aboutsummaryrefslogtreecommitdiff
path: root/src/core/cpu/kernel.cpp
blob: 922cdfe7b8431558086bfde4267f9b751f4b3393 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
/*
 * Copyright (c) 2011, Denis Steckelmacher <steckdenis@yahoo.fr>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the copyright holder nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/**
 * \file cpu/kernel.cpp
 * \brief CPU kernel
 */

#include "kernel.h"
#include "device.h"
#include "buffer.h"
#include "program.h"
#include "builtins.h"

#include "../kernel.h"
#include "../memobject.h"
#include "../events.h"
#include "../program.h"

#include <llvm/IR/Function.h>
#include <llvm/IR/Constants.h>
#include <llvm/IR/Instructions.h>
#include <llvm/IR/LLVMContext.h>
#include <llvm/IR/Module.h>
#include <llvm/ExecutionEngine/ExecutionEngine.h>

#include <cstdlib>
#include <cstring>
#include <iostream>
#include <sys/mman.h>

using namespace Coal;

CPUKernel::CPUKernel(CPUDevice *device, Kernel *kernel, llvm::Function *function)
: DeviceKernel(), p_device(device), p_kernel(kernel), p_function(function),
  p_call_function(0)
{
    pthread_mutex_init(&p_call_function_mutex, 0);

	const char *fn_name;

    // If we can reuse the same function between work groups, do it
/* tag out for now     if (p_call_function)
    {
        llvm::Function *rs = p_call_function;
        pthread_mutex_unlock(&p_call_function_mutex);

        return rs;
    } */

    /* Create a stub function in the form of
     *
     * void stub(void *args) {
     *     kernel(*(int *)((char *)args + 0),
     *            *(float **)((char *)args + sizeof(int)),
     *            *(sampler_t *)((char *)args + sizeof(int) + sizeof(float *)));
     * }
     *
     * In LLVM, it is exprimed in the form of :
     *
     * @stub(i8* args) {
     *     kernel(
     *         load(i32* bitcast(i8* getelementptr(i8* args, i64 0), i32*)),
     *         load(float** bitcast(i8* getelementptr(i8* args, i64 4), float**)),
     *         ...
     *     );
     * }
     */
	fn_name = kernel->p_name.c_str();
    Program *p = (Program *)kernel->parent();
    CPUProgram *prog = (CPUProgram *)(p->deviceDependentProgram(device));
	//llvm::Function *t_function = prog->jit()->FindFunctionNamed(fn_name);

	char * s_name = (char *) malloc(strlen(fn_name)+6);
	sprintf(s_name,"_stub%s",fn_name);

    llvm::FunctionType *kernel_function_type = function->getFunctionType();
    llvm::FunctionType *stub_function_type = llvm::FunctionType::get(
        function->getReturnType(),
        llvm::Type::getInt8PtrTy(
            function->getContext()),
        false);
    llvm::Function *stub_function = llvm::Function::Create(
        stub_function_type,
        llvm::Function::InternalLinkage,
        s_name,
        function->getParent());

    // Insert a basic block
    llvm::BasicBlock *basic_block = llvm::BasicBlock::Create(
        function->getContext(),
        "",
        stub_function);

    // Create the function arguments
    llvm::Argument &stub_arg = stub_function->getArgumentList().front();
    llvm::SmallVector<llvm::Value *, 8> args;
    size_t args_offset = 0;

    for (unsigned int i=0; i<kernel_function_type->getNumParams(); ++i)
    {
        llvm::Type *param_type = kernel_function_type->getParamType(i);
        llvm::Type *param_type_ptr = param_type->getPointerTo(); // We'll use pointers to the value
        const Kernel::Arg *arg = p_kernel->arg(i);

        // Calculate the size of the arg
        size_t arg_size = arg->valueSize() * arg->vecDim();

        // Get where to place this argument
        size_t arg_offset = typeOffset(args_offset, arg_size);

        // %1 = getelementptr(args, $arg_offset);
        llvm::Value *getelementptr = llvm::GetElementPtrInst::CreateInBounds(
            &stub_arg,
            llvm::ConstantInt::get(stub_function->getContext(),
                                   llvm::APInt(64, arg_offset)),
            "",
            basic_block);

