#ifndef __ASM_PARAVIRT_H #define __ASM_PARAVIRT_H /* Various instructions on x86 need to be replaced for * para-virtualization: those hooks are defined here. */ #ifdef CONFIG_PARAVIRT #include #include /* Bitmask of what can be clobbered: usually at least eax. */ #define CLBR_NONE 0 #define CLBR_EAX (1 << 0) #define CLBR_ECX (1 << 1) #define CLBR_EDX (1 << 2) #ifdef CONFIG_X86_64 #define CLBR_RSI (1 << 3) #define CLBR_RDI (1 << 4) #define CLBR_R8 (1 << 5) #define CLBR_R9 (1 << 6) #define CLBR_R10 (1 << 7) #define CLBR_R11 (1 << 8) #define CLBR_ANY ((1 << 9) - 1) #include #else /* CLBR_ANY should match all regs platform has. For i386, that's just it */ #define CLBR_ANY ((1 << 3) - 1) #endif /* X86_64 */ #ifndef __ASSEMBLY__ #include #include #include #include struct page; struct thread_struct; struct desc_ptr; struct tss_struct; struct mm_struct; struct desc_struct; /* general info */ struct pv_info { unsigned int kernel_rpl; int shared_kernel_pmd; int paravirt_enabled; const char *name; }; struct pv_init_ops { /* * Patch may replace one of the defined code sequences with * arbitrary code, subject to the same register constraints. * This generally means the code is not free to clobber any * registers other than EAX. The patch function should return * the number of bytes of code generated, as we nop pad the * rest in generic code. */ unsigned (*patch)(u8 type, u16 clobber, void *insnbuf, unsigned long addr, unsigned len); /* Basic arch-specific setup */ void (*arch_setup)(void); char *(*memory_setup)(void); void (*post_allocator_init)(void); /* Print a banner to identify the environment */ void (*banner)(void); }; struct pv_lazy_ops { /* Set deferred update mode, used for batching operations. */ void (*enter)(void); void (*leave)(void); }; struct pv_time_ops { void (*time_init)(void); /* Set and set time of day */ unsigned long (*get_wallclock)(void); int (*set_wallclock)(unsigned long); unsigned long long (*sched_clock)(void); unsigned long (*get_cpu_khz)(void); }; struct pv_cpu_ops { /* hooks for various privileged instructions */ unsigned long (*get_debugreg)(int regno); void (*set_debugreg)(int regno, unsigned long value); void (*clts)(void); unsigned long (*read_cr0)(void); void (*write_cr0)(unsigned long); unsigned long (*read_cr4_safe)(void); unsigned long (*read_cr4)(void); void (*write_cr4)(unsigned long); #ifdef CONFIG_X86_64 unsigned long (*read_cr8)(void); void (*write_cr8)(unsigned long); #endif /* Segment descriptor handling */ void (*load_tr_desc)(void); void (*load_gdt)(const struct desc_ptr *); void (*load_idt)(const struct desc_ptr *); void (*store_gdt)(struct desc_ptr *); void (*store_idt)(struct desc_ptr *); void (*set_ldt)(const void *desc, unsigned entries); unsigned long (*store_tr)(void); void (*load_tls)(struct thread_struct *t, unsigned int cpu); void (*write_ldt_entry)(struct desc_struct *ldt, int entrynum, const void *desc); void (*write_gdt_entry)(struct desc_struct *, int entrynum, const void *desc, int size); void (*write_idt_entry)(gate_desc *, int entrynum, const gate_desc *gate); void (*load_sp0)(struct tss_struct *tss, struct thread_struct *t); void (*set_iopl_mask)(unsigned mask); void (*wbinvd)(void); void (*io_delay)(void); /* cpuid emulation, mostly so that caps bits can be disabled */ void (*cpuid)(unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx); /* MSR, PMC and TSR operations. err = 0/-EFAULT. wrmsr returns 0/-EFAULT. */ u64 (*read_msr)(unsigned int msr, int *err); int (*write_msr)(unsigned int msr, unsigned low, unsigned high); u64 (*read_tsc)(void); u64 (*read_pmc)(int counter); unsigned long long (*read_tscp)(unsigned int *aux); /* These two are jmp to, not actually called. */ void (*irq_enable_syscall_ret)(void); void (*iret)(void); void (*swapgs)(void); struct pv_lazy_ops lazy_mode; }; struct pv_irq_ops { void (*init_IRQ)(void); /* * Get/set interrupt state. save_fl and restore_fl are only * expected to use X86_EFLAGS_IF; all other bits * returned from save_fl are undefined, and may be ignored by * restore_fl. */ unsigned long (*save_fl)(void); void (*restore_fl)(unsigned long); void (*irq_disable)(void); void (*irq_enable)(void); void (*safe_halt)(void); void (*halt)(void); }; struct pv_apic_ops { #ifdef CONFIG_X86_LOCAL_APIC /* * Direct APIC operations, principally for VMI. Ideally * these shouldn't be in this interface. */ void (*apic_write)(unsigned long reg, u32 v); void (*apic_write_atomic)(unsigned long reg, u32 v); u32 (*apic_read)(unsigned