD(je32_to_cpu(node->totlen));
+ break;
+
+ case JFFS2_NODETYPE_DIRENT:
+ if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) {
+ buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
+ D1(printk(KERN_DEBUG "Fewer than %d bytes (dirent node) left to end of buf. Reading 0x%x at 0x%08x\n",
+ je32_to_cpu(node->totlen), buf_len, ofs));
+ err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
+ if (err)
+ return err;
+ buf_ofs = ofs;
+ node = (void *)buf;
+ }
+ err = jffs2_scan_dirent_node(c, jeb, (void *)node, ofs);
+ if (err) return err;
+ ofs += PAD(je32_to_cpu(node->totlen));
+ break;
+
+ case JFFS2_NODETYPE_CLEANMARKER:
+ D1(printk(KERN_DEBUG "CLEANMARKER node found at 0x%08x\n", ofs));
+ if (je32_to_cpu(node->totlen) != c->cleanmarker_size) {
+ printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x has totlen 0x%x != normal 0x%x\n",
+ ofs, je32_to_cpu(node->totlen), c->cleanmarker_size);
+ DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node)));
+ ofs += PAD(sizeof(struct jffs2_unknown_node));
+ } else if (jeb->first_node) {
+ printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x, not first node in block (0x%08x)\n", ofs, jeb->offset);
+ DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node)));
+ ofs += PAD(sizeof(struct jffs2_unknown_node));
+ } else {
+ struct jffs2_raw_node_ref *marker_ref = jffs2_alloc_raw_node_ref();
+ if (!marker_ref) {
+ printk(KERN_NOTICE "Failed to allocate node ref for clean marker\n");
+ return -ENOMEM;
+ }
+ marker_ref->next_in_ino = NULL;
+ marker_ref->next_phys = NULL;
+ marker_ref->flash_offset = ofs | REF_NORMAL;
+ marker_ref->__totlen = c->cleanmarker_size;
+ jeb->first_node = jeb->last_node = marker_ref;
+
+ USED_SPACE(PAD(c->cleanmarker_size));
+ ofs += PAD(c->cleanmarker_size);
+ }
+ break;
+
+ case JFFS2_NODETYPE_PADDING:
+ DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
+ ofs += PAD(je32_to_cpu(node->totlen));
+ break;
+
+ default:
+ switch (je16_to_cpu(node->nodetype) & JFFS2_COMPAT_MASK) {
+ case JFFS2_FEATURE_ROCOMPAT:
+ printk(KERN_NOTICE "Read-only compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs);
+ c->flags |= JFFS2_SB_FLAG_RO;
+ if (!(jffs2_is_readonly(c)))
+ return -EROFS;
+ DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
+ ofs += PAD(je32_to_cpu(node->totlen));
+ break;
+
+ case JFFS2_FEATURE_INCOMPAT:
+ printk(KERN_NOTICE "Incompatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs);
+ return -EINVAL;
+
+ case JFFS2_FEATURE_RWCOMPAT_DELETE:
+ D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs));
+ DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
+ ofs += PAD(je32_to_cpu(node->totlen));
+ break;
+
+ case JFFS2_FEATURE_RWCOMPAT_COPY:
+ D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs));
+ USED_SPACE(PAD(je32_to_cpu(node->totlen)));
+ ofs += PAD(je32_to_cpu(node->totlen));
+ break;
+ }
+ }
+ }
+
+
+ D1(printk(KERN_DEBUG "Block at 0x%08x: free 0x%08x, dirty 0x%08x, unchecked 0x%08x, used 0x%08x\n", jeb->offset,
+ jeb->free_size, jeb->dirty_size, jeb->unchecked_size, jeb->used_size));
+
+ /* mark_node_obsolete can add to wasted !! */
+ if (jeb->wasted_size) {