        // %2 = bitcast(%1, $param_type_ptr)
        llvm::Value *bitcast = new llvm::BitCastInst(
            getelementptr,
            param_type_ptr,
            "",
            basic_block);

        // %3 = load(%2)
        llvm::Value *load = new llvm::LoadInst(
            bitcast,
            "",
            false,
            arg_size,   // We ensure that an argument is always aligned on its size, it enables things like fast movaps
            basic_block);

        // We have the value, send it to the function
        args.push_back(load);
    }

    // Create the call instruction
    llvm::CallInst *call_inst = llvm::CallInst::Create(
        function,
        args,
        "",
        basic_block);
    call_inst->setCallingConv(function->getCallingConv());
    call_inst->setTailCall();

    // Create a return instruction to end the stub
    llvm::ReturnInst::Create(
        function->getContext(),
        basic_block);

    // Retain the function if it can be reused
    p_call_function = stub_function;

}

CPUKernel::~CPUKernel()
{
    if (p_call_function)
        p_call_function->eraseFromParent();

    pthread_mutex_destroy(&p_call_function_mutex);
}

size_t CPUKernel::workGroupSize() const
{
    // Just use CL_DEVICE_MAX_WORK_GROUP_SIZE
    size_t param_value;
    size_t param_value_size_ret;

    p_device->info(CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(size_t),
		    &param_value, &param_value_size_ret);

    return param_value;
}

cl_ulong CPUKernel::localMemSize() const
{
    return 0; // TODO
}

cl_ulong CPUKernel::privateMemSize() const
{
    return 0; // TODO
}

size_t CPUKernel::preferredWorkGroupSizeMultiple() const
{
    unsigned int cpus = p_device->numCPUs();
    return cpus;
}

template<typename T>
T k_exp(T base, unsigned int e)
{
    T rs = base;

    for (unsigned int i=1; i<e; ++i)
        rs *= base;

    return rs;
}

// Try to find the size a work group has to have to be executed the fastest on
// the CPU.
size_t CPUKernel::guessWorkGroupSize(cl_uint num_dims, cl_uint dim,
                          size_t global_work_size) const
{
    unsigned int cpus = p_device->numCPUs();

    // Don't break in too small parts
    if (k_exp(global_work_size, num_dims) > 64)
        return global_work_size;

    // Find the divisor of global_work_size the closest to cpus but >= than it
    unsigned int divisor = cpus;

    while (true)
    {
        if ((global_work_size % divisor) == 0)
            break;

        // Don't let the loop go up to global_work_size, the overhead would be
        // too huge
        if (divisor > global_work_size || divisor > cpus * 32)
        {
            divisor = 1;  // Not parallel but has no CommandQueue overhead
            break;
        }
    }

    // Return the size
    return global_work_size / divisor;
}

llvm::Function *CPUKernel::function() const
{
    return p_function;
}

Kernel *CPUKernel::kernel() const
{
    return p_kernel;
}

CPUDevice *CPUKernel::device() const
{
    return p_device;
}

// From Wikipedia : http://www.wikipedia.org/wiki/Power_of_two#Algorithm_to_round_up_to_power_of_two
template <class T>
T next_power_of_two(T k) {
        if (k == 0)
                return 1;
        k--;
        for (int i=1; i<sizeof(T)*8; i<<=1)
                k = k | k >> i;
        return k+1;
}

size_t CPUKernel::typeOffset(size_t &offset, size_t type_len)
{
    size_t rs = offset;

    // Align offset to stype_len
    type_len = next_power_of_two(type_len);
    size_t mask = (type_len - 1);

    if (rs&mask) {
      rs += (type_len - rs%type_len);
    }

    // Where to try to place the next value
    offset = rs + type_len;

    return rs;
}

llvm::Function *CPUKernel::callFunction()
{
	const char *fn_name;
    pthread_mutex_lock(&p_call_function_mutex);

