/**************************************************************************** Copyright Echo Digital Audio Corporation (c) 1998 - 2004 All rights reserved www.echoaudio.com This file is part of Echo Digital Audio's generic driver library. Echo Digital Audio's generic driver library is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. **************************************************************************** Translation from C++ and adaptation for use in ALSA-Driver were made by Giuliano Pochini **************************************************************************** Here's a block diagram of how most of the cards work: +-----------+ record | |<-------------------- Inputs <-------| | | PCI | Transport | | bus | engine | \|/ ------->| | +-------+ play | |--->|monitor|-------> Outputs +-----------+ | mixer | +-------+ The lines going to and from the PCI bus represent "pipes". A pipe performs audio transport - moving audio data to and from buffers on the host via bus mastering. The inputs and outputs on the right represent input and output "busses." A bus is a physical, real connection to the outside world. An example of a bus would be the 1/4" analog connectors on the back of Layla or an RCA S/PDIF connector. For most cards, there is a one-to-one correspondence between outputs and busses; that is, each individual pipe is hard-wired to a single bus. Cards that work this way are Darla20, Gina20, Layla20, Darla24, Gina24, Layla24, Mona, and Indigo. Mia has a feature called "virtual outputs." +-----------+ record | |<----------------------------- Inputs <-------| | | PCI | Transport | | bus | engine | \|/ ------->| | +------+ +-------+ play | |-->|vmixer|-->|monitor|-------> Outputs +-----------+ +------+ | mixer | +-------+ Obviously, the difference here is the box labeled "vmixer." Vmixer is short for "virtual output mixer." For Mia, pipes are *not* hard-wired to a single bus; the vmixer lets you mix any pipe to any bus in any combination. Note, however, that the left-hand side of the diagram is unchanged. Transport works exactly the same way - the difference is in the mixer stage. Pipes and busses are numbered starting at zero. Pipe index ========== A number of calls in CEchoGals refer to a "pipe index". A pipe index is a unique number for a pipe that unambiguously refers to a playback or record pipe. Pipe indices are numbered starting with analog outputs, followed by digital outputs, then analog inputs, then digital inputs. Take Gina24 as an example: Pipe index 0-7 Analog outputs (0 .. FirstDigitalBusOut-1) 8-15 Digital outputs (FirstDigitalBusOut .. NumBussesOut-1) 16-17 Analog inputs 18-25 Digital inputs You get the pipe index by calling CEchoGals::OpenAudio; the other transport functions take the pipe index as a parameter. If you need a pipe index for some other reason, use the handy Makepipe_index method. Some calls take a CChannelMask parameter; CChannelMask is a handy way to group pipe indices. Digital mode switch =================== Some cards (right now, Gina24, Layla24, and Mona) have a Digital Mode Switch or DMS. Cards with a DMS can be set to one of three mutually exclusive digital modes: S/PDIF RCA, S/PDIF optical, or ADAT optical. This may create some confusion since ADAT optical is 8 channels wide and S/PDIF is only two channels wide. Gina24, Layla24, and Mona handle this by acting as if they always have 8 digital outs and ins. If you are in either S/PDIF mode, the last 6 channels don't do anything - data sent out these channels is thrown away and you will always record zeros. Note that with Gina24, Layla24, and Mona, sample rates above 50 kHz are only available if you have the card configured for S/PDIF optical or S/PDIF RCA. Double speed mode ================= Some of the cards support 88.2 kHz and 96 kHz sampling (Darla24, Gina24, Layla24, Mona, Mia, and Indigo). For these cards, the driver sometimes has to worry about "double speed mode"; double speed mode applies whenever the sampling rate is above 50 kHz. For instance, Mona and Layla24 support word clock sync. However, they actually support two different word clock modes - single speed (below 50 kHz) and double speed (above 50 kHz). The hardware detects if a single or double speed word clock signal is present; the generic code uses that information to determine which mode to use. The generic code takes care of all this for you. */ #ifndef _ECHOAUDIO_H_ #define _ECHOAUDIO_H_ #define TRUE 1 #define FALSE 0 #include "echoaudio_dsp.h" /*********************************************************************** PCI configuration space ***********************************************************************/ /* * PCI vendor ID and device IDs for the hardware */ #define VENDOR_ID 0x1057 #define DEVICE_ID_56301 0x1801 #define DEVICE_ID_56361 0x3410 #define SUBVENDOR_ID 0xECC0 /* * Valid Echo PCI subsystem card IDs */ #define DARLA20 0x0010 #define GINA20 0x0020 #define LAYLA20 0x0030 #define DARLA24 0x0040 #define GINA24 0x0050 #define LAYLA24 0x0060 #define MONA 0x0070 #define MIA 0x0080 #define INDIGO 0x0090 #define INDIGO_IO 0x00a0 #define INDIGO_DJ 0x00b0 #define DC8 0x00c0 #define INDIGO_IOX 0x00d0 #define INDIGO_DJX 0x00e0 #define ECHO3G 0x0100 /************************************************************************ Array sizes and so forth ***********************************************************************/ /* * Sizes */ #define ECHO_MAXAUDIOINPUTS 32 /* Max audio input channels */ #define ECHO_MAXAUDIOOUTPUTS 32 /* Max audio output channels */ #define ECHO_MAXAUDIOPIPES 32 /* Max number of input and output * pipes */ #define E3G_MAX_OUTPUTS 16 #define ECHO_MAXMIDIJACKS 1 /* Max MIDI ports */ #define ECHO_MIDI_QUEUE_SZ 512 /* Max MIDI input queue entries */ #define ECHO_MTC_QUEUE_SZ 32 /* Max MIDI time code input queue * entries */ /* * MIDI activity indicator timeout */ #define MIDI_ACTIVITY_TIMEOUT_USEC 200000 /**************************************************************************** Clocks *****************************************************************************/ /* * Clock numbers */ #define ECHO_CLOCK_INTERNAL 0 #define ECHO_CLOCK_WORD 1 #define ECHO_CLOCK_SUPER 2 #define ECHO_CLOCK_SPDIF 3 #define ECHO_CLOCK_ADAT 4 #define ECHO_CLOCK_ESYNC 5 #define ECHO_CLOCK_ESYNC96 6 #define ECHO_CLOCK_MTC 7 #define ECHO_CLOCK_NUMBER 8 #define ECHO_CLOCKS 0xffff /* * Clock bit numbers - used to report capabilities and whatever clocks * are being detected dynamically. */ #define ECHO_CLOCK_BIT_INTERNAL (1 << ECHO_CLOCK_INTERNAL) #define ECHO_CLOCK_BIT_WORD (1 << ECHO_CLOCK_WORD) #define ECHO_CLOCK_BIT_SUPER (1 << ECHO_CLOCK_SUPER) #define ECHO_CLOCK_BIT_SPDIF (1 << ECHO_CLOCK_SPDIF) #define ECHO_CLOCK_BIT_ADAT (1 << ECHO_CLOCK_ADAT) #define ECHO_CLOCK_BIT_ESYNC (1 << ECHO_CLOCK_ESYNC) #define ECHO_CLOCK_BIT_ESYNC96 (1 << ECHO_CLOCK_ESYNC96) #define ECHO_CLOCK_BIT_MTC (1<comm_page->handshake = 0; } static inline u32 get_dsp_register(struct echoaudio *chip, u32 index) { return readl(&chip->dsp_registers[index]); } static inline void set_dsp_register(struct echoaudio *chip, u32 index, u32 value) { writel(value, &chip->dsp_registers[index]); } /* Pipe and bus indexes. PX_* and BX_* are defined as chip->px_* and chip->bx_* for 3G cards because they depend on the external box. They are integer constants for all other cards. Never use those defines directly, use the following functions instead. */ static inline int px_digital_out(const struct echoaudio *chip) { return PX_DIGITAL_OUT; } static inline int px_analog_in(const struct echoaudio *chip) { return PX_ANALOG_IN; } static inline int px_digital_in(const struct echoaudio *chip) { return PX_DIGITAL_IN; } static inline int px_num(const struct echoaudio *chip) { return PX_NUM; } static inline int bx_digital_out(const struct echoaudio *chip) { return BX_DIGITAL_OUT; } static inline int bx_analog_in(const struct echoaudio *chip) { return BX_ANALOG_IN; } static inline int bx_digital_in(const struct echoaudio *chip) { return BX_DIGITAL_IN; } static inline int bx_num(const struct echoaudio *chip) { return BX_NUM; } static inline int num_pipes_out(const struct echoaudio *chip) { return px_analog_in(chip); } static inline int num_pipes_in(const struct echoaudio *chip) { return px_num(chip) - px_analog_in(chip); } static inline int num_busses_out(const struct echoaudio *chip) { return bx_analog_in(chip); } static inline int num_busses_in(const struct echoaudio *chip) { return bx_num(chip) - bx_analog_in(chip); } static inline int num_analog_busses_out(const struct echoaudio *chip) { return bx_digital_out(chip); } static inline int num_analog_busses_in(const struct echoaudio *chip) { return bx_digital_in(chip) - bx_analog_in(chip); } static inline int num_digital_busses_out(const struct echoaudio *chip) { return num_busses_out(chip) - num_analog_busses_out(chip); } static inline int num_digital_busses_in(const struct echoaudio *chip) { return num_busses_in(chip) - num_analog_busses_in(chip); } /* The monitor array is a one-dimensional array; compute the offset * into the array */ static inline int monitor_index(const struct echoaudio *chip, int out, int in) { return out * num_busses_in(chip) + in; } #ifndef pci_device #define pci_device(chip) (&chip->pci->dev) #endif #endif /* _ECHOAUDIO_H_ */