long reg); void (*setup_boot_clock)(void); void (*setup_secondary_clock)(void); void (*startup_ipi_hook)(int phys_apicid, unsigned long start_eip, unsigned long start_esp); #endif }; struct pv_mmu_ops { /* * Called before/after init_mm pagetable setup. setup_start * may reset %cr3, and may pre-install parts of the pagetable; * pagetable setup is expected to preserve any existing * mapping. */ void (*pagetable_setup_start)(pgd_t *pgd_base); void (*pagetable_setup_done)(pgd_t *pgd_base); unsigned long (*read_cr2)(void); void (*write_cr2)(unsigned long); unsigned long (*read_cr3)(void); void (*write_cr3)(unsigned long); /* * Hooks for intercepting the creation/use/destruction of an * mm_struct. */ void (*activate_mm)(struct mm_struct *prev, struct mm_struct *next); void (*dup_mmap)(struct mm_struct *oldmm, struct mm_struct *mm); void (*exit_mmap)(struct mm_struct *mm); /* TLB operations */ void (*flush_tlb_user)(void); void (*flush_tlb_kernel)(void); void (*flush_tlb_single)(unsigned long addr); void (*flush_tlb_others)(const cpumask_t *cpus, struct mm_struct *mm, unsigned long va); /* Hooks for allocating/releasing pagetable pages */ void (*alloc_pt)(struct mm_struct *mm, u32 pfn); void (*alloc_pd)(struct mm_struct *mm, u32 pfn); void (*alloc_pd_clone)(u32 pfn, u32 clonepfn, u32 start, u32 count); void (*release_pt)(u32 pfn); void (*release_pd)(u32 pfn); /* Pagetable manipulation functions */ void (*set_pte)(pte_t *ptep, pte_t pteval); void (*set_pte_at)(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval); void (*set_pmd)(pmd_t *pmdp, pmd_t pmdval); void (*pte_update)(struct mm_struct *mm, unsigned long addr, pte_t *ptep); void (*pte_update_defer)(struct mm_struct *mm, unsigned long addr, pte_t *ptep); pteval_t (*pte_val)(pte_t); pte_t (*make_pte)(pteval_t pte); pgdval_t (*pgd_val)(pgd_t); pgd_t (*make_pgd)(pgdval_t pgd); #if PAGETABLE_LEVELS >= 3 #ifdef CONFIG_X86_PAE void (*set_pte_atomic)(pte_t *ptep, pte_t pteval); void (*set_pte_present)(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte); void (*pte_clear)(struct mm_struct *mm, unsigned long addr, pte_t *ptep); void (*pmd_clear)(pmd_t *pmdp); #endif /* CONFIG_X86_PAE */ void (*set_pud)(pud_t *pudp, pud_t pudval); pmdval_t (*pmd_val)(pmd_t); pmd_t (*make_pmd)(pmdval_t pmd); #if PAGETABLE_LEVELS == 4 pudval_t (*pud_val)(pud_t); pud_t (*make_pud)(pudval_t pud); void (*set_pgd)(pgd_t *pudp, pgd_t pgdval); #endif /* PAGETABLE_LEVELS == 4 */ #endif /* PAGETABLE_LEVELS >= 3 */ #ifdef CONFIG_HIGHPTE void *(*kmap_atomic_pte)(struct page *page, enum km_type type); #endif struct pv_lazy_ops lazy_mode; }; /* This contains all the paravirt structures: we get a convenient * number for each function using the offset which we use to indicate * what to patch. */ struct paravirt_patch_template { struct pv_init_ops pv_init_ops; struct pv_time_ops pv_time_ops; struct pv_cpu_ops pv_cpu_ops; struct pv_irq_ops pv_irq_ops; struct pv_apic_ops pv_apic_ops; struct pv_mmu_ops pv_mmu_ops; }; extern struct pv_info pv_info; extern struct pv_init_ops pv_init_ops; extern struct pv_time_ops pv_time_ops; extern struct pv_cpu_ops pv_cpu_ops; extern struct pv_irq_ops pv_irq_ops; extern struct pv_apic_ops pv_apic_ops; extern struct pv_mmu_ops pv_mmu_ops; #define PARAVIRT_PATCH(x) \ (offsetof(struct paravirt_patch_template, x) / sizeof(void *)) #define paravirt_type(op) \ [paravirt_typenum] "i" (PARAVIRT_PATCH(op)), \ [paravirt_opptr] "m" (op) #define paravirt_clobber(clobber) \ [paravirt_clobber] "i" (clobber) /* * Generate some code, and mark it as patchable by the * apply_paravirt() alternate instruction patcher. */ #define _paravirt_alt(insn_string, type, clobber) \ "771:\n\t" insn_string "\n" "772:\n" \ ".pushsection .parainstructions,\"a\"\n" \ _ASM_ALIGN "\n" \ _ASM_PTR " 771b\n" \ " .byte " type "\n" \ " .byte 772b-771b\n" \ " .short " clobber "\n" \ ".popsection\n" /* Generate patchable code, with the default asm parameters. */ #define paravirt_alt(insn_string) \ _paravirt_alt(insn_string, "%c[paravirt_typenum]", "%c[paravirt_clobber]") /* Simple instruction patching code. */ #define DEF_NATIVE(ops, name, code) \ extern const char start_##ops##_##name[], end_##ops##_##name[]; \ asm("start_" #ops "_" #name ": " code "; end_" #ops "_" #name ":") unsigned paravirt_patch_nop(void); unsigned paravirt_patch_ignore(unsigned len); unsigned paravirt_patch_call(void *insnbuf, const void *target, u16 tgt_clobbers, unsigned long addr, u16 site_clobbers, unsigned