    // If we can reuse the same function between work groups, do it
    if (p_call_function)
    {
        llvm::Function *rs = p_call_function;
        pthread_mutex_unlock(&p_call_function_mutex);

        return rs;
    } 

    /* Create a stub function in the form of
     *
     * void stub(void *args) {
     *     kernel(*(int *)((char *)args + 0),
     *            *(float **)((char *)args + sizeof(int)),
     *            *(sampler_t *)((char *)args + sizeof(int) + sizeof(float *)));
     * }
     *
     * In LLVM, it is exprimed in the form of :
     *
     * @stub(i8* args) {
     *     kernel(
     *         load(i32* bitcast(i8* getelementptr(i8* args, i64 0), i32*)),
     *         load(float** bitcast(i8* getelementptr(i8* args, i64 4), float**)),
     *         ...
     *     );
     * }
     */
	fn_name = kernel()->p_name.c_str();
    Program *p = (Program *)kernel()->parent();
    CPUProgram *prog = (CPUProgram *)(p->deviceDependentProgram(device()));
	llvm::Function *t_function = prog->jit()->FindFunctionNamed(fn_name);


    llvm::FunctionType *kernel_function_type = p_function->getFunctionType();
    llvm::FunctionType *stub_function_type = llvm::FunctionType::get(
        p_function->getReturnType(),
        llvm::Type::getInt8PtrTy(
            p_function->getContext()),
        false);
    llvm::Function *stub_function = llvm::Function::Create(
        stub_function_type,
        llvm::Function::InternalLinkage,
        "stub",
        p_function->getParent());

    // Insert a basic block
    llvm::BasicBlock *basic_block = llvm::BasicBlock::Create(
        p_function->getContext(),
        "",
        stub_function);

    // Create the function arguments
    llvm::Argument &stub_arg = stub_function->getArgumentList().front();
    llvm::SmallVector<llvm::Value *, 8> args;
    size_t args_offset = 0;

    for (unsigned int i=0; i<kernel_function_type->getNumParams(); ++i)
    {
        llvm::Type *param_type = kernel_function_type->getParamType(i);
        llvm::Type *param_type_ptr = param_type->getPointerTo(); // We'll use pointers to the value
        const Kernel::Arg *arg = p_kernel->arg(i);

        // Calculate the size of the arg
        size_t arg_size = arg->valueSize() * arg->vecDim();

        // Get where to place this argument
        size_t arg_offset = typeOffset(args_offset, arg_size);

        // %1 = getelementptr(args, $arg_offset);
        llvm::Value *getelementptr = llvm::GetElementPtrInst::CreateInBounds(
            &stub_arg,
            llvm::ConstantInt::get(stub_function->getContext(),
                                   llvm::APInt(64, arg_offset)),
            "",
            basic_block);

        // %2 = bitcast(%1, $param_type_ptr)
        llvm::Value *bitcast = new llvm::BitCastInst(
            getelementptr,
            param_type_ptr,
            "",
            basic_block);

        // %3 = load(%2)
        llvm::Value *load = new llvm::LoadInst(
            bitcast,
            "",
            false,
            arg_size,   // We ensure that an argument is always aligned on its size, it enables things like fast movaps
            basic_block);

        // We have the value, send it to the function
        args.push_back(load);
    }

    // Create the call instruction
    llvm::CallInst *call_inst = llvm::CallInst::Create(
        t_function,
        args,
        "",
        basic_block);
    call_inst->setCallingConv(p_function->getCallingConv());
    call_inst->setTailCall();

    // Create a return instruction to end the stub
    llvm::ReturnInst::Create(
        p_function->getContext(),
        basic_block);

    // Retain the function if it can be reused
    p_call_function = stub_function;

    pthread_mutex_unlock(&p_call_function_mutex);

    return stub_function;
}

/*
 * CPUKernelEvent
 */
CPUKernelEvent::CPUKernelEvent(CPUDevice *device, KernelEvent *event)
: p_device(device), p_event(event), p_current_wg(0), p_finished_wg(0),
  p_kernel_args(0)
{
    // Mutex
    pthread_mutex_init(&p_mutex, 0);

    // Set current work group to (0, 0, ..., 0)
    std::memset(p_current_work_group, 0, event->work_dim() * sizeof(size_t));

