From 59fe2d89b6ca0c046fde77e8b504d7a250758f44 Mon Sep 17 00:00:00 2001 From: Bartlomiej Zolnierkiewicz Date: Sun, 26 Apr 2009 16:06:28 +0200 Subject: Staging: rt2860: prepare for rt28[67]0/common/*.[ch] merge Signed-off-by: Bartlomiej Zolnierkiewicz Signed-off-by: Greg Kroah-Hartman --- drivers/staging/rt2860/common/eeprom.c | 1268 +++++++++++++++++++++++++++++++- 1 file changed, 1267 insertions(+), 1 deletion(-) (limited to 'drivers/staging/rt2860/common/eeprom.c') diff --git a/drivers/staging/rt2860/common/eeprom.c b/drivers/staging/rt2860/common/eeprom.c index bed2d666629..9729323baca 100644 --- a/drivers/staging/rt2860/common/eeprom.c +++ b/drivers/staging/rt2860/common/eeprom.c @@ -73,12 +73,16 @@ USHORT ShiftInBits( RaiseClock(pAd, &x); RTMP_IO_READ32(pAd, E2PROM_CSR, &x); - +#ifdef RT30xx + LowerClock(pAd, &x); //prevent read failed +#endif x &= ~(EEDI); if(x & EEDO) data |= 1; +#ifndef RT30xx LowerClock(pAd, &x); +#endif } return data; @@ -181,6 +185,15 @@ USHORT RTMP_EEPROM_READ16( UINT32 x; USHORT data; +#ifdef RT30xx + if (pAd->NicConfig2.field.AntDiversity) + { + pAd->EepromAccess = TRUE; + } +//2008/09/11:KH add to support efuse<-- +//2008/09/11:KH add to support efuse--> +{ +#endif Offset /= 2; // reset bits and set EECS RTMP_IO_READ32(pAd, E2PROM_CSR, &x); @@ -188,9 +201,17 @@ USHORT RTMP_EEPROM_READ16( x |= EECS; RTMP_IO_WRITE32(pAd, E2PROM_CSR, x); +#ifdef RT30xx + // patch can not access e-Fuse issue + if (!IS_RT3090(pAd)) + { +#endif // kick a pulse RaiseClock(pAd, &x); LowerClock(pAd, &x); +#ifdef RT30xx + } +#endif // output the read_opcode and register number in that order ShiftOutBits(pAd, EEPROM_READ_OPCODE, 3); @@ -201,6 +222,17 @@ USHORT RTMP_EEPROM_READ16( EEpromCleanup(pAd); +#ifdef RT30xx + // Antenna and EEPROM access are both using EESK pin, + // Therefor we should avoid accessing EESK at the same time + // Then restore antenna after EEPROM access + if ((pAd->NicConfig2.field.AntDiversity) || (pAd->RfIcType == RFIC_3020)) + { + pAd->EepromAccess = FALSE; + AsicSetRxAnt(pAd, pAd->RxAnt.Pair1PrimaryRxAnt); + } +} +#endif return data; } //ReadEEprom @@ -211,6 +243,15 @@ VOID RTMP_EEPROM_WRITE16( { UINT32 x; +#ifdef RT30xx + if (pAd->NicConfig2.field.AntDiversity) + { + pAd->EepromAccess = TRUE; + } + //2008/09/11:KH add to support efuse<-- +//2008/09/11:KH add to support efuse--> + { +#endif Offset /= 2; EWEN(pAd); @@ -221,9 +262,17 @@ VOID RTMP_EEPROM_WRITE16( x |= EECS; RTMP_IO_WRITE32(pAd, E2PROM_CSR, x); +#ifdef RT30xx + // patch can not access e-Fuse issue + if (!IS_RT3090(pAd)) + { +#endif // kick a pulse RaiseClock(pAd, &x); LowerClock(pAd, &x); +#ifdef RT30xx + } +#endif // output the read_opcode ,register number and data in that order ShiftOutBits(pAd, EEPROM_WRITE_OPCODE, 3); @@ -240,5 +289,1222 @@ VOID RTMP_EEPROM_WRITE16( EWDS(pAd); EEpromCleanup(pAd); + +#ifdef RT30xx + // Antenna and EEPROM access are both using EESK pin, + // Therefor