len); unsigned paravirt_patch_jmp(void *insnbuf, const void *target, unsigned long addr, unsigned len); unsigned paravirt_patch_default(u8 type, u16 clobbers, void *insnbuf, unsigned long addr, unsigned len); unsigned paravirt_patch_insns(void *insnbuf, unsigned len, const char *start, const char *end); unsigned native_patch(u8 type, u16 clobbers, void *ibuf, unsigned long addr, unsigned len); int paravirt_disable_iospace(void); /* * This generates an indirect call based on the operation type number. * The type number, computed in PARAVIRT_PATCH, is derived from the * offset into the paravirt_patch_template structure, and can therefore be * freely converted back into a structure offset. */ #define PARAVIRT_CALL "call *%[paravirt_opptr];" /* * These macros are intended to wrap calls through one of the paravirt * ops structs, so that they can be later identified and patched at * runtime. * * Normally, a call to a pv_op function is a simple indirect call: * (pv_op_struct.operations)(args...). * * Unfortunately, this is a relatively slow operation for modern CPUs, * because it cannot necessarily determine what the destination * address is. In this case, the address is a runtime constant, so at * the very least we can patch the call to e a simple direct call, or * ideally, patch an inline implementation into the callsite. (Direct * calls are essentially free, because the call and return addresses * are completely predictable.) * * For i386, these macros rely on the standard gcc "regparm(3)" calling * convention, in which the first three arguments are placed in %eax, * %edx, %ecx (in that order), and the remaining arguments are placed * on the stack. All caller-save registers (eax,edx,ecx) are expected * to be modified (either clobbered or used for return values). * X86_64, on the other hand, already specifies a register-based calling * conventions, returning at %rax, with parameteres going on %rdi, %rsi, * %rdx, and %rcx. Note that for this reason, x86_64 does not need any * special handling for dealing with 4 arguments, unlike i386. * However, x86_64 also have to clobber all caller saved registers, which * unfortunately, are quite a bit (r8 - r11) * * The call instruction itself is marked by placing its start address * and size into the .parainstructions section, so that * apply_paravirt() in arch/i386/kernel/alternative.c can do the * appropriate patching under the control of the backend pv_init_ops * implementation. * * Unfortunately there's no way to get gcc to generate the args setup * for the call, and then allow the call itself to be generated by an * inline asm. Because of this, we must do the complete arg setup and * return value handling from within these macros. This is fairly * cumbersome. * * There are 5 sets of PVOP_* macros for dealing with 0-4 arguments. * It could be extended to more arguments, but there would be little * to be gained from that. For each number of arguments, there are * the two VCALL and CALL variants for void and non-void functions. * * When there is a return value, the invoker of the macro must specify * the return type. The macro then uses sizeof() on that type to * determine whether its a 32 or 64 bit value, and places the return * in the right register(s) (just %eax for 32-bit, and %edx:%eax for * 64-bit). For x86_64 machines, it just returns at %rax regardless of * the return value size. * * 64-bit arguments are passed as a pair of adjacent 32-bit arguments * i386 also passes 64-bit arguments as a pair of adjacent 32-bit arguments * in low,high order * * Small structures are passed and returned in registers. The macro * calling convention can't directly deal with this, so the wrapper * functions must do this. * * These PVOP_* macros are only defined within this header. This * means that all uses must be wrapped in inline functions. This also * makes sure the incoming and outgoing types are always correct. */ #ifdef CONFIG_X86_32 #define PVOP_VCALL_ARGS unsigned long __eax, __edx, __ecx #define PVOP_CALL_ARGS PVOP_VCALL_ARGS #define PVOP_VCALL_CLOBBERS "=a" (__eax), "=d" (__edx), \ "=c" (__ecx) #define PVOP_CALL_CLOBBERS PVOP_VCALL_CLOBBERS #define EXTRA_CLOBBERS #define VEXTRA_CLOBBERS #else #define PVOP_VCALL_ARGS unsigned long __edi, __esi, __edx, __ecx #define PVOP_CALL_ARGS PVOP_VCALL_ARGS, __eax #define PVOP_VCALL_CLOBBERS "=D" (__edi), \ "=S" (__esi), "=d" (__edx), \ "=c" (__ecx) #define PVOP_CALL_CLOBBERS PVOP_VCALL_CLOBBERS, "=a" (__eax) #define