    // Populate p_max_work_groups
    p_num_wg = 1;

    for (cl_uint i=0; i<event->work_dim(); ++i)
    {
        p_max_work_groups[i] =
            (event->global_work_size(i) / event->local_work_size(i)) - 1; // 0..n-1, not 1..n

        p_num_wg *= p_max_work_groups[i] + 1;
    }
}

CPUKernelEvent::~CPUKernelEvent()
{
    pthread_mutex_destroy(&p_mutex);

    if (p_kernel_args)
        std::free(p_kernel_args);
}

bool CPUKernelEvent::reserve()
{
    // Lock, this will be unlocked in takeInstance()
    pthread_mutex_lock(&p_mutex);

    // Last work group if current == max - 1
    return (p_current_wg == p_num_wg - 1);
}

bool CPUKernelEvent::finished()
{
    bool rs;

    pthread_mutex_lock(&p_mutex);

    rs = (p_finished_wg == p_num_wg);

    pthread_mutex_unlock(&p_mutex);

    return rs;
}

void CPUKernelEvent::workGroupFinished()
{
    pthread_mutex_lock(&p_mutex);

    p_finished_wg++;

    pthread_mutex_unlock(&p_mutex);
}

CPUKernelWorkGroup *CPUKernelEvent::takeInstance()
{
    CPUKernelWorkGroup *wg = new CPUKernelWorkGroup((CPUKernel *)p_event->deviceKernel(),
                                                    p_event,
                                                    this,
                                                    p_current_work_group);

    // Increment current work group
    incVec(p_event->work_dim(), p_current_work_group, p_max_work_groups);
    p_current_wg += 1;

    // Release event
    pthread_mutex_unlock(&p_mutex);

    return wg;
}

void *CPUKernelEvent::kernelArgs() const
{
    return p_kernel_args;
}

void CPUKernelEvent::cacheKernelArgs(void *args)
{
    p_kernel_args = args;
}

/*
 * CPUKernelWorkGroup
 */
CPUKernelWorkGroup::CPUKernelWorkGroup(CPUKernel *kernel, KernelEvent *event,
                                       CPUKernelEvent *cpu_event,
                                       const size_t *work_group_index)
: p_kernel(kernel), p_cpu_event(cpu_event), p_event(event),
  p_work_dim(event->work_dim()), p_contexts(0), p_stack_size(8192 /* TODO */),
  p_had_barrier(false)
{

    // Set index
    std::memcpy(p_index, work_group_index, p_work_dim * sizeof(size_t));

    // Set maxs and global id
    p_num_work_items = 1;

    for (unsigned int i=0; i<p_work_dim; ++i)
    {
        p_max_local_id[i] = event->local_work_size(i) - 1; // 0..n-1, not 1..n
        p_num_work_items *= event->local_work_size(i);

        // Set global id
        p_global_id_start_offset[i] = (p_index[i] * event->local_work_size(i))
                         + event->global_work_offset(i);
    }
}

CPUKernelWorkGroup::~CPUKernelWorkGroup()
{
    p_cpu_event->workGroupFinished();
}

void *CPUKernelWorkGroup::callArgs(std::vector<void *> &locals_to_free)
{
    if (p_cpu_event->kernelArgs() && !p_kernel->kernel()->hasLocals())
    {
        // We have cached the args and can reuse them
        return p_cpu_event->kernelArgs();
    }

    // We need to create them from scratch
    void *rs;

    size_t args_size = 0;

    for (unsigned int i=0; i<p_kernel->kernel()->numArgs(); ++i)
    {
        const Kernel::Arg *arg = p_kernel->kernel()->arg(i);
        CPUKernel::typeOffset(args_size, arg->valueSize() * arg->vecDim());
    }

    int retval = posix_memalign(&rs, 128, args_size);  // align for type double16 size.
    if (retval || !rs)
        return NULL;

    size_t arg_offset = 0;

    for (unsigned int i=0; i<p_kernel->kernel()->numArgs(); ++i)
    {
        const Kernel::Arg *arg = p_kernel->kernel()->arg(i);
        size_t size = arg->valueSize() * arg->vecDim();
        size_t offset = CPUKernel::typeOffset(arg_offset, size);

        // Where to place the argument
        unsigned char *target = (unsigned char *)rs;
        target += offset;