we should avoid accessing EESK at the same time + // Then restore antenna after EEPROM access + if ((pAd->NicConfig2.field.AntDiversity) || (pAd->RfIcType == RFIC_3020)) + { + pAd->EepromAccess = FALSE; + AsicSetRxAnt(pAd, pAd->RxAnt.Pair1PrimaryRxAnt); + } +} +#endif +} + +//2008/09/11:KH add to support efuse<-- +#ifdef RT30xx +/* + ======================================================================== + + Routine Description: + + Arguments: + + Return Value: + + IRQL = + + Note: + + ======================================================================== +*/ +UCHAR eFuseReadRegisters( + IN PRTMP_ADAPTER pAd, + IN USHORT Offset, + IN USHORT Length, + OUT USHORT* pData) +{ + EFUSE_CTRL_STRUC eFuseCtrlStruc; + int i; + USHORT efuseDataOffset; + UINT32 data; + + RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc); + + //Step0. Write 10-bit of address to EFSROM_AIN (0x580, bit25:bit16). The address must be 16-byte alignment. + //Use the eeprom logical address and covert to address to block number + eFuseCtrlStruc.field.EFSROM_AIN = Offset & 0xfff0; + + //Step1. Write EFSROM_MODE (0x580, bit7:bit6) to 0. + eFuseCtrlStruc.field.EFSROM_MODE = 0; + + //Step2. Write EFSROM_KICK (0x580, bit30) to 1 to kick-off physical read procedure. + eFuseCtrlStruc.field.EFSROM_KICK = 1; + + NdisMoveMemory(&data, &eFuseCtrlStruc, 4); + RTMP_IO_WRITE32(pAd, EFUSE_CTRL, data); + + //Step3. Polling EFSROM_KICK(0x580, bit30) until it become 0 again. + i = 0; + while(i < 100) + { + //rtmp.HwMemoryReadDword(EFUSE_CTRL, (DWORD *) &eFuseCtrlStruc, 4); + RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc); + if(eFuseCtrlStruc.field.EFSROM_KICK == 0) + { + break; + } + RTMPusecDelay(2); + i++; + } + + //if EFSROM_AOUT is not found in physical address, write 0xffff + if (eFuseCtrlStruc.field.EFSROM_AOUT == 0x3f) + { + for(i=0; i> (8*(Offset & 0x3)); + + NdisMoveMemory(pData, &data, Length); + } + + return (UCHAR) eFuseCtrlStruc.field.EFSROM_AOUT; + +} + +/* + ======================================================================== + + Routine Description: + + Arguments: + + Return Value: + + IRQL = + + Note: + + ======================================================================== +*/ +VOID eFusePhysicalReadRegisters( + IN PRTMP_ADAPTER pAd, + IN USHORT Offset, + IN USHORT Length, + OUT USHORT* pData) +{ + EFUSE_CTRL_STRUC eFuseCtrlStruc; + int i; + USHORT efuseDataOffset; + UINT32 data; + + RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc); + + //Step0. Write 10-bit of address to EFSROM_AIN (0x580, bit25:bit16). The address must be 16-byte alignment. + eFuseCtrlStruc.field.EFSROM_AIN = Offset & 0xfff0; + + //Step1. Write EFSROM_MODE (0x580, bit7:bit6) to 1. + //Read in physical view + eFuseCtrlStruc.field.EFSROM_MODE = 1; + + //Step2. Write EFSROM_KICK (0x580, bit30) to 1 to kick-off physical read procedure. + eFuseCtrlStruc.field.EFSROM_KICK = 1; + + NdisMoveMemory(&data, &eFuseCtrlStruc, 