EXTRA_CLOBBERS , "r8", "r9", "r10", "r11" #define VEXTRA_CLOBBERS , "rax", "r8", "r9", "r10", "r11" #endif #define __PVOP_CALL(rettype, op, pre, post, ...) \ ({ \ rettype __ret; \ PVOP_CALL_ARGS; \ /* This is 32-bit specific, but is okay in 64-bit */ \ /* since this condition will never hold */ \ if (sizeof(rettype) > sizeof(unsigned long)) { \ asm volatile(pre \ paravirt_alt(PARAVIRT_CALL) \ post \ : PVOP_CALL_CLOBBERS \ : paravirt_type(op), \ paravirt_clobber(CLBR_ANY), \ ##__VA_ARGS__ \ : "memory", "cc" EXTRA_CLOBBERS); \ __ret = (rettype)((((u64)__edx) << 32) | __eax); \ } else { \ asm volatile(pre \ paravirt_alt(PARAVIRT_CALL) \ post \ : PVOP_CALL_CLOBBERS \ : paravirt_type(op), \ paravirt_clobber(CLBR_ANY), \ ##__VA_ARGS__ \ : "memory", "cc" EXTRA_CLOBBERS); \ __ret = (rettype)__eax; \ } \ __ret; \ }) #define __PVOP_VCALL(op, pre, post, ...) \ ({ \ PVOP_VCALL_ARGS; \ asm volatile(pre \ paravirt_alt(PARAVIRT_CALL) \ post \ : PVOP_VCALL_CLOBBERS \ : paravirt_type(op), \ paravirt_clobber(CLBR_ANY), \ ##__VA_ARGS__ \ : "memory", "cc" VEXTRA_CLOBBERS); \ }) #define PVOP_CALL0(rettype, op) \ __PVOP_CALL(rettype, op, "", "") #define PVOP_VCALL0(op) \ __PVOP_VCALL(op, "", "") #define PVOP_CALL1(rettype, op, arg1) \ __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1))) #define PVOP_VCALL1(op, arg1) \ __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1))) #define PVOP_CALL2(rettype, op, arg1, arg2) \ __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)), \ "1" ((unsigned long)(arg2))) #define PVOP_VCALL2(op, arg1, arg2) \ __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)), \ "1" ((unsigned long)(arg2))) #define PVOP_CALL3(rettype, op, arg1, arg2, arg3) \ __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)), \ "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3))) #define PVOP_VCALL3(op, arg1, arg2, arg3) \ __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)), \ "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3))) /* This is the only difference in x86_64. We can make it much simpler */ #ifdef CONFIG_X86_32 #define PVOP_CALL4(rettype, op, arg1, arg2, arg3, arg4) \ __PVOP_CALL(rettype, op, \ "push %[_arg4];", "lea 4(%%esp),%%esp;", \ "0" ((u32)(arg1)), "1" ((u32)(arg2)), \ "2" ((u32)(arg3)), [_arg4] "mr" ((u32)(arg4))) #define PVOP_VCALL4(op, arg1, arg2, arg3, arg4) \ __PVOP_VCALL(op, \ "push %[_arg4];", "lea 4(%%esp),%%esp;", \ "0" ((u32)(arg1)), "1" ((u32)(arg2)), \ "2" ((u32)(arg3)), [_arg4] "mr" ((u32)(arg4))) #else #define PVOP_CALL4(rettype, op, arg1, arg2, arg3, arg4) \ __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)), \ "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)), \ "3"((unsigned long)(arg4))) #define PVOP_VCALL4(op, arg1, arg2, arg3, arg4) \ __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)), \ "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)), \ "3"((unsigned long)(arg4))) #endif static inline int paravirt_enabled(void) { return pv_info.paravirt_enabled; } static inline void load_sp0(struct tss_struct *tss, struct thread_struct *thread) { PVOP_VCALL2(pv_cpu_ops.load_sp0, tss, thread); } #define ARCH_SETUP pv_init_ops.arch_setup(); static inline unsigned long get_wallclock(void) { return PVOP_CALL0(unsigned long, pv_time_ops.get_wallclock); } static inline int set_wallclock(unsigned long nowtime) { return PVOP_CALL1(int, pv_time_ops.set_wallclock, nowtime); } static inline void (*choose_time_init(void))(void) { return pv_time_ops.time_init; } /* The paravirtualized CPUID instruction. */ static inline void __cpuid(unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx) { PVOP_VCALL4(pv_cpu_ops.cpuid, eax, ebx, ecx, edx); } /* * These special macros can be used to get or set a debugging register */ static inline unsigned long paravirt_get_debugreg(int reg) { return PVOP_CALL1(unsigned long, pv_cpu_ops.get_debugreg, reg); } #define get_debugreg(var, reg) var = paravirt_get_debugreg(reg) static inline void set_debugreg(unsigned long val, int reg) { PVOP_VCALL2(pv_cpu_ops.set_debugreg, reg, val); } static inline void clts(void) { PVOP_VCALL0(pv_cpu_ops.clts); } static inline unsigned long read_cr0(void) { return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr0); } static inline void write_cr0(unsigned long x) { PVOP_VCALL1(pv_cpu_ops.write_cr0, x); } static inline unsigned long read_cr2(void) { return PVOP_CALL0(unsigned long, pv_mmu_ops.read_cr2); } static inline void write_cr2(unsigned long