+ jeb->dirty_size += jeb->wasted_size;
+ c->dirty_size += jeb->wasted_size;
+ c->wasted_size -= jeb->wasted_size;
+ jeb->wasted_size = 0;
+ }
+
+ if ((jeb->used_size + jeb->unchecked_size) == PAD(c->cleanmarker_size) && !jeb->dirty_size
+ && (!jeb->first_node || !jeb->first_node->next_in_ino) )
+ return BLK_STATE_CLEANMARKER;
+
+ /* move blocks with max 4 byte dirty space to cleanlist */
+ else if (!ISDIRTY(c->sector_size - (jeb->used_size + jeb->unchecked_size))) {
+ c->dirty_size -= jeb->dirty_size;
+ c->wasted_size += jeb->dirty_size;
+ jeb->wasted_size += jeb->dirty_size;
+ jeb->dirty_size = 0;
+ return BLK_STATE_CLEAN;
+ } else if (jeb->used_size || jeb->unchecked_size)
+ return BLK_STATE_PARTDIRTY;
+ else
+ return BLK_STATE_ALLDIRTY;
+}
+
+static struct jffs2_inode_cache *jffs2_scan_make_ino_cache(struct jffs2_sb_info *c, uint32_t ino)
+{
+ struct jffs2_inode_cache *ic;
+
+ ic = jffs2_get_ino_cache(c, ino);
+ if (ic)
+ return ic;
+
+ if (ino > c->highest_ino)
+ c->highest_ino = ino;
+
+ ic = jffs2_alloc_inode_cache();
+ if (!ic) {
+ printk(KERN_NOTICE "jffs2_scan_make_inode_cache(): allocation of inode cache failed\n");
+ return NULL;
+ }
+ memset(ic, 0, sizeof(*ic));
+
+ ic->ino = ino;
+ ic->nodes = (void *)ic;
+ jffs2_add_ino_cache(c, ic);
+ if (ino == 1)
+ ic->nlink = 1;
+ return ic;
+}
+
+static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
+ struct jffs2_raw_inode *ri, uint32_t ofs)
+{
+ struct jffs2_raw_node_ref *raw;
+ struct jffs2_inode_cache *ic;
+ uint32_t ino = je32_to_cpu(ri->ino);
+
+ D1(printk(KERN_DEBUG "jffs2_scan_inode_node(): Node at 0x%08x\n", ofs));
+
+ /* We do very little here now. Just check the ino# to which we should attribute
+ this node; we can do all the CRC checking etc. later. There's a tradeoff here --
+ we used to scan the flash once only, reading everything we want from it into
+ memory, then building all our in-core data structures and freeing the extra
+ information. Now we allow the first part of the mount to complete a lot quicker,
+ but we have to go _back_ to the flash in order to finish the CRC checking, etc.
+ Which means that the _full_ amount of time to get to proper write mode with GC
+ operational may actually be _longer_ than before. Sucks to be me. */
+
+ raw = jffs2_alloc_raw_node_ref();
+ if (!raw) {
+ printk(KERN_NOTICE "jffs2_scan_inode_node(): allocation of node reference failed\n");
+ return -ENOMEM;
+ }
+
+ ic = jffs2_get_ino_cache(c, ino);
+ if (!ic) {
+ /* Inocache get failed. Either we read a bogus ino# or it's just genuinely the
+ first node we found for this inode. Do a CRC check to protect against the former
+ case */
+ uint32_t crc = crc32(0, ri, sizeof(*ri)-8);
+
+ if (crc != je32_to_cpu(ri->node_crc)) {
+ printk(KERN_NOTICE "jffs2_scan_inode_node(): CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
+ ofs, je32_to_cpu(ri->node_crc), crc);
+ /* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */
+ DIRTY_SPACE(PAD(je32_to_cpu(ri->totlen)));
+ jffs2_free_raw_node_ref(raw);
+ return 0;
+ }
+ ic = jffs2_scan_make_ino_cache(c, ino);
+ if (!ic) {
+ jffs2_free_raw_node_ref(raw);
+ return -ENOMEM;
+ }
