aboutsummaryrefslogtreecommitdiff
path: root/drivers/fpga
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/fpga')
-rw-r--r--drivers/fpga/Makefile1
-rw-r--r--drivers/fpga/fpga.c11
-rwxr-xr-xdrivers/fpga/ivm_core.c3167
-rw-r--r--drivers/fpga/lattice.c399
4 files changed, 3578 insertions, 0 deletions
diff --git a/drivers/fpga/Makefile b/drivers/fpga/Makefile
index 52d8e2432..9ecdc5ef1 100644
--- a/drivers/fpga/Makefile
+++ b/drivers/fpga/Makefile
@@ -31,6 +31,7 @@ COBJS-$(CONFIG_FPGA_SPARTAN2) += spartan2.o
COBJS-$(CONFIG_FPGA_SPARTAN3) += spartan3.o
COBJS-$(CONFIG_FPGA_VIRTEX2) += virtex2.o
COBJS-$(CONFIG_FPGA_XILINX) += xilinx.o
+COBJS-$(CONFIG_FPGA_LATTICE) += ivm_core.o lattice.o
ifdef CONFIG_FPGA_ALTERA
COBJS-y += altera.o
COBJS-$(CONFIG_FPGA_ACEX1K) += ACEX1K.o
diff --git a/drivers/fpga/fpga.c b/drivers/fpga/fpga.c
index 565951779..e41e72851 100644
--- a/drivers/fpga/fpga.c
+++ b/drivers/fpga/fpga.c
@@ -28,6 +28,7 @@
#include <common.h> /* core U-Boot definitions */
#include <xilinx.h> /* xilinx specific definitions */
#include <altera.h> /* altera specific definitions */
+#include <lattice.h>
#if 0
#define FPGA_DEBUG /* define FPGA_DEBUG to get debug messages */
@@ -139,6 +140,10 @@ static int fpga_dev_info( int devnum )
fpga_no_sup( (char *)__FUNCTION__, "Altera devices" );
#endif
break;
+ case fpga_lattice:
+ printf("Lattice Device\nDescriptor @ 0x%p\n", desc);
+ ret_val = lattice_info(desc->devdesc);
+ break;
default:
printf( "%s: Invalid or unsupported device type %d\n",
__FUNCTION__, desc->devtype );
@@ -224,6 +229,9 @@ int fpga_load( int devnum, void *buf, size_t bsize )
fpga_no_sup( (char *)__FUNCTION__, "Altera devices" );
#endif
break;
+ case fpga_lattice:
+ ret_val = lattice_load(desc->devdesc, buf, bsize);
+ break;
default:
printf( "%s: Invalid or unsupported device type %d\n",
__FUNCTION__, desc->devtype );
@@ -257,6 +265,9 @@ int fpga_dump( int devnum, void *buf, size_t bsize )
fpga_no_sup( (char *)__FUNCTION__, "Altera devices" );
#endif
break;
+ case fpga_lattice:
+ ret_val = lattice_dump(desc->devdesc, buf, bsize);
+ break;
default:
printf( "%s: Invalid or unsupported device type %d\n",
__FUNCTION__, desc->devtype );
diff --git a/drivers/fpga/ivm_core.c b/drivers/fpga/ivm_core.c
new file mode 100755
index 000000000..2b5a485f2
--- /dev/null
+++ b/drivers/fpga/ivm_core.c
@@ -0,0 +1,3167 @@
+/*
+ * Porting to u-boot:
+ *
+ * (C) Copyright 2010
+ * Stefano Babic, DENX Software Engineering, sbabic@denx.de.
+ *
+ * Lattice ispVME Embedded code to load Lattice's FPGA:
+ *
+ * Copyright 2009 Lattice Semiconductor Corp.
+ *
+ * ispVME Embedded allows programming of Lattice's suite of FPGA
+ * devices on embedded systems through the JTAG port. The software
+ * is distributed in source code form and is open to re - distribution
+ * and modification where applicable.
+ *
+ * Revision History of ivm_core.c module:
+ * 4/25/06 ht Change some variables from unsigned short or int
+ * to long int to make the code compiler independent.
+ * 5/24/06 ht Support using RESET (TRST) pin as a special purpose
+ * control pin such as triggering the loading of known
+ * state exit.