x) { PVOP_VCALL1(pv_mmu_ops.write_cr2, x); } static inline unsigned long read_cr3(void) { return PVOP_CALL0(unsigned long, pv_mmu_ops.read_cr3); } static inline void write_cr3(unsigned long x) { PVOP_VCALL1(pv_mmu_ops.write_cr3, x); } static inline unsigned long read_cr4(void) { return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr4); } static inline unsigned long read_cr4_safe(void) { return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr4_safe); } static inline void write_cr4(unsigned long x) { PVOP_VCALL1(pv_cpu_ops.write_cr4, x); } #ifdef CONFIG_X86_64 static inline unsigned long read_cr8(void) { return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr8); } static inline void write_cr8(unsigned long x) { PVOP_VCALL1(pv_cpu_ops.write_cr8, x); } #endif static inline void raw_safe_halt(void) { PVOP_VCALL0(pv_irq_ops.safe_halt); } static inline void halt(void) { PVOP_VCALL0(pv_irq_ops.safe_halt); } static inline void wbinvd(void) { PVOP_VCALL0(pv_cpu_ops.wbinvd); } #define get_kernel_rpl() (pv_info.kernel_rpl) static inline u64 paravirt_read_msr(unsigned msr, int *err) { return PVOP_CALL2(u64, pv_cpu_ops.read_msr, msr, err); } static inline int paravirt_write_msr(unsigned msr, unsigned low, unsigned high) { return PVOP_CALL3(int, pv_cpu_ops.write_msr, msr, low, high); } /* These should all do BUG_ON(_err), but our headers are too tangled. */ #define rdmsr(msr,val1,val2) do { \ int _err; \ u64 _l = paravirt_read_msr(msr, &_err); \ val1 = (u32)_l; \ val2 = _l >> 32; \ } while(0) #define wrmsr(msr,val1,val2) do { \ paravirt_write_msr(msr, val1, val2); \ } while(0) #define rdmsrl(msr,val) do { \ int _err; \ val = paravirt_read_msr(msr, &_err); \ } while(0) #define wrmsrl(msr,val) wrmsr(msr, (u32)((u64)(val)), ((u64)(val))>>32) #define wrmsr_safe(msr,a,b) paravirt_write_msr(msr, a, b) /* rdmsr with exception handling */ #define rdmsr_safe(msr,a,b) ({ \ int _err; \ u64 _l = paravirt_read_msr(msr, &_err); \ (*a) = (u32)_l; \ (*b) = _l >> 32; \ _err; }) static inline u64 paravirt_read_tsc(void) { return PVOP_CALL0(u64, pv_cpu_ops.read_tsc); } #define rdtscl(low) do { \ u64 _l = paravirt_read_tsc(); \ low = (int)_l; \ } while(0) #define rdtscll(val) (val = paravirt_read_tsc()) static inline unsigned long long paravirt_sched_clock(void) { return PVOP_CALL0(unsigned long long, pv_time_ops.sched_clock); } #define calculate_cpu_khz() (pv_time_ops.get_cpu_khz()) static inline unsigned long long paravirt_read_pmc(int counter) { return PVOP_CALL1(u64, pv_cpu_ops.read_pmc, counter); } #define rdpmc(counter,low,high) do { \ u64 _l = paravirt_read_pmc(counter); \ low = (u32)_l; \ high = _l >> 32; \ } while(0) static inline unsigned long long paravirt_rdtscp(unsigned int *aux) { return PVOP_CALL1(u64, pv_cpu_ops.read_tscp, aux); } #define rdtscp(low, high, aux) \ do { \ int __aux; \ unsigned long __val = paravirt_rdtscp(&__aux); \ (low) = (u32)__val; \ (high) = (u32)(__val >> 32); \ (aux) = __aux; \ } while (0) #define rdtscpll(val, aux) \ do { \ unsigned long __aux; \ val = paravirt_rdtscp(&__aux); \ (aux) = __aux; \ } while (0) static inline void load_TR_desc(void) { PVOP_VCALL0(pv_cpu_ops.load_tr_desc); } static inline void load_gdt(const struct desc_ptr *dtr) { PVOP_VCALL1(pv_cpu_ops.load_gdt, dtr); } static inline void load_idt(const struct desc_ptr *dtr) { PVOP_VCALL1(pv_cpu_ops.load_idt, dtr); } static inline void set_ldt(const void *addr, unsigned entries) { PVOP_VCALL2(pv_cpu_ops.set_ldt, addr, entries); } static inline void store_gdt(struct desc_ptr *dtr) { PVOP_VCALL1(pv_cpu_ops.store_gdt, dtr); } static inline void store_idt(struct desc_ptr *dtr) { PVOP_VCALL1(pv_cpu_ops.store_idt, dtr); } static inline unsigned long paravirt_store_tr(void) { return PVOP_CALL0(unsigned long, pv_cpu_ops.store_tr); } #define store_tr(tr) ((tr) = paravirt_store_tr()) static inline void load_TLS(struct thread_struct *t, unsigned cpu) { PVOP_VCALL2(pv_cpu_ops.load_tls, t, cpu); } static inline void write_ldt_entry(struct desc_struct *dt, int entry, const void *desc) { PVOP_VCALL3(pv_cpu_ops.write_ldt_entry, dt, entry, desc); } static inline void write_gdt_entry(struct desc_struct *dt, int entry, void *desc, int type) { PVOP_VCALL4(pv_cpu_ops.write_gdt_entry, dt, entry, desc, type); } static inline void write_idt_entry(gate_desc *dt, int entry, const gate_desc *g) { PVOP_VCALL3(pv_cpu_ops.write_idt_entry, dt, entry, g); } static inline void set_iopl_mask(unsigned mask) { PVOP_VCALL1(pv_cpu_ops.set_iopl_mask, mask); } /* The