        // We may have to perform some changes in the values (buffers, etc)
        switch (arg->kind())
        {
            case Kernel::Arg::Buffer:
            {
                if (arg->file() == Kernel::Arg::Local)
                {
                    // Alloc a buffer and pass it to the kernel
                    // align for type double16 size.
		    void *local_buffer = NULL;
                    int retval = posix_memalign(&local_buffer, 128, arg->allocAtKernelRuntime());
                    locals_to_free.push_back(local_buffer);
                    *(void **)target = local_buffer;
                }
                else
                {
                    MemObject *buffer = *(MemObject **)arg->data();

                    if (!buffer)
                    {
                        // We can do that, just send NULL
                        *(void **)target = NULL;
                    }
                    else
                    {
                        // Get the CPU buffer, allocate it and get its pointer
                        CPUBuffer *cpubuf =
                            (CPUBuffer *)buffer->deviceBuffer(p_kernel->device());
                        void *buf_ptr = 0;

                        buffer->allocate(p_kernel->device());
                        buf_ptr = cpubuf->data();

                        *(void **)target = buf_ptr;
                    }
                }

                break;
            }
            case Kernel::Arg::Image2D:
            case Kernel::Arg::Image3D:
            {
                // We need to ensure the image is allocated
                Image2D *image = *(Image2D **)arg->data();
                image->allocate(p_kernel->device());

                // Fall through to the memcpy
            }
            default:
                // Simply copy the arg's data into the buffer
                std::memcpy(target, arg->data(), size);
                break;
        }
    }

    // Cache the arguments if we can do so
    if (!p_kernel->kernel()->hasLocals())
        p_cpu_event->cacheKernelArgs(rs);

    return rs;
}

bool CPUKernelWorkGroup::run()
{
    // Get the kernel function to call
    std::vector<void *> locals_to_free;
    llvm::Function *kernel_func = p_kernel->callFunction();

#if 0  // Let's see the stub's IR:
    kernel_func->dump();
#endif

    if (!kernel_func)
        return false;

    Program *p = (Program *)p_kernel->kernel()->parent();
    CPUProgram *prog = (CPUProgram *)(p->deviceDependentProgram(p_kernel->device()));

    // Make object usable for execution:  (only applies to MCJIT):
    prog->jit()->finalizeObject();

    std::string kname = kernel_func->getName().str();
    p_kernel_func_addr =(void(*)(void *)) prog->jit()->getFunctionAddress(kname);

    // Get the arguments
    p_args = callArgs(locals_to_free);

    // Tell the builtins this thread will run a kernel work group
    setThreadLocalWorkGroup(this);

    // Initialize the dummy context used by the builtins before a call to barrier()
    p_current_work_item = 0;
    p_current_context = &p_dummy_context;

    std::memset(p_dummy_context.local_id, 0, p_work_dim * sizeof(size_t));

    do
    {
        // Simply call the "call function", it and the builtins will do the rest
        p_kernel_func_addr(p_args);
    } while (!p_had_barrier &&
             !incVec(p_work_dim, p_dummy_context.local_id, p_max_local_id));

    // If no barrier() call was made, all is fine. If not, only the first
    // work-item has currently finished. We must let the others run.
    if (p_had_barrier)
    {
        Context *main_context = p_current_context; // After the first swapcontext,
                                                   // we will not be able to trust
                                                   // p_current_context anymore.

        // We'll call swapcontext for each remaining work-item. They will
        // finish, and when they'll do so, this main context will be resumed, so
        // it's easy (i starts from 1 because the main context already finished)
        for (unsigned int i=1; i<p_num_work_items; ++i)
        {
            Context *ctx = getContextAddr(i);
            swapcontext(&main_context->context, &ctx->context);
        }
    }

    // Free the allocated locals
    if (p_kernel->kernel()->hasLocals())
    {
        for (size_t i=0; i<locals_to_free.size(); ++i)
        {
            std::free(locals_to_free[i]);
        }

        std::free(p_args);
    }

    return true;
}

CPUKernelWorkGroup::Context *CPUKernelWorkGroup::getContextAddr(unsigned int index)
{
    size_t size;
    char *data = (char *)p_contexts;

    // Each Context in data is an element of size p_stack_size + sizeof(Context)
    size = p_stack_size + sizeof(Context);
    size *= index;  // To get an offset

    return (Context *)(data + size); // Pointer to the context
}