#include "builtin.h" #include "perf.h" #include "util/util.h" #include "util/cache.h" #include "util/symbol.h" #include "util/thread.h" #include "util/header.h" #include "util/parse-options.h" #include "util/trace-event.h" #include "util/debug.h" #include "util/session.h" #include #include #include #include #include #include #include #include /* based on kernel/lockdep.c */ #define LOCKHASH_BITS 12 #define LOCKHASH_SIZE (1UL << LOCKHASH_BITS) static struct list_head lockhash_table[LOCKHASH_SIZE]; #define __lockhashfn(key) hash_long((unsigned long)key, LOCKHASH_BITS) #define lockhashentry(key) (lockhash_table + __lockhashfn((key))) #define LOCK_STATE_UNLOCKED 0 /* initial state */ #define LOCK_STATE_LOCKED 1 struct lock_stat { struct list_head hash_entry; struct rb_node rb; /* used for sorting */ /* * FIXME: raw_field_value() returns unsigned long long, * so address of lockdep_map should be dealed as 64bit. * Is there more better solution? */ void *addr; /* address of lockdep_map, used as ID */ char *name; /* for strcpy(), we cannot use const */ int state; u64 prev_event_time; /* timestamp of previous event */ unsigned int nr_acquired; unsigned int nr_acquire; unsigned int nr_contended; unsigned int nr_release; /* these times are in nano sec. */ u64 wait_time_total; u64 wait_time_min; u64 wait_time_max; }; /* build simple key function one is bigger than two */ #define SINGLE_KEY(member) \ static int lock_stat_key_ ## member(struct lock_stat *one, \ struct lock_stat *two) \ { \ return one->member > two->member; \ } SINGLE_KEY(nr_acquired) SINGLE_KEY(nr_contended) SINGLE_KEY(wait_time_total) SINGLE_KEY(wait_time_min) SINGLE_KEY(wait_time_max) struct lock_key { /* * name: the value for specify by user * this should be simpler than raw name of member * e.g. nr_acquired -> acquired, wait_time_total -> wait_total */ const char *name; int (*key)(struct lock_stat*, struct lock_stat*); }; static const char *sort_key = "acquired"; static int (*compare)(struct lock_stat *, struct lock_stat *); static struct rb_root result; /* place to store sorted data */ #define DEF_KEY_LOCK(name, fn_suffix) \ { #name, lock_stat_key_ ## fn_suffix } struct lock_key keys[] = { DEF_KEY_LOCK(acquired, nr_acquired), DEF_KEY_LOCK(contended, nr_contended), DEF_KEY_LOCK(wait_total, wait_time_total), DEF_KEY_LOCK(wait_min, wait_time_min), DEF_KEY_LOCK(wait_max, wait_time_max), /* extra comparisons much complicated should be here */ { NULL, NULL } }; static void select_key(void) { int i; for (i = 0; keys[i].name; i++) { if (!strcmp(keys[i].name, sort_key)) { compare = keys[i].key; return; } } die("Unknown compare key:%s\n", sort_key); } static void insert_to_result(struct lock_stat *st, int (*bigger)(struct lock_stat *, struct lock_stat *)) { struct rb_node **rb = &result.rb_node; struct rb_node *parent = NULL; struct lock_stat *p; while (*rb) { p = container_of(*rb, struct lock_stat, rb); parent = *rb; if (bigger(st, p)) rb = &(*rb)->rb_left; else rb = &(*rb)->rb_right; } rb_link_node(&st->rb, parent, rb); rb_insert_color(&st->rb, &result); } /* returns left most element of result, and erase it */ static struct lock_stat *pop_from_result(void) { struct rb_node *node = result.rb_node; if (!node) return NULL; while (node->rb_left) node = node->rb_left; rb_erase(node, &result); return container_of(node, struct lock_stat, rb); } static struct lock_stat *lock_stat_findnew(void *addr, const char *name) { struct list_head *entry = lockhashentry(addr); struct lock_stat *ret, *new; list_for_each_entry(ret, entry, hash_entry) { if (ret->addr == addr) return ret; } new = zalloc(sizeof(struct lock_stat)); if (!new) goto alloc_failed; new->addr = addr; new->name = zalloc(sizeof(char) * strlen(name) + 1); if (!new->name) goto alloc_failed; strcpy(new->name, name); /* LOCK_STATE_UNLOCKED == 0 isn't guaranteed forever */ new->state = LOCK_STATE_UNLOCKED; new->wait_time_min = ULLONG_MAX; list_add(&new->hash_entry, entry); return new; alloc_failed: die("memory allocation failed\n"); } static char const *input_name = "perf.data"; static int profile_cpu = -1; struct raw_event_sample { u32 size; char data[0]; }; struct trace_acquire_event { void *addr; const char *name; }; struct trace_acquired_event { void *addr; const char *name; }; struct trace_contended_event { void *addr; const char *name; }; struct trace_release_event { void *addr; const char *name; }; struct trace_lock_handler { void (*acquire_event)(struct trace_acquire_event *, struct event *, int cpu, u64 timestamp, struct thread *thread); void (*acquired_event)(struct trace_acquired_event *, struct event *, int cpu, u64 timestamp, struct thread *thread); void (*contended_event)(struct trace_contended_event *, struct event *, int cpu, u64 timestamp, struct thread *thread); void (*release_event)(struct trace_release_event *, struct event *, int cpu, u64 timestamp, struct thread *thread); }; static void report_lock_acquire_event(struct trace_acquire_event *acquire_event, struct event *__event __used, int cpu __used, u64 timestamp, struct thread *thread __used) { struct lock_stat *st; st = lock_stat_findnew(acquire_event->addr, acquire_event->name); switch (st->state) { case LOCK_STATE_UNLOCKED: break; case LOCK_STATE_LOCKED: break; default: BUG_ON(1); break; } st->prev_event_time = timestamp; } static void report_lock_acquired_event(struct trace_acquired_event *acquired_event, struct event *__event __used, int cpu __used, u64 timestamp, struct thread *thread __used) { struct lock_stat *st; st = lock_stat_findnew(acquired_event->addr, acquired_event->name); switch (st->state) { case LOCK_STATE_UNLOCKED: st->state = LOCK_STATE_LOCKED; st->nr_acquired++; break; case LOCK_STATE_LOCKED: break; default: BUG_ON(1); break; } st->prev_event_time = timestamp; } static void report_lock_contended_event(struct trace_contended_event *contended_event, struct event *__event __used, int cpu __used, u64 timestamp, struct thread *thread __used) { struct lock_stat *st; st = lock_stat_findnew(contended_event->addr, contended_event->name); switch (st->state) { case LOCK_STATE_UNLOCKED: break; case LOCK_STATE_LOCKED: st->nr_contended++; break; default: BUG_ON(1); break; } st->prev_event_time = timestamp; } static void report_lock_release_event(struct trace_release_event *release_event, struct event *__event __used, int cpu __used, u64 timestamp, struct thread *thread __used) { struct lock_stat *st; u64 hold_time; st = lock_stat_findnew(release_event->addr, release_event->name); switch (st->state) { case LOCK_STATE_UNLOCKED: break; case LOCK_STATE_LOCKED: st->state = LOCK_STATE_UNLOCKED; hold_time = timestamp - st->prev_event_time; if (timestamp < st->prev_event_time) { /* terribly, this can happen... */ goto end; } if (st->wait_time_min > hold_time) st->wait_time_min = hold_time; if (st->wait_time_max < hold_time) st->wait_time_max = hold_time; st->wait_time_total += hold_time; st->nr_release++; break; default: BUG_ON(1); break; } end: st->prev_event_time = timestamp; } /* lock oriented handlers */ /* TODO: handlers for CPU oriented, thread oriented */ static struct trace_lock_handler report_lock_ops = { .acquire_event = report_lock_acquire_event, .acquired_event = report_lock_acquired_event, .contended_event = report_lock_contended_event, .release_event = report_lock_release_event, }; static struct trace_lock_handler *trace_handler; static void process_lock_acquire_event(void *data, struct event *event __used, int cpu __used, u64 timestamp __used, struct thread *thread __used) { struct trace_acquire_event acquire_event; u64 tmp; /* this is required for casting... */ tmp = raw_field_value(event, "lockdep_addr", data); memcpy(&acquire_event.addr, &tmp, sizeof(void *)); acquire_event.name = (char *)raw_field_ptr(event, "name", data); if (trace_handler->acquire_event) trace_handler->acquire_event(&acquire_event, event, cpu, timestamp, thread); } static void process_lock_acquired_event(void *data, struct event *event __used, int cpu __used, u64 timestamp __used, struct thread *thread __used) { struct trace_acquired_event acquired_event; u64 tmp; /* this is required for casting... */ tmp = raw_field_value(event, "lockdep_addr", data); memcpy(&acquired_event.addr, &tmp, sizeof(void *)); acquired_event.name = (char *)raw_field_ptr(event, "name", data); if (trace_handler->acquire_event) trace_handler->acquired_event(&acquired_event, event, cpu, timestamp, thread); } static void process_lock_contended_event(void *data, struct event *event __used, int cpu __used, u64 timestamp __used, struct thread *thread __used) { struct trace_contended_event contended_event; u64 tmp; /* this is required for casting... */ tmp = raw_field_value(event, "lockdep_addr", data); memcpy(&contended_event.addr, &tmp, sizeof(void *)); contended_event.name = (char *)raw_field_ptr(event, "name", data); if (trace_handler->acquire_event) trace_handler->contended_event(&contended_event, event, cpu, timestamp, thread); } static void process_lock_release_event(void *data, struct event *event __used, int cpu __used, u64 timestamp __used, struct thread *thread __used) { struct trace_release_event release_event; u64 tmp; /* this is required for casting... */ tmp = raw_field_value(event, "lockdep_addr", data); memcpy(&release_event.addr, &tmp, sizeof(void *)); release_event.name = (char *)raw_field_ptr(event, "name", data); if (trace_handler->acquire_event) trace_handler->release_event(&release_event, event, cpu, timestamp, thread); } static void process_raw_event(void *data, int cpu, u64 timestamp, struct thread *thread) { struct event *event; int type; type = trace_parse_common_type(data); event = trace_find_event(type); if (!strcmp(event->name, "lock_acquire")) process_lock_acquire_event(data, event, cpu, timestamp, thread); if (!strcmp(event->name, "lock_acquired")) process_lock_acquired_event(data, event, cpu, timestamp, thread); if (!strcmp(event->name, "lock_contended")) process_lock_contended_event(data, event, cpu, timestamp, thread); if (!strcmp(event->name, "lock_release")) process_lock_release_event(data, event, cpu, timestamp, thread); } struct raw_event_queue { u64 timestamp; int cpu; void *data; struct thread *thread; struct list_head list; }; static LIST_HEAD(raw_event_head); #define FLUSH_PERIOD (5 * NSEC_PER_SEC) static u64 flush_limit = ULLONG_MAX; static u64 last_flush = 0; struct raw_event_queue *last_inserted; static void flush_raw_event_queue(u64 limit) { struct raw_event_queue *tmp, *iter; list_for_each_entry_safe(iter, tmp, &raw_event_head, list) { if (iter->timestamp > limit) return; if (iter == last_inserted) last_inserted = NULL; process_raw_event(iter->data, iter->cpu, iter->timestamp, iter->thread); last_flush = iter->timestamp; list_del(&iter->list); free(iter->data); free(iter); } } static void __queue_raw_event_end(struct raw_event_queue *new) { struct raw_event_queue *iter; list_for_each_entry_reverse(iter, &raw_event_head, list) { if (iter->timestamp < new->timestamp) { list_add(&new->list, &iter->list); return; } } list_add(&new->list, &raw_event_head); } static void __queue_raw_event_before(struct raw_event_queue *new, struct raw_event_queue *iter) { list_for_each_entry_continue_reverse(iter, &raw_event_head, list) { if (iter->timestamp < new->timestamp) { list_add(&new->list, &iter->list); return; } } list_add(&new->list, &raw_event_head); } static void __queue_raw_event_after(struct raw_event_queue *new, struct raw_event_queue *iter) { list_for_each_entry_continue(iter, &raw_event_head, list) { if (iter->timestamp > new->timestamp) { list_add_tail(&new->list, &iter->list); return; } } list_add_tail(&new->list, &raw_event_head); } /* The queue is ordered by time */ static void __queue_raw_event(struct raw_event_queue *new) { if (!last_inserted) { __queue_raw_event_end(new); return; } /* * Most of the time the current event has a timestamp * very close to the last event inserted, unless we just switched * to another event buffer. Having a sorting based on a list and * on the last inserted event that is close to the current one is * probably more efficient than an rbtree based sorting. */ if (last_inserted->timestamp >= new->timestamp) __queue_raw_event_before(new, last_inserted); else __queue_raw_event_after(new, last_inserted); } static void queue_raw_event(void *data, int raw_size, int cpu, u64 timestamp, struct thread *thread) { struct raw_event_queue *new; if (flush_limit == ULLONG_MAX) flush_limit = timestamp + FLUSH_PERIOD; if (timestamp < last_flush) { printf("Warning: Timestamp below last timeslice flush\n"); return; } new = malloc(sizeof(*new)); if (!new) die("Not enough memory\n"); new->timestamp = timestamp; new->cpu = cpu; new->thread = thread; new->data = malloc(raw_size); if (!new->data) die("Not enough memory\n"); memcpy(new->data, data, raw_size); __queue_raw_event(new); last_inserted = new; /* * We want to have a slice of events covering 2 * FLUSH_PERIOD * If FLUSH_PERIOD is big enough, it ensures every events that occured * in the first half of the timeslice have all been buffered and there * are none remaining (we need that because of the weakly ordered * event recording we have). Then once we reach the 2 * FLUSH_PERIOD * timeslice, we flush the first half to be gentle with the memory * (the second half can still get new events in the middle, so wait * another period to flush it) */ if (new->timestamp > flush_limit && new->timestamp - flush_limit > FLUSH_PERIOD) { flush_limit += FLUSH_PERIOD; flush_raw_event_queue(flush_limit); } } static int process_sample_event(event_t *event, struct perf_session *session) { struct thread *thread; struct sample_data data; bzero(&data, sizeof(struct sample_data)); event__parse_sample(event, session->sample_type, &data); thread = perf_session__findnew(session, data.pid); if (thread == NULL) { pr_debug("problem processing %d event, skipping it.\n", event->header.type); return -1; } dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid); if (profile_cpu != -1 && profile_cpu != (int) data.cpu) return 0; queue_raw_event(data.raw_data, data.raw_size, data.cpu, data.time, thread); return 0; } /* TODO: various way to print, coloring, nano or milli sec */ static void print_result(void) { struct lock_stat *st; char cut_name[20]; printf("%18s ", "ID"); printf("%20s ", "Name"); printf("%10s ", "acquired"); printf("%10s ", "contended"); printf("%15s ", "total wait (ns)"); printf("%15s ", "max wait (ns)"); printf("%15s ", "min wait (ns)"); printf("\n\n"); while ((st = pop_from_result())) { bzero(cut_name, 20); printf("%p ", st->addr); if (strlen(st->name) < 16) { /* output raw name */ printf("%20s ", st->name); } else { strncpy(cut_name, st->name, 16); cut_name[16] = '.'; cut_name[17] = '.'; cut_name[18] = '.'; cut_name[19] = '\0'; /* cut off name for saving output style */ printf("%20s ", cut_name); } printf("%10u ", st->nr_acquired); printf("%10u ", st->nr_contended); printf("%15llu ", st->wait_time_total); printf("%15llu ", st->wait_time_max); printf("%15llu ", st->wait_time_min == ULLONG_MAX ? 