paravirtualized I/O functions */ static inline void slow_down_io(void) { pv_cpu_ops.io_delay(); #ifdef REALLY_SLOW_IO pv_cpu_ops.io_delay(); pv_cpu_ops.io_delay(); pv_cpu_ops.io_delay(); #endif } #ifdef CONFIG_X86_LOCAL_APIC /* * Basic functions accessing APICs. */ static inline void apic_write(unsigned long reg, u32 v) { PVOP_VCALL2(pv_apic_ops.apic_write, reg, v); } static inline void apic_write_atomic(unsigned long reg, u32 v) { PVOP_VCALL2(pv_apic_ops.apic_write_atomic, reg, v); } static inline u32 apic_read(unsigned long reg) { return PVOP_CALL1(unsigned long, pv_apic_ops.apic_read, reg); } static inline void setup_boot_clock(void) { PVOP_VCALL0(pv_apic_ops.setup_boot_clock); } static inline void setup_secondary_clock(void) { PVOP_VCALL0(pv_apic_ops.setup_secondary_clock); } #endif static inline void paravirt_post_allocator_init(void) { if (pv_init_ops.post_allocator_init) (*pv_init_ops.post_allocator_init)(); } static inline void paravirt_pagetable_setup_start(pgd_t *base) { (*pv_mmu_ops.pagetable_setup_start)(base); } static inline void paravirt_pagetable_setup_done(pgd_t *base) { (*pv_mmu_ops.pagetable_setup_done)(base); } #ifdef CONFIG_SMP static inline void startup_ipi_hook(int phys_apicid, unsigned long start_eip, unsigned long start_esp) { PVOP_VCALL3(pv_apic_ops.startup_ipi_hook, phys_apicid, start_eip, start_esp); } #endif static inline void paravirt_activate_mm(struct mm_struct *prev, struct mm_struct *next) { PVOP_VCALL2(pv_mmu_ops.activate_mm, prev, next); } static inline void arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) { PVOP_VCALL2(pv_mmu_ops.dup_mmap, oldmm, mm); } static inline void arch_exit_mmap(struct mm_struct *mm) { PVOP_VCALL1(pv_mmu_ops.exit_mmap, mm); } static inline void __flush_tlb(void) { PVOP_VCALL0(pv_mmu_ops.flush_tlb_user); } static inline void __flush_tlb_global(void) { PVOP_VCALL0(pv_mmu_ops.flush_tlb_kernel); } static inline void __flush_tlb_single(unsigned long addr) { PVOP_VCALL1(pv_mmu_ops.flush_tlb_single, addr); } static inline void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm, unsigned long va) { PVOP_VCALL3(pv_mmu_ops.flush_tlb_others, &cpumask, mm, va); } static inline void paravirt_alloc_pt(struct mm_struct *mm, unsigned pfn) { PVOP_VCALL2(pv_mmu_ops.alloc_pt, mm, pfn); } static inline void paravirt_release_pt(unsigned pfn) { PVOP_VCALL1(pv_mmu_ops.release_pt, pfn); } static inline void paravirt_alloc_pd(struct mm_struct *mm, unsigned pfn) { PVOP_VCALL2(pv_mmu_ops.alloc_pd, mm, pfn); } static inline void paravirt_alloc_pd_clone(unsigned pfn, unsigned clonepfn, unsigned start, unsigned count) { PVOP_VCALL4(pv_mmu_ops.alloc_pd_clone, pfn, clonepfn, start, count); } static inline void paravirt_release_pd(unsigned pfn) { PVOP_VCALL1(pv_mmu_ops.release_pd, pfn); } #ifdef CONFIG_HIGHPTE static inline void *kmap_atomic_pte(struct page *page, enum km_type type) { unsigned long ret; ret = PVOP_CALL2(unsigned long, pv_mmu_ops.kmap_atomic_pte, page, type); return (void *)ret; } #endif static inline void pte_update(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { PVOP_VCALL3(pv_mmu_ops.pte_update, mm, addr, ptep); } static inline void pte_update_defer(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { PVOP_VCALL3(pv_mmu_ops.pte_update_defer, mm, addr, ptep); } static inline pte_t __pte(pteval_t val) { pteval_t ret; if (sizeof(pteval_t) > sizeof(long)) ret = PVOP_CALL2(pteval_t, pv_mmu_ops.make_pte, val, (u64)val >> 32); else ret = PVOP_CALL1(pteval_t, pv_mmu_ops.make_pte, val); return (pte_t) { .pte = ret }; } static inline pteval_t pte_val(pte_t pte) { pteval_t ret; if (sizeof(pteval_t) > sizeof(long)) ret = PVOP_CALL2(pteval_t, pv_mmu_ops.pte_val, pte.pte, (u64)pte.pte >> 32); else ret = PVOP_CALL1(pteval_t, pv_mmu_ops.pte_val, pte.pte); return ret; } static inline pgd_t __pgd(pgdval_t val) { pgdval_t ret; if (sizeof(pgdval_t) > sizeof(long)) ret = PVOP_CALL2(pgdval_t, pv_mmu_ops.make_pgd, val, (u64)val >> 32); else ret = PVOP_CALL1(pgdval_t, pv_mmu_ops.make_pgd, val); return (pgd_t) { ret }; } static inline pgdval_t pgd_val(pgd_t pgd) { pgdval_t ret; if (sizeof(pgdval_t) > sizeof(long)) ret = PVOP_CALL2(pgdval_t, pv_mmu_ops.pgd_val, pgd.pgd, (u64)pgd.pgd >> 32); else ret = PVOP_CALL1(pgdval_t, pv_mmu_ops.pgd_val, pgd.pgd); return ret; } static inline void set_pte(pte_t *ptep, pte_t pte) { if (sizeof(pteval_t) > sizeof(long)) PVOP_VCALL3(pv_mmu_ops.set_pte, ptep, pte.pte, (u64)pte.pte >> 32); else