/* * (C) Copyright 2009 SAMSUNG Electronics * Minkyu Kang * Jaehoon Chung * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include /* support 4 mmc hosts */ struct mmc mmc_dev[4]; struct mmc_host mmc_host[4]; static inline struct s5p_mmc *s5p_get_base_mmc(int dev_index) { unsigned long offset = dev_index * sizeof(struct s5p_mmc); return (struct s5p_mmc *)(samsung_get_base_mmc() + offset); } static void mmc_prepare_data(struct mmc_host *host, struct mmc_data *data) { unsigned char ctrl; debug("data->dest: %08x\n", (u32)data->dest); writel((u32)data->dest, &host->reg->sysad); /* * DMASEL[4:3] * 00 = Selects SDMA * 01 = Reserved * 10 = Selects 32-bit Address ADMA2 * 11 = Selects 64-bit Address ADMA2 */ ctrl = readb(&host->reg->hostctl); ctrl &= ~(3 << 3); writeb(ctrl, &host->reg->hostctl); /* We do not handle DMA boundaries, so set it to max (512 KiB) */ writew((7 << 12) | (data->blocksize & 0xFFF), &host->reg->blksize); writew(data->blocks, &host->reg->blkcnt); } static void mmc_set_transfer_mode(struct mmc_host *host, struct mmc_data *data) { unsigned short mode; /* * TRNMOD * MUL1SIN0[5] : Multi/Single Block Select * RD1WT0[4] : Data Transfer Direction Select * 1 = read * 0 = write * ENACMD12[2] : Auto CMD12 Enable * ENBLKCNT[1] : Block Count Enable * ENDMA[0] : DMA Enable */ mode = (1 << 1) | (1 << 0); if (data->blocks > 1) mode |= (1 << 5); if (data->flags & MMC_DATA_READ) mode |= (1 << 4); writew(mode, &host->reg->trnmod); } static int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data) { struct mmc_host *host = (struct mmc_host *)mmc->priv; int flags, i; unsigned int timeout; unsigned int mask; unsigned int retry = 0x100000; /* Wait max 10 ms */ timeout = 10; /* * PRNSTS * CMDINHDAT[1] : Command Inhibit (DAT) * CMDINHCMD[0] : Command Inhibit (CMD) */ mask = (1 << 0); if ((data != NULL) || (cmd->resp_type & MMC_RSP_BUSY)) mask |= (1 << 1); /* * We shouldn't wait for data inihibit for stop commands, even * though they might use busy signaling */ if (data) mask &= ~(1 << 1); while (readl(&host->reg->prnsts) & mask) { if (timeout == 0) { printf("%s: timeout error\n", __func__); return -1; } timeout--; udelay(1000); } if (data) mmc_prepare_data(host, data); debug("cmd->arg: %08x\n", cmd->cmdarg); writel(cmd->cmdarg, &host->reg->argument); if (data) mmc_set_transfer_mode(host, data); if ((cmd->resp_type & MMC_RSP_136) && (cmd->resp_type & MMC_RSP_BUSY)) return -1; /* * CMDREG * CMDIDX[13:8] : Command index * DATAPRNT[5] : Data Present Select * ENCMDIDX[4] : Command Index Check Enable * ENCMDCRC[3] : Command CRC Check Enable * RSPTYP[1:0] * 00 = No Response * 01 = Length 136 * 10 = Length 48 * 11 = Length 48 Check busy after response */ if (!