+ }
+
+ /* Wheee. It worked */
+
+ raw->flash_offset = ofs | REF_UNCHECKED;
+ raw->__totlen = PAD(je32_to_cpu(ri->totlen));
+ raw->next_phys = NULL;
+ raw->next_in_ino = ic->nodes;
+
+ ic->nodes = raw;
+ if (!jeb->first_node)
+ jeb->first_node = raw;
+ if (jeb->last_node)
+ jeb->last_node->next_phys = raw;
+ jeb->last_node = raw;
+
+ D1(printk(KERN_DEBUG "Node is ino #%u, version %d. Range 0x%x-0x%x\n",
+ je32_to_cpu(ri->ino), je32_to_cpu(ri->version),
+ je32_to_cpu(ri->offset),
+ je32_to_cpu(ri->offset)+je32_to_cpu(ri->dsize)));
+
+ pseudo_random += je32_to_cpu(ri->version);
+
+ UNCHECKED_SPACE(PAD(je32_to_cpu(ri->totlen)));
+ return 0;
+}
+
+static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
+ struct jffs2_raw_dirent *rd, uint32_t ofs)
+{
+ struct jffs2_raw_node_ref *raw;
+ struct jffs2_full_dirent *fd;
+ struct jffs2_inode_cache *ic;
+ uint32_t crc;
+
+ D1(printk(KERN_DEBUG "jffs2_scan_dirent_node(): Node at 0x%08x\n", ofs));
+
+ /* We don't get here unless the node is still valid, so we don't have to
+ mask in the ACCURATE bit any more. */
+ crc = crc32(0, rd, sizeof(*rd)-8);
+
+ if (crc != je32_to_cpu(rd->node_crc)) {
+ printk(KERN_NOTICE "jffs2_scan_dirent_node(): Node CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
+ ofs, je32_to_cpu(rd->node_crc), crc);
+ /* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */
+ DIRTY_SPACE(PAD(je32_to_cpu(rd->totlen)));
+ return 0;
+ }
+
+ pseudo_random += je32_to_cpu(rd->version);
+
+ fd = jffs2_alloc_full_dirent(rd->nsize+1);
+ if (!fd) {
+ return -ENOMEM;
+ }
+ memcpy(&fd->name, rd->name, rd->nsize);
+ fd->name[rd->nsize] = 0;
+
+ crc = crc32(0, fd->name, rd->nsize);
+ if (crc != je32_to_cpu(rd->name_crc)) {
+ printk(KERN_NOTICE "jffs2_scan_dirent_node(): Name CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
+ ofs, je32_to_cpu(rd->name_crc), crc);
+ D1(printk(KERN_NOTICE "Name for which CRC failed is (now) '%s', ino #%d\n", fd->name, je32_to_cpu(rd->ino)));
+ jffs2_free_full_dirent(fd);
+ /* FIXME: Why do we believe totlen? */
+ /* We believe totlen because the CRC on the node _header_ was OK, just the name failed. */
+ DIRTY_SPACE(PAD(je32_to_cpu(rd->totlen)));
+ return 0;
+ }
+ raw = jffs2_alloc_raw_node_ref();
+ if (!raw) {
+ jffs2_free_full_dirent(fd);
+ printk(KERN_NOTICE "jffs2_scan_dirent_node(): allocation of node reference failed\n");
+ return -ENOMEM;
+ }
+ ic = jffs2_scan_make_ino_cache(c, je32_to_cpu(rd->pino));
+ if (!ic) {
+ jffs2_free_full_dirent(fd);
+ jffs2_free_raw_node_ref(raw);
+ return -ENOMEM;
+ }
+
+ raw->__totlen = PAD(je32_to_cpu(rd->totlen));
+ raw->flash_offset = ofs | REF_PRISTINE;
+ raw->next_phys = NULL;
+ raw->next_in_ino = ic->nodes;
+ ic->nodes = raw;
+ if (!jeb->first_node)
+ jeb->first_node = raw;
+ if (jeb->last_node)
+ jeb->last_node->next_phys = raw;
+ jeb->last_node = raw;
+
+ fd->raw = raw;
+ fd->next = NULL;
+ fd->version = je32_to_cpu(rd->version);
+ fd->ino = je32_to_cpu(rd->ino);
+ fd->nhash = full_name_hash(fd->name, rd->nsize);
+ fd->type = rd->type;
+ USED_SPACE(PAD(je32_to_cpu(rd->totlen)));
+ jffs2_add_fd_to_list(c, fd, &ic->scan_dents);
+
+ return 0;
+}
+