4); + RTMP_IO_WRITE32(pAd, EFUSE_CTRL, data); + + //Step3. Polling EFSROM_KICK(0x580, bit30) until it become 0 again. + i = 0; + while(i < 100) + { + RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc); + if(eFuseCtrlStruc.field.EFSROM_KICK == 0) + break; + RTMPusecDelay(2); + i++; + } + + //Step4. Read 16-byte of data from EFUSE_DATA0-3 (0x59C-0x590) + //Because the size of each EFUSE_DATA is 4 Bytes, the size of address of each is 2 bits. + //The previous 2 bits is the EFUSE_DATA number, the last 2 bits is used to decide which bytes + //Decide which EFUSE_DATA to read + //590:F E D C + //594:B A 9 8 + //598:7 6 5 4 + //59C:3 2 1 0 + efuseDataOffset = EFUSE_DATA3 - (Offset & 0xC) ; + + RTMP_IO_READ32(pAd, efuseDataOffset, &data); + + data = data >> (8*(Offset & 0x3)); + + NdisMoveMemory(pData, &data, Length); + +} + +/* + ======================================================================== + + Routine Description: + + Arguments: + + Return Value: + + IRQL = + + Note: + + ======================================================================== +*/ +VOID eFuseReadPhysical( + IN PRTMP_ADAPTER pAd, + IN PUSHORT lpInBuffer, + IN ULONG nInBufferSize, + OUT PUSHORT lpOutBuffer, + IN ULONG nOutBufferSize +) +{ + USHORT* pInBuf = (USHORT*)lpInBuffer; + USHORT* pOutBuf = (USHORT*)lpOutBuffer; + + USHORT Offset = pInBuf[0]; //addr + USHORT Length = pInBuf[1]; //length + int i; + + for(i=0; i> 2; + data = pData[0] & 0xffff; + //The offset should be 0x***10 or 0x***00 + if((Offset % 4) != 0) + { + eFuseDataBuffer[efuseDataOffset] = (eFuseDataBuffer[efuseDataOffset] & 0xffff) | (data << 16); + } + else + { + eFuseDataBuffer[efuseDataOffset] = (eFuseDataBuffer[efuseDataOffset] & 0xffff0000) | data; + } + + efuseDataOffset = EFUSE_DATA3; + for(i=0; i< 4; i++) + { + RTMP_IO_WRITE32(pAd, efuseDataOffset, eFuseDataBuffer[i]); + efuseDataOffset -= 4; + } + ///////////////////////////////////////////////////////////////// + + //Step1. Write 10-bit of address to EFSROM_AIN (0x580, bit25:bit16). The address must be 16-byte alignment. + eFuseCtrlStruc.field.EFSROM_AIN = Offset & 0xfff0; + + //Step2. Write EFSROM_MODE (0x580, bit7:bit6) to 3. + eFuseCtrlStruc.field.EFSROM_MODE = 3; + + //Step3. Write EFSROM_KICK (0x580, bit30) to 1 to kick-off physical write procedure. + eFuseCtrlStruc.field.EFSROM_KICK = 1; + + NdisMoveMemory(&data, &eFuseCtrlStruc, 4); + RTMP_IO_WRITE32(pAd, EFUSE_CTRL, data); + + //Step4. Polling EFSROM_KICK(0x580, bit30) until it become 0 again. It��s done. + i = 0; + while(i < 100) + { + RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc); + + if(eFuseCtrlStruc.field.EFSROM_KICK == 0) + break; + + RTMPusecDelay(2); + i++; + } +} + +/* + ======================================================================== + + Routine Description: + + Arguments: + + Return Value: + + IRQL = + + Note: + + ======================================================================== +*/ +NTSTATUS eFuseWriteRegisters( + IN PRTMP_ADAPTER pAd, + IN USHORT Offset, + IN USHORT Length, + IN USHORT* pData) +{ + USHORT i; + USHORT eFuseData; + USHORT LogicalAddress, BlkNum = 0xffff; + UCHAR EFSROM_AOUT; + + USHORT addr,tmpaddr, InBuf[3], tmpOffset; + USHORT buffer[8]; + BOOLEAN bWriteSuccess = TRUE; + + DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegisters Offset=%x, pData=%x\n", Offset, *pData)); + + //Step 0. find the entry in the mapping table + //The address of EEPROM is 2-bytes alignment. + //The last bit is used for alignment, so it must be 0. + tmpOffset = Offset & 0xfffe; + EFSROM_AOUT = eFuseReadRegisters(pAd, tmpOffset, 2, &eFuseData); + + if( EFSROM_AOUT == 0x3f) + { //find available logical address pointer + //the logical address does not exist, find an empty one + //from the first address of block 45=16*45=0x2d0 to the last address of block 47 + //==>48*16-3(reserved)=2FC + for (i=EFUSE_USAGE_MAP_START; i<=EFUSE_USAGE_MAP_END; i+=2) + { + //Retrive the logical block nubmer form each logical address pointer + //It will access two logical address pointer each time. + eFusePhysicalReadRegisters(pAd, i, 2, &LogicalAddress); + if( (LogicalAddress & 0xff) == 0) + {//Not used logical address pointer + BlkNum = i-EFUSE_USAGE_MAP_START; + break; + } + else if(( (LogicalAddress >> 8) & 0xff) == 0) + {//Not used logical address pointer + if (i != EFUSE_USAGE_MAP_END) + { + BlkNum = i-EFUSE_USAGE_MAP_START+1; + } + break; + } + } + } + else + { + BlkNum = EFSROM_AOUT; + } + + DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegisters BlkNum = %d \n", BlkNum)); + + if(BlkNum == 0xffff) + { + DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegisters: out of free E-fuse space!!!\n")); + return FALSE; + } + + //Step 1. Save data of this block which is pointed by the avaible logical address pointer + // read and save the original block data + for(i =0; i<8; i++) + { + addr = BlkNum * 0x10 ; + + InBuf[0] = addr+2*i; + InBuf[1] = 2; + InBuf[2] = 0x0; + + eFuseReadPhysical(pAd, &InBuf[0], 4, &InBuf[2], 2); + + buffer[i] = InBuf[2]; + } + + //Step 2. Update the data in buffer, and write the data to Efuse + buffer[ (Offset >> 1) % 8] = pData[0]; + + do + { + //Step 3. Write the data to Efuse + if(!bWriteSuccess) + { + for(i =0; i<8; i++) + { + addr = BlkNum * 0x10 ; + + InBuf[0] = addr+2*i; + InBuf[1] = 2; + InBuf[2] = buffer[i]; + + eFuseWritePhysical(pAd, &InBuf[0], 6, NULL, 2); + } + } + else + { + addr = BlkNum * 0x10 ; + + InBuf[0] = addr+(Offset % 16); + InBuf[1] = 2; + InBuf[2] = pData[0]; + + eFuseWritePhysical(pAd, &InBuf[0], 6, NULL, 2); + } + + //Step 4. Write mapping table + addr = EFUSE_USAGE_MAP_START+BlkNum; + + tmpaddr = addr; + + if(addr % 2 != 0) + addr = addr -1; + InBuf[0] = addr; + InBuf[1] = 2; + + //convert the address from 10 to 8 bit ( bit7, 6 = parity and bit5 ~ 0 = bit9~4), and write to logical map entry + tmpOffset = Offset; + tmpOffset >>= 4; + tmpOffset |= ((~((tmpOffset & 0x01) ^ ( tmpOffset >> 1 & 0x01) ^ (tmpOffset >> 2 & 0x01) ^ (tmpOffset >> 3 & 0x01))) << 6) & 0x40; + tmpOffset |= ((~( (tmpOffset >> 2 & 0x01) ^ (tmpOffset >> 3 & 0x01) ^ (tmpOffset >> 4 & 0x01) ^ ( tmpOffset >> 5 & 0x01))) << 7) & 0x80; + + // write the logical address + if(tmpaddr%2 != 0) + InBuf[2] = tmpOffset<<8; + else + InBuf[2] = tmpOffset; + + eFuseWritePhysical(pAd,&InBuf[0], 6, NULL, 0); + + //Step 5. Compare data if not the same, invalidate the mapping entry, then re-write the data until E-fuse is exhausted + bWriteSuccess = TRUE; + for(i =0; i<8; i++) + { + addr = BlkNum * 0x10 ; + + InBuf[0] = addr+2*i; + InBuf[1] = 2; + InBuf[2] = 0x0; + + eFuseReadPhysical(pAd, &InBuf[0], 4, &InBuf[2], 2); + + if(buffer[i] != InBuf[2]) + { + bWriteSuccess = FALSE; + break; + } + } + + //Step 6. invlidate mapping entry and find a free mapping entry if not succeed + if (!bWriteSuccess) + { + DBGPRINT(RT_DEBUG_TRACE, ("Not bWriteSuccess BlkNum = %d\n", BlkNum)); + + // the offset of current mapping entry + addr = EFUSE_USAGE_MAP_START+BlkNum; + + //find a new mapping entry + BlkNum = 0xffff; + for (i=EFUSE_USAGE_MAP_START; i<=EFUSE_USAGE_MAP_END; i+=2) + { + eFusePhysicalReadRegisters(pAd, i, 2, &LogicalAddress); + if( (LogicalAddress & 0xff) == 0) + { + BlkNum = i-EFUSE_USAGE_MAP_START; + break; + } + else if(( (LogicalAddress >> 8) & 0xff) == 0) + { + if (i != EFUSE_USAGE_MAP_END) + { + BlkNum = i+1-EFUSE_USAGE_MAP_START; + } + break; + } + } + DBGPRINT(RT_DEBUG_TRACE, ("Not bWriteSuccess new BlkNum = %d\n", BlkNum)); + if(BlkNum == 0xffff) + { + DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegisters: out of free E-fuse space!!!\n")); + return FALSE; + } + + //invalidate the original mapping entry if new entry is not found + tmpaddr = addr; + + if(addr % 2 != 0) + addr = addr -1; + InBuf[0] = addr; + InBuf[1] = 2; + + eFuseReadPhysical(pAd, &InBuf[0], 4, &InBuf[2], 2); + + // write the logical address + if(tmpaddr%2 != 0) + { + // Invalidate the high byte + for (i=8; i<15; i++) + { + if( ( (InBuf[2] >> i) & 0x01) == 0) + { + InBuf[2] |= (0x1 <> i) & 0x01) == 0) + { + InBuf[2] |= (0x1 <bUseEfuse) + return FALSE; + for (i = EFUSE_USAGE_MAP_START; i <= EFUSE_USAGE_MAP_END; i+=2) + { + eFusePhysicalReadRegisters(pAd, i, 2, &LogicalAddress); + if( (LogicalAddress & 0xff) == 0) + { + efusefreenum= (UCHAR) (EFUSE_USAGE_MAP_END-i+1); + break; + } + else if(( (LogicalAddress >> 8) & 0xff) == 0) + { + efusefreenum = (UCHAR) (EFUSE_USAGE_MAP_END-i); + break; + } + + if(i == EFUSE_USAGE_MAP_END) + efusefreenum = 0; + } + printk("efuseFreeNumber is %d\n",efusefreenum); + return TRUE; +} +INT set_eFusedump_Proc( + IN PRTMP_ADAPTER pAd, + IN PUCHAR arg) +{ +USHORT InBuf[3]; + INT i=0; + if(!pAd->bUseEfuse) + return FALSE; + for(i =0; i0) + { + + NdisMoveMemory(src, arg, strlen(arg)); + } + + else + { + + NdisMoveMemory(src, "RT30xxEEPROM.bin", BinFileSize); + } + + DBGPRINT(RT_DEBUG_TRACE, ("FileName=%s\n",src)); + buffer = kmalloc(MAX_EEPROM_BIN_FILE_SIZE, MEM_ALLOC_FLAG); + + if(buffer == NULL) + { + kfree(src); + return FALSE; +} + PDATA=kmalloc(sizeof(USHORT)*8,MEM_ALLOC_FLAG); + + if(PDATA==NULL) + { + kfree(src); + + kfree(buffer); + return FALSE; + } + /* Don't change to uid 0, let the file be opened as the "normal" user */ +#if 0 + orgfsuid = current->fsuid; + orgfsgid = current->fsgid; + current->fsuid=current->fsgid = 0; +#endif + orgfs = get_fs(); + set_fs(KERNEL_DS); + + if (src && *src) + { + srcf = filp_open(src, O_RDONLY, 0); + if (IS_ERR(srcf)) + { + DBGPRINT(RT_DEBUG_ERROR, ("--> Error %ld opening %s\n", -PTR_ERR(srcf),src)); + return FALSE; + } + else + { + // The object must have a read method + if (srcf->f_op && srcf->f_op->read) + { + memset(buffer, 0x00, MAX_EEPROM_BIN_FILE_SIZE); + while(srcf->f_op->read(srcf, &buffer[i], 1, &srcf->f_pos)==1) + { + DBGPRINT(RT_DEBUG_TRACE, ("%02X ",buffer[i])); + if((i+1)%8==0) + DBGPRINT(RT_DEBUG_TRACE, ("\n")); + i++; + if(i>=MAX_EEPROM_BIN_FILE_SIZE) + { + DBGPRINT(RT_DEBUG_ERROR, ("--> Error %ld reading %s, The file is too large[1024]\n", -PTR_ERR(srcf),src)); + kfree(PDATA); + kfree(buffer); + kfree(src); + return FALSE; + } + } + } + else + { + DBGPRINT(RT_DEBUG_ERROR, ("--> Error!! System doest not support read function\n")); + kfree(PDATA); + kfree(buffer); + kfree(src); + return FALSE; + } + } + + + } + else + { + DBGPRINT(RT_DEBUG_ERROR, ("--> Error src or srcf is null\n")); + kfree(PDATA); + kfree(buffer); + return FALSE; + + } + + + retval=filp_close(srcf,NULL); + + if (retval) + { + DBGPRINT(RT_DEBUG_TRACE, ("--> Error %d closing %s\n", -retval, src)); + } + set_fs(orgfs); +#if 0 + current->fsuid = orgfsuid; + current->fsgid = orgfsgid; +#endif + for(j=0;j48*16-3(reserved)=2FC + bAllocateNewBlk=TRUE; + for (i=EFUSE_USAGE_MAP_START; i<=EFUSE_USAGE_MAP_END; i+=2) + { + //Retrive the logical block nubmer form each logical address pointer + //It will access two logical address pointer each time. + eFusePhysicalReadRegisters(pAd, i, 2, &LogicalAddress); + if( (LogicalAddress & 0xff) == 0) + {//Not used logical address pointer + BlkNum = i-EFUSE_USAGE_MAP_START; + break; + } + else if(( (LogicalAddress >> 8) & 0xff) == 0) + {//Not used logical address pointer + if (i != EFUSE_USAGE_MAP_END) + { + BlkNum = i-EFUSE_USAGE_MAP_START+1; + } + break; + } + } + } + else + { + bAllocateNewBlk=FALSE; + BlkNum = EFSROM_AOUT; + } + + DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegisters BlkNum = %d \n", BlkNum)); + + if(BlkNum == 0xffff) + { + DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegisters: out of free E-fuse space!!!