(cmd->resp_type & MMC_RSP_PRESENT)) flags = 0; else if (cmd->resp_type & MMC_RSP_136) flags = (1 << 0); else if (cmd->resp_type & MMC_RSP_BUSY) flags = (3 << 0); else flags = (2 << 0); if (cmd->resp_type & MMC_RSP_CRC) flags |= (1 << 3); if (cmd->resp_type & MMC_RSP_OPCODE) flags |= (1 << 4); if (data) flags |= (1 << 5); debug("cmd: %d\n", cmd->cmdidx); writew((cmd->cmdidx << 8) | flags, &host->reg->cmdreg); for (i = 0; i < retry; i++) { mask = readl(&host->reg->norintsts); /* Command Complete */ if (mask & (1 << 0)) { if (!data) writel(mask, &host->reg->norintsts); break; } } if (i == retry) { printf("%s: waiting for status update\n", __func__); return TIMEOUT; } if (mask & (1 << 16)) { /* Timeout Error */ debug("timeout: %08x cmd %d\n", mask, cmd->cmdidx); return TIMEOUT; } else if (mask & (1 << 15)) { /* Error Interrupt */ debug("error: %08x cmd %d\n", mask, cmd->cmdidx); return -1; } if (cmd->resp_type & MMC_RSP_PRESENT) { if (cmd->resp_type & MMC_RSP_136) { /* CRC is stripped so we need to do some shifting. */ for (i = 0; i < 4; i++) { unsigned int offset = (unsigned int)(&host->reg->rspreg3 - i); cmd->response[i] = readl(offset) << 8; if (i != 3) { cmd->response[i] |= readb(offset - 1); } debug("cmd->resp[%d]: %08x\n", i, cmd->response[i]); } } else if (cmd->resp_type & MMC_RSP_BUSY) { for (i = 0; i < retry; i++) { /* PRNTDATA[23:20] : DAT[3:0] Line Signal */ if (readl(&host->reg->prnsts) & (1 << 20)) /* DAT[0] */ break; } if (i == retry) { printf("%s: card is still busy\n", __func__); return TIMEOUT; } cmd->response[0] = readl(&host->reg->rspreg0); debug("cmd->resp[0]: %08x\n", cmd->response[0]); } else { cmd->response[0] = readl(&host->reg->rspreg0); debug("cmd->resp[0]: %08x\n", cmd->response[0]); } } if (data) { while (1) { mask = readl(&host->reg->norintsts); if (mask & (1 << 15)) { /* Error Interrupt */ writel(mask, &host->reg->norintsts); printf("%s: error during transfer: 0x%08x\n", __func__, mask); return -1; } else if (mask & (1 << 3)) { /* DMA Interrupt */ debug("DMA end\n"); break; } else if (mask & (1 << 1)) { /* Transfer Complete */ debug("r/w is done\n"); break; } } writel(mask, &host->reg->norintsts); } udelay(1000); return 0; } static void mmc_change_clock(struct mmc_host *host, uint clock) { int div; unsigned short clk; unsigned long timeout; unsigned long ctrl2; /* * SELBASECLK[5:4] * 00/01 = HCLK * 10 = EPLL * 11 = XTI or XEXTCLK */ ctrl2 = readl(&host->reg->control2); ctrl2 &= ~(3 << 4); ctrl2 |= (2 << 4); writel(ctrl2, &host->reg->control2); writew(0, &host->reg->clkcon); /* XXX: we assume that clock is between 40MHz and 50MHz */ if (clock == 0) goto out; else if (clock <= 400000) div = 0x100; else if (clock <= 20000000) div = 4; else if (clock <= 26000000) div = 2; else div = 1; debug("div: %d\n", div); div >>= 1; /* * CLKCON * SELFREQ[15:8] : base clock divied by value * ENSDCLK[2] : SD Clock Enable * STBLINTCLK[1] : Internal Clock Stable * ENINTCLK[0] : Internal Clock Enable */ clk = (div << 8) | (1 << 0); writew(clk, &host->reg->clkcon); set_mmc_clk(host->dev_index, div); /* Wait max 10 ms */ timeout = 10; while (!(readw(&host->reg->clkcon) & (1 << 1))) { if (timeout == 0) { printf("%s: timeout error\n", __func__); return; } timeout--; udelay(1000); } clk |= (1 << 2); writew(clk, &host->reg->clkcon); out: host->clock = clock; } static void mmc_set_ios(struct mmc *mmc) { struct mmc_host *host = mmc->priv; unsigned char ctrl; unsigned long val; debug("bus_width: %x, clock: %d\n", mmc->bus_width, mmc->clock); /* * SELCLKPADDS[17:16] * 00 = 2mA * 01 = 4mA * 10 = 7mA * 11 = 9mA */ writel(0x3 << 16, &host->reg->control4); val = readl(&host->reg->control2); val &= (0x3 << 4); val |= (1 << 31) | /* write status clear async mode enable */ (1 << 30) | /* command conflict mask enable */ (1 << 14) | /* Feedback Clock Enable for Rx Clock */ (1 << 8); /* SDCLK hold enable */ writel(val, &host->reg->control2); /* * FCSEL1[15] FCSEL0[7] * FCSel[1:0] : Rx Feedback Clock Delay Control * Inverter delay means10ns delay if SDCLK 50MHz setting * 01 = Delay1 (basic delay) * 11 = Delay2 (basic delay + 2ns) * 00 = Delay3 (inverter delay) * 10 = Delay4 (inverter delay + 2ns) */ writel(0x8080, &host->reg->control3); mmc_change_clock(host, mmc->clock); ctrl = readb(&host->reg->hostctl); /* * WIDE8[5] * 0 = Depend on WIDE4 * 1 = 8-bit mode * WIDE4[1] * 1 = 4-bit mode * 0 = 1-bit mode */ if (mmc->bus_width == 8) ctrl |= (1 << 5); else if (mmc->bus_width == 4) ctrl |= (1 << 1); else ctrl &= ~(1 << 1); /* * OUTEDGEINV[2] * 1 = Riging edge output * 0 = Falling edge output */ ctrl &= ~(1 << 2); writeb(ctrl, &host->reg->hostctl); } static void mmc_reset(struct mmc_host *host) { unsigned int timeout; /* * RSTALL[0] : Software reset for all * 1 = reset * 0 = work */ writeb((1 << 0), &host->reg->swrst); host->clock = 0; /* Wait max 100 ms */ timeout = 100; /* hw clears the bit when it's done */ while (readb(&host->reg->swrst) & (1 << 0)) { if (timeout == 0) { printf("%s: timeout error\n", __func__); return; } timeout--; udelay(1000); } } static int mmc_core_init(struct mmc *mmc) { struct mmc_host *host = (struct mmc_host *)mmc->priv; unsigned int mask; mmc_reset(host); host->version = readw(&host->reg->hcver); /* mask all */ writel(0xffffffff, &host->reg->norintstsen); writel(0xffffffff, &host->reg->norintsigen); writeb(0xe, &host->reg->timeoutcon); /* TMCLK * 2^27 */ /* * NORMAL Interrupt Status Enable Register init * [5] ENSTABUFRDRDY : Buffer Read Ready Status Enable * [4] ENSTABUFWTRDY : Buffer write Ready Status Enable * [1] ENSTASTANSCMPLT : Transfre Complete Status Enable * [0] ENSTACMDCMPLT : Command Complete Status Enable */ mask = readl(&host->reg->norintstsen); mask &= ~(0xffff); mask |= (1 << 5) | (1 << 4) | (1 << 1) | (1 << 0); writel(mask, &host->reg->norintstsen); /* * NORMAL Interrupt Signal Enable Register init * [1] ENSTACMDCMPLT : Transfer Complete Signal Enable */ mask = readl(&host->reg->norintsigen); mask &= ~(0xffff); mask |= (1 << 1); writel(mask, &host->reg->norintsigen); return 0; } static int s5p_mmc_initialize(int dev_index, int bus_width) { struct mmc *mmc; mmc = &mmc_dev[dev_index]; sprintf(mmc->name, "SAMSUNG SD/MMC"); mmc->priv = &mmc_host[dev_index]; mmc->send_cmd = mmc_send_cmd; mmc->set_ios = mmc_set_ios; mmc->init = mmc_core_init; mmc->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195; if (bus_width == 8) mmc->host_caps = MMC_MODE_8BIT; else mmc->host_caps = MMC_MODE_4BIT; mmc->host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS; mmc->f_min = 400000; mmc->f_max = 52000000; mmc_host[dev_index].dev_index = dev_index; mmc_host[dev_index].clock = 0; mmc_host[dev_index].reg = s5p_get_base_mmc(dev_index); mmc->b_max = 0; mmc_register(mmc); return 0; } int s5p_mmc_init(int dev_index, int bus_width) { return s5p_mmc_initialize(dev_index, bus_width); }