+static int count_list(struct list_head *l)
+{
+ uint32_t count = 0;
+ struct list_head *tmp;
+
+ list_for_each(tmp, l) {
+ count++;
+ }
+ return count;
+}
+
+/* Note: This breaks if list_empty(head). I don't care. You
+ might, if you copy this code and use it elsewhere :) */
+static void rotate_list(struct list_head *head, uint32_t count)
+{
+ struct list_head *n = head->next;
+
+ list_del(head);
+ while(count--) {
+ n = n->next;
+ }
+ list_add(head, n);
+}
+
+void jffs2_rotate_lists(struct jffs2_sb_info *c)
+{
+ uint32_t x;
+ uint32_t rotateby;
+
+ x = count_list(&c->clean_list);
+ if (x) {
+ rotateby = pseudo_random % x;
+ D1(printk(KERN_DEBUG "Rotating clean_list by %d\n", rotateby));
+
+ rotate_list((&c->clean_list), rotateby);
+
+ D1(printk(KERN_DEBUG "Erase block at front of clean_list is at %08x\n",
+ list_entry(c->clean_list.next, struct jffs2_eraseblock, list)->offset));
+ } else {
+ D1(printk(KERN_DEBUG "Not rotating empty clean_list\n"));
+ }
+
+ x = count_list(&c->very_dirty_list);
+ if (x) {
+ rotateby = pseudo_random % x;
+ D1(printk(KERN_DEBUG "Rotating very_dirty_list by %d\n", rotateby));
+
+ rotate_list((&c->very_dirty_list), rotateby);
+
+ D1(printk(KERN_DEBUG "Erase block at front of very_dirty_list is at %08x\n",
+ list_entry(c->very_dirty_list.next, struct jffs2_eraseblock, list)->offset));
+ } else {
+ D1(printk(KERN_DEBUG "Not rotating empty very_dirty_list\n"));
+ }
+
+ x = count_list(&c->dirty_list);
+ if (x) {
+ rotateby = pseudo_random % x;
+ D1(printk(KERN_DEBUG "Rotating dirty_list by %d\n", rotateby));
+
+ rotate_list((&c->dirty_list), rotateby);
+
+ D1(printk(KERN_DEBUG "Erase block at front of dirty_list is at %08x\n",
+ list_entry(c->dirty_list.next, struct jffs2_eraseblock, list)->offset));
+ } else {
+ D1(printk(KERN_DEBUG "Not rotating empty dirty_list\n"));
+ }
+
+ x = count_list(&c->erasable_list);
+ if (x) {
+ rotateby = pseudo_random % x;
+ D1(printk(KERN_DEBUG "Rotating erasable_list by %d\n", rotateby));
+
+ rotate_list((&c->erasable_list), rotateby);
+
+ D1(printk(KERN_DEBUG "Erase block at front of erasable_list is at %08x\n",
+ list_entry(c->erasable_list.next, struct jffs2_eraseblock, list)->offset));
+ } else {
+ D1(printk(KERN_DEBUG "Not rotating empty erasable_list\n"));
+ }
+
+ if (c->nr_erasing_blocks) {
+ rotateby = pseudo_random % c->nr_erasing_blocks;
+ D1(printk(KERN_DEBUG "Rotating erase_pending_list by %d\n", rotateby));
+
+ rotate_list((&c->erase_pending_list), rotateby);
+
+ D1(printk(KERN_DEBUG "Erase block at front of erase_pending_list is at %08x\n",
+ list_entry(c->erase_pending_list.next, struct jffs2_eraseblock, list)->offset));
+ } else {
+ D1(printk(KERN_DEBUG "Not rotating empty erase_pending_list\n"));
+ }
+
+ if (c->nr_free_blocks) {
+ rotateby = pseudo_random % c->nr_free_blocks;
+ D1(printk(KERN_DEBUG "Rotating free_list by %d\n", rotateby));
+
+ rotate_list((&c->free_list), rotateby);
+
+ D1(printk(KERN_DEBUG "Erase block at front of free_list is at %08x\n",
+ list_entry(c->free_list.next, struct jffs2_eraseblock, list)->offset));
+ } else {
+ D1(printk(KERN_DEBUG "Not rotating empty free_list\n"));
+ }
+}