PVOP_VCALL2(pv_mmu_ops.set_pte, ptep, pte.pte); } static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte) { if (sizeof(pteval_t) > sizeof(long)) /* 5 arg words */ pv_mmu_ops.set_pte_at(mm, addr, ptep, pte); else PVOP_VCALL4(pv_mmu_ops.set_pte_at, mm, addr, ptep, pte.pte); } static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) { pmdval_t val = native_pmd_val(pmd); if (sizeof(pmdval_t) > sizeof(long)) PVOP_VCALL3(pv_mmu_ops.set_pmd, pmdp, val, (u64)val >> 32); else PVOP_VCALL2(pv_mmu_ops.set_pmd, pmdp, val); } #if PAGETABLE_LEVELS >= 3 static inline pmd_t __pmd(pmdval_t val) { pmdval_t ret; if (sizeof(pmdval_t) > sizeof(long)) ret = PVOP_CALL2(pmdval_t, pv_mmu_ops.make_pmd, val, (u64)val >> 32); else ret = PVOP_CALL1(pmdval_t, pv_mmu_ops.make_pmd, val); return (pmd_t) { ret }; } static inline pmdval_t pmd_val(pmd_t pmd) { pmdval_t ret; if (sizeof(pmdval_t) > sizeof(long)) ret = PVOP_CALL2(pmdval_t, pv_mmu_ops.pmd_val, pmd.pmd, (u64)pmd.pmd >> 32); else ret = PVOP_CALL1(pmdval_t, pv_mmu_ops.pmd_val, pmd.pmd); return ret; } static inline void set_pud(pud_t *pudp, pud_t pud) { pudval_t val = native_pud_val(pud); if (sizeof(pudval_t) > sizeof(long)) PVOP_VCALL3(pv_mmu_ops.set_pud, pudp, val, (u64)val >> 32); else PVOP_VCALL2(pv_mmu_ops.set_pud, pudp, val); } #if PAGETABLE_LEVELS == 4 static inline pud_t __pud(pudval_t val) { pudval_t ret; if (sizeof(pudval_t) > sizeof(long)) ret = PVOP_CALL2(pudval_t, pv_mmu_ops.make_pud, val, (u64)val >> 32); else ret = PVOP_CALL1(pudval_t, pv_mmu_ops.make_pud, val); return (pud_t) { ret }; } static inline pudval_t pud_val(pud_t pud) { pudval_t ret; if (sizeof(pudval_t) > sizeof(long)) ret = PVOP_CALL2(pudval_t, pv_mmu_ops.pud_val, pud.pud, (u64)pud.pud >> 32); else ret = PVOP_CALL1(pudval_t, pv_mmu_ops.pud_val, pud.pud); return ret; } static inline void set_pgd(pgd_t *pgdp, pgd_t pgd) { pgdval_t val = native_pgd_val(pgd); if (sizeof(pgdval_t) > sizeof(long)) PVOP_VCALL3(pv_mmu_ops.set_pgd, pgdp, val, (u64)val >> 32); else PVOP_VCALL2(pv_mmu_ops.set_pgd, pgdp, val); } static inline void pgd_clear(pgd_t *pgdp) { set_pgd(pgdp, __pgd(0)); } static inline void pud_clear(pud_t *pudp) { set_pud(pudp, __pud(0)); } #endif /* PAGETABLE_LEVELS == 4 */ #endif /* PAGETABLE_LEVELS >= 3 */ #ifdef CONFIG_X86_PAE /* Special-case pte-setting operations for PAE, which can't update a 64-bit pte atomically */ static inline void set_pte_atomic(pte_t *ptep, pte_t pte) { PVOP_VCALL3(pv_mmu_ops.set_pte_atomic, ptep, pte.pte, pte.pte >> 32); } static inline void set_pte_present(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte) { /* 5 arg words */ pv_mmu_ops.set_pte_present(mm, addr, ptep, pte); } static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { PVOP_VCALL3(pv_mmu_ops.pte_clear, mm, addr, ptep); } static inline void pmd_clear(pmd_t *pmdp) { PVOP_VCALL1(pv_mmu_ops.pmd_clear, pmdp); } #else /* !CONFIG_X86_PAE */ static inline void set_pte_atomic(pte_t *ptep, pte_t pte) { set_pte(ptep, pte); } static inline void set_pte_present(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte) { set_pte(ptep, pte); } static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { set_pte_at(mm, addr, ptep, __pte(0)); } static inline void pmd_clear(pmd_t *pmdp) { set_pmd(pmdp, __pmd(0)); } #endif /* CONFIG_X86_PAE */ /* Lazy mode for batching updates / context switch */ enum paravirt_lazy_mode { PARAVIRT_LAZY_NONE, PARAVIRT_LAZY_MMU, PARAVIRT_LAZY_CPU, }; enum paravirt_lazy_mode paravirt_get_lazy_mode(void); void paravirt_enter_lazy_cpu(void); void paravirt_leave_lazy_cpu(void); void paravirt_enter_lazy_mmu(void); void paravirt_leave_lazy_mmu(void); void paravirt_leave_lazy(enum paravirt_lazy_mode mode); #define __HAVE_ARCH_ENTER_LAZY_CPU_MODE static inline void arch_enter_lazy_cpu_mode(void) { PVOP_VCALL0(pv_cpu_ops.lazy_mode.enter); } static inline void arch_leave_lazy_cpu_mode(void) { PVOP_VCALL0(pv_cpu_ops.lazy_mode.leave); } static inline void arch_flush_lazy_cpu_mode(void) { if (unlikely(paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)) { arch_leave_lazy_cpu_mode(); arch_enter_lazy_cpu_mode(); } } #define __HAVE_ARCH_ENTER_LAZY_MMU_MODE static inline void arch_enter_lazy_mmu_mode(void) { PVOP_VCALL0(pv_mmu_ops.lazy_mode.enter); } static inline void arch_leave_lazy_mmu_mode(void) { PVOP_VCALL0(pv_mmu_ops.lazy_mode.leave); } static inline void arch_flush_lazy_mmu_mode(void) { if (unlikely(paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU)) { arch_leave_lazy_mmu_mode(); arch_enter_lazy_mmu_mode(); } } void _paravirt_nop(void); #define paravirt_nop ((void *)_paravirt_nop) /* These all sit in the .parainstructions section to tell us what to patch. */ struct paravirt_patch_site { u8 *instr; /* original instructions */ u8 instrtype; /* type of this instruction */ u8 len; /* length of original instruction */ u16 clobbers; /* what registers you may clobber */ }; extern struct paravirt_patch_site __parainstructions[], __parainstructions_end[]; #ifdef CONFIG_X86_32 #define PV_SAVE_REGS "pushl %%ecx; pushl %%edx;" #define PV_RESTORE_REGS "popl %%edx; popl %%ecx" #define PV_FLAGS_ARG "0" #define PV_EXTRA_CLOBBERS #define PV_VEXTRA_CLOBBERS #else /* We save some registers, but all of them, that's too much. We clobber all * caller saved registers but the argument parameter */ #define PV_SAVE_REGS "pushq %%rdi;" #define PV_RESTORE_REGS "popq %%rdi;" #define PV_EXTRA_CLOBBERS EXTRA_CLOBBERS, "rcx" , "rdx" #define PV_VEXTRA_CLOBBERS EXTRA_CLOBBERS, "rdi", "rcx" , "rdx" #define PV_FLAGS_ARG "D" #endif static inline unsigned long __raw_local_save_flags(void) { unsigned long f; asm volatile(paravirt_alt(PV_SAVE_REGS PARAVIRT_CALL PV_RESTORE_REGS) : "=a"(f) : paravirt_type(pv_irq_ops.save_fl), paravirt_clobber(CLBR_EAX) : "memory", "cc" PV_VEXTRA_CLOBBERS); return f; } static inline void raw_local_irq_restore(unsigned long f) { asm volatile(paravirt_alt(PV_SAVE_REGS PARAVIRT_CALL PV_RESTORE_REGS) : "=a"(f) : PV_FLAGS_ARG(f), paravirt_type(pv_irq_ops.restore_fl), paravirt_clobber(CLBR_EAX) : "memory", "cc" PV_EXTRA_CLOBBERS); } static inline void raw_local_irq_disable(void) { asm volatile(paravirt_alt(PV_SAVE_REGS PARAVIRT_CALL PV_RESTORE_REGS) : : paravirt_type(pv_irq_ops.irq_disable), paravirt_clobber(CLBR_EAX) : "memory", "eax", "cc" PV_EXTRA_CLOBBERS); } static inline void raw_local_irq_enable(void) { asm volatile(paravirt_alt(PV_SAVE_REGS PARAVIRT_CALL PV_RESTORE_REGS) : : paravirt_type(pv_irq_ops.irq_enable), paravirt_clobber(CLBR_EAX) : "memory", "eax", "cc" PV_EXTRA_CLOBBERS); } static inline unsigned long __raw_local_irq_save(void) { unsigned long f; f = __raw_local_save_flags(); raw_local_irq_disable(); return f; } /* Make sure as little as possible of this mess escapes. */ #undef PARAVIRT_CALL #undef __PVOP_CALL #undef __PVOP_VCALL #undef PVOP_VCALL0 #undef PVOP_CALL0 #undef PVOP_VCALL1 #undef PVOP_CALL1 #undef PVOP_VCALL2 #undef PVOP_CALL2 #undef PVOP_VCALL3 #undef PVOP_CALL3 #undef PVOP_VCALL4 #undef PVOP_CALL4 #else /* __ASSEMBLY__ */ #define _PVSITE(ptype, clobbers, ops, word, algn) \ 771:; \ ops; \ 772:; \ .pushsection .parainstructions,"a"; \ .align algn; \ word 771b; \ .byte ptype; \ .byte 772b-771b; \ .short clobbers; \ .popsection #ifdef CONFIG_X86_64 #define PV_SAVE_REGS pushq %rax; pushq %rdi; pushq %rcx; pushq %rdx #define PV_RESTORE_REGS popq %rdx; popq %rcx; popq %rdi; popq %rax #define PARA_PATCH(struct, off) ((PARAVIRT_PATCH_##struct + (off)) / 8) #define PARA_SITE(ptype, clobbers, ops) _PVSITE(ptype, clobbers, ops, .quad, 8) #else #define PV_SAVE_REGS pushl %eax; pushl %edi; pushl %ecx; pushl %edx #define PV_RESTORE_REGS popl %edx; popl %ecx; popl %edi; popl %eax #define PARA_PATCH(struct, off) ((PARAVIRT_PATCH_##struct + (off)) / 4) #define PARA_SITE(ptype, clobbers, ops) _PVSITE(ptype, clobbers, ops, .long, 4) #endif #define INTERRUPT_RETURN \ PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_iret), CLBR_NONE, \ jmp *%cs:pv_cpu_ops+PV_CPU_iret) #define DISABLE_INTERRUPTS(clobbers) \ PARA_SITE(PARA_PATCH(pv_irq_ops, PV_IRQ_irq_disable), clobbers, \ PV_SAVE_REGS; \ call *%cs:pv_irq_ops+PV_IRQ_irq_disable; \ PV_RESTORE_REGS;) \ #define ENABLE_INTERRUPTS(clobbers) \ PARA_SITE(PARA_PATCH(pv_irq_ops, PV_IRQ_irq_enable), clobbers, \ PV_SAVE_REGS; \ call *%cs:pv_irq_ops+PV_IRQ_irq_enable; \ PV_RESTORE_REGS;) #define ENABLE_INTERRUPTS_SYSCALL_RET \ PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_irq_enable_syscall_ret),\ CLBR_NONE, \ jmp *%cs:pv_cpu_ops+PV_CPU_irq_enable_syscall_ret) #ifdef CONFIG_X86_32 #define GET_CR0_INTO_EAX \ push %ecx; push %edx; \ call *pv_cpu_ops+PV_CPU_read_cr0; \ pop %edx; pop %ecx #else #define SWAPGS \ PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_swapgs), CLBR_NONE, \ PV_SAVE_REGS; \ call *pv_cpu_ops+PV_CPU_swapgs; \ PV_RESTORE_REGS \ ) #define GET_CR2_INTO_RCX \ call *pv_mmu_ops+PV_MMU_read_cr2; \ movq %rax, %rcx; \ xorq %rax, %rax; #endif #endif /* __ASSEMBLY__ */ #endif /* CONFIG_PARAVIRT */ #endif /* __ASM_PARAVIRT_H */