\n")); + return FALSE; + } + //Step 1.1.0 + //If the block is not existing in mapping table, create one + //and write down the 16-bytes data to the new block + if(bAllocateNewBlk) + { + DBGPRINT(RT_DEBUG_TRACE, ("Allocate New Blk\n")); + efuseDataOffset = EFUSE_DATA3; + for(i=0; i< 4; i++) + { + DBGPRINT(RT_DEBUG_TRACE, ("Allocate New Blk, Data%d=%04x%04x\n",3-i,pData[2*i+1],pData[2*i])); + tempbuffer=((pData[2*i+1]<<16)&0xffff0000)|pData[2*i]; + + + RTMP_IO_WRITE32(pAd, efuseDataOffset,tempbuffer); + efuseDataOffset -= 4; + + } + ///////////////////////////////////////////////////////////////// + + //Step1.1.1. Write 10-bit of address to EFSROM_AIN (0x580, bit25:bit16). The address must be 16-byte alignment. + eFuseCtrlStruc.field.EFSROM_AIN = BlkNum* 0x10 ; + + //Step1.1.2. Write EFSROM_MODE (0x580, bit7:bit6) to 3. + eFuseCtrlStruc.field.EFSROM_MODE = 3; + + //Step1.1.3. Write EFSROM_KICK (0x580, bit30) to 1 to kick-off physical write procedure. + eFuseCtrlStruc.field.EFSROM_KICK = 1; + + NdisMoveMemory(&data, &eFuseCtrlStruc, 4); + + RTMP_IO_WRITE32(pAd, EFUSE_CTRL, data); + + //Step1.1.4. Polling EFSROM_KICK(0x580, bit30) until it become 0 again. It��s done. + i = 0; + while(i < 100) + { + RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc); + + if(eFuseCtrlStruc.field.EFSROM_KICK == 0) + break; + + RTMPusecDelay(2); + i++; + } + + } + else + { //Step1.2. + //If the same logical number is existing, check if the writting data and the data + //saving in this block are the same. + ///////////////////////////////////////////////////////////////// + //read current values of 16-byte block + RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc); + + //Step1.2.0. Write 10-bit of address to EFSROM_AIN (0x580, bit25:bit16). The address must be 16-byte alignment. + eFuseCtrlStruc.field.EFSROM_AIN = Offset & 0xfff0; + + //Step1.2.1. Write EFSROM_MODE (0x580, bit7:bit6) to 1. + eFuseCtrlStruc.field.EFSROM_MODE = 0; + + //Step1.2.2. Write EFSROM_KICK (0x580, bit30) to 1 to kick-off physical read procedure. + eFuseCtrlStruc.field.EFSROM_KICK = 1; + + NdisMoveMemory(&data, &eFuseCtrlStruc, 4); + RTMP_IO_WRITE32(pAd, EFUSE_CTRL, data); + + //Step1.2.3. Polling EFSROM_KICK(0x580, bit30) until it become 0 again. + i = 0; + while(i < 100) + { + RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc); + + if(eFuseCtrlStruc.field.EFSROM_KICK == 0) + break; + RTMPusecDelay(2); + i++; + } + + //Step1.2.4. Read 16-byte of data from EFUSE_DATA0-3 (0x59C-0x590) + efuseDataOffset = EFUSE_DATA3; + for(i=0; i< 4; i++) + { + RTMP_IO_READ32(pAd, efuseDataOffset, (PUINT32) &buffer[i]); + efuseDataOffset -= 4; + } + //Step1.2.5. Check if the data of efuse and the writing data are the same. + for(i =0; i<4; i++) + { + tempbuffer=((pData[2*i+1]<<16)&0xffff0000)|pData[2*i]; + DBGPRINT(RT_DEBUG_TRACE, ("buffer[%d]=%x,pData[%d]=%x,pData[%d]=%x,tempbuffer=%x\n",i,buffer[i],2*i,pData[2*i],2*i+1,pData[2*i+1],tempbuffer)); + + if(((buffer[i]&0xffff0000)==(pData[2*i+1]<<16))&&((buffer[i]&0xffff)==pData[2*i])) + bNotWrite&=TRUE; + else + { + bNotWrite&=FALSE; + break; + } + } + if(!bNotWrite) + { + printk("The data