0 : st->wait_time_min); printf("\n"); } } static void dump_map(void) { unsigned int i; struct lock_stat *st; for (i = 0; i < LOCKHASH_SIZE; i++) { list_for_each_entry(st, &lockhash_table[i], hash_entry) { printf("%p: %s\n", st->addr, st->name); } } } static struct perf_event_ops eops = { .sample = process_sample_event, .comm = event__process_comm, }; static struct perf_session *session; static int read_events(void) { session = perf_session__new(input_name, O_RDONLY, 0); if (!session) die("Initializing perf session failed\n"); return perf_session__process_events(session, &eops); } static void sort_result(void) { unsigned int i; struct lock_stat *st; for (i = 0; i < LOCKHASH_SIZE; i++) { list_for_each_entry(st, &lockhash_table[i], hash_entry) { insert_to_result(st, compare); } } } static void __cmd_report(void) { setup_pager(); select_key(); read_events(); flush_raw_event_queue(ULLONG_MAX); sort_result(); print_result(); } static const char * const report_usage[] = { "perf lock report []", NULL }; static const struct option report_options[] = { OPT_STRING('k', "key", &sort_key, "acquired", "key for sorting"), /* TODO: type */ OPT_END() }; static const char * const lock_usage[] = { "perf lock [] {record|trace|report}", NULL }; static const struct option lock_options[] = { OPT_STRING('i', "input", &input_name, "file", "input file name"), OPT_BOOLEAN('v', "verbose", &verbose, "be more verbose (show symbol address, etc)"), OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, "dump raw trace in ASCII"), OPT_END() }; static const char *record_args[] = { "record", "-a", "-R", "-f", "-m", "1024", "-c", "1", "-e", "lock:lock_acquire:r", "-e", "lock:lock_acquired:r", "-e", "lock:lock_contended:r", "-e", "lock:lock_release:r", }; static int __cmd_record(int argc, const char **argv) { unsigned int rec_argc, i, j; const char **rec_argv; rec_argc = ARRAY_SIZE(record_args) + argc - 1; rec_argv = calloc(rec_argc + 1, sizeof(char *)); for (i = 0; i < ARRAY_SIZE(record_args); i++) rec_argv[i] = strdup(record_args[i]); for (j = 1; j < (unsigned int)argc; j++, i++) rec_argv[i] = argv[j]; BUG_ON(i != rec_argc); return cmd_record(i, rec_argv, NULL); } int cmd_lock(int argc, const char **argv, const char *prefix __used) { unsigned int i; symbol__init(); for (i = 0; i < LOCKHASH_SIZE; i++) INIT_LIST_HEAD(lockhash_table + i); argc = parse_options(argc, argv, lock_options, lock_usage, PARSE_OPT_STOP_AT_NON_OPTION); if (!argc) usage_with_options(lock_usage, lock_options); if (!strncmp(argv[0], "rec", 3)) { return __cmd_record(argc, argv); } else if (!strncmp(argv[0], "report", 6)) { trace_handler = &report_lock_ops; if (argc) { argc = parse_options(argc, argv, report_options, report_usage, 0); if (argc) usage_with_options(report_usage, report_options); } __cmd_report(); } else if (!strcmp(argv[0], "trace")) { /* Aliased to 'perf trace' */ return cmd_trace(argc, argv, prefix); } else if (!strcmp(argv[0], "map")) { /* recycling report_lock_ops */ trace_handler = &report_lock_ops; setup_pager(); read_events(); dump_map(); } else { usage_with_options(lock_usage, lock_options); } return 0; }