is not the same\n"); + + for(i =0; i<8; i++) + { + addr = BlkNum * 0x10 ; + + InBuf[0] = addr+2*i; + InBuf[1] = 2; + InBuf[2] = pData[i]; + + eFuseWritePhysical(pAd, &InBuf[0], 6, NULL, 2); + } + + } + else + return TRUE; + } + + + + //Step 2. Write mapping table + addr = EFUSE_USAGE_MAP_START+BlkNum; + + tmpaddr = addr; + + if(addr % 2 != 0) + addr = addr -1; + InBuf[0] = addr; + InBuf[1] = 2; + + //convert the address from 10 to 8 bit ( bit7, 6 = parity and bit5 ~ 0 = bit9~4), and write to logical map entry + tmpOffset = Offset; + tmpOffset >>= 4; + tmpOffset |= ((~((tmpOffset & 0x01) ^ ( tmpOffset >> 1 & 0x01) ^ (tmpOffset >> 2 & 0x01) ^ (tmpOffset >> 3 & 0x01))) << 6) & 0x40; + tmpOffset |= ((~( (tmpOffset >> 2 & 0x01) ^ (tmpOffset >> 3 & 0x01) ^ (tmpOffset >> 4 & 0x01) ^ ( tmpOffset >> 5 & 0x01))) << 7) & 0x80; + + // write the logical address + if(tmpaddr%2 != 0) + InBuf[2] = tmpOffset<<8; + else + InBuf[2] = tmpOffset; + + eFuseWritePhysical(pAd,&InBuf[0], 6, NULL, 0); + + //Step 3. Compare data if not the same, invalidate the mapping entry, then re-write the data until E-fuse is exhausted + bWriteSuccess = TRUE; + for(i =0; i<8; i++) + { + addr = BlkNum * 0x10 ; + + InBuf[0] = addr+2*i; + InBuf[1] = 2; + InBuf[2] = 0x0; + + eFuseReadPhysical(pAd, &InBuf[0], 4, &InBuf[2], 2); + DBGPRINT(RT_DEBUG_TRACE, ("addr=%x, buffer[i]=%x,InBuf[2]=%x\n",InBuf[0],pData[i],InBuf[2])); + if(pData[i] != InBuf[2]) + { + bWriteSuccess = FALSE; + break; + } + } + + //Step 4. invlidate mapping entry and find a free mapping entry if not succeed + + if (!bWriteSuccess&&Loop<2) + { + DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegistersFromBin::Not bWriteSuccess BlkNum = %d\n", BlkNum)); + + // the offset of current mapping entry + addr = EFUSE_USAGE_MAP_START+BlkNum; + + //find a new mapping entry + BlkNum = 0xffff; + for (i=EFUSE_USAGE_MAP_START; i<=EFUSE_USAGE_MAP_END; i+=2) + { + eFusePhysicalReadRegisters(pAd, i, 2, &LogicalAddress); + if( (LogicalAddress & 0xff) == 0) + { + BlkNum = i-EFUSE_USAGE_MAP_START; + break; + } + else if(( (LogicalAddress >> 8) & 0xff) == 0) + { + if (i != EFUSE_USAGE_MAP_END) + { + BlkNum = i+1-EFUSE_USAGE_MAP_START; + } + break; + } + } + DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegistersFromBin::Not bWriteSuccess new BlkNum = %d\n", BlkNum)); + if(BlkNum == 0xffff) + { + DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegistersFromBin: out of free E-fuse space!!!\n")); + return FALSE; + } + + //invalidate the original mapping entry if new entry is not found + tmpaddr = addr; + + if(addr % 2 != 0) + addr = addr -1; + InBuf[0] = addr; + InBuf[1] = 2; + + eFuseReadPhysical(pAd, &InBuf[0], 4, &InBuf[2], 2); + + // write the logical address + if(tmpaddr%2 != 0) + { + // Invalidate the high byte + for (i=8; i<15; i++) + { + if( ( (InBuf[2] >> i) & 0x01) == 0) + { + InBuf[2] |= (0x1 <> i) & 0x01) == 0) + { + InBuf[2] |= (0x1 < -- cgit v1.2.3