+ * 3/6/07 ht added functions to support output to terminals
+ *
+ * 09/11/07 NN Type cast mismatch variables
+ * Moved the sclock() function to hardware.c
+ * 08/28/08 NN Added Calculate checksum support.
+ * 4/1/09 Nguyen replaced the recursive function call codes on
+ * the ispVMLCOUNT function
+ * See file CREDITS for list of people who contributed to this
+ * project.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of
+ * the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ */
+
+#include <common.h>
+#include <linux/string.h>
+#include <malloc.h>
+#include <lattice.h>
+
+#define vme_out_char(c) printf("%c", c)
+#define vme_out_hex(c) printf("%x", c)
+#define vme_out_string(s) printf("%s", s)
+
+/*
+ *
+ * Global variables used to specify the flow control and data type.
+ *
+ * g_usFlowControl: flow control register. Each bit in the
+ * register can potentially change the
+ * personality of the embedded engine.
+ * g_usDataType: holds the data type of the current row.
+ *
+ */
+
+static unsigned short g_usFlowControl;
+unsigned short g_usDataType;
+
+/*
+ *
+ * Global variables used to specify the ENDDR and ENDIR.
+ *
+ * g_ucEndDR: the state that the device goes to after SDR.
+ * g_ucEndIR: the state that the device goes to after SIR.
+ *
+ */
+
+unsigned char g_ucEndDR = DRPAUSE;
+unsigned char g_ucEndIR = IRPAUSE;
+
+/*
+ *
+ * Global variables used to support header/trailer.
+ *
+ * g_usHeadDR: the number of lead devices in bypass.
+ * g_usHeadIR: the sum of IR length of lead devices.
+ * g_usTailDR: the number of tail devices in bypass.
+ * g_usTailIR: the sum of IR length of tail devices.
+ *
+ */
+
+static unsigned short g_usHeadDR;
+static unsigned short g_usHeadIR;
+static unsigned short g_usTailDR;
+static unsigned short g_usTailIR;
+
+/*
+ *
+ * Global variable to store the number of bits of data or instruction
+ * to be shifted into or out from the device.
+ *
+ */
+
+static unsigned short g_usiDataSize;
+
+/*
+ *
+ * Stores the frequency. Default to 1 MHz.
+ *
+ */
+
+static int g_iFrequency = 1000;
+
+/*
+ *
+ * Stores the maximum amount of ram needed to hold a row of data.
+ *
+ */
+
+static unsigned short g_usMaxSize;
+
+/*
+ *
+ * Stores the LSH or RSH value.
+ *
+ */
+
+static unsigned short g_usShiftValue;
+
+/*
+ *
+ * Stores the current repeat loop value.
+ *
+ */
+
+static unsigned short g_usRepeatLoops;
+
+/*
+ *
+ * Stores the current vendor.
+ *
+ */
+
+static signed char g_cVendor = LATTICE;
+
+/*
+ *
+ * Stores the VME file CRC.
+ *
+ */
+
+unsigned short g_usCalculatedCRC;
+
+/*
+ *
+ * Stores the Device Checksum.
+ *
+ */
+/* 08/28/08 NN Added Calculate checksum support. */
+unsigned long g_usChecksum;
+static unsigned int g_uiChecksumIndex;
+
+/*
+ *
+ * Stores the current state of the JTAG state machine.
+ *
+ */
+
+static signed char g_cCurrentJTAGState;
+
+/*
+ *
+ * Global variables used to support looping.
+ *
+ * g_pucHeapMemory: holds the entire repeat loop.
+ * g_iHeapCounter: points to the current byte in the repeat loop.
+ * g_iHEAPSize: the current size of the repeat in bytes.
+ *
+ */
+
+unsigned char *g_pucHeapMemory;
+unsigned short g_iHeapCounter;
+unsigned short g_iHEAPSize;
+static unsigned short previous_size;
+
+/*
+ *
+ * Global variables used to support intelligent programming.
+ *
+ * g_usIntelDataIndex: points to the current byte of the
+ * intelligent buffer.
+ * g_usIntelBufferSize: holds the size of the intelligent
+ * buffer.
+ *
+ */
+
+unsigned short g_usIntelDataIndex;
+unsigned short g_usIntelBufferSize;
+
+/*
+ *
+ * Supported VME versions.
+ *
+ */
+
+const char *const g_szSupportedVersions[] = {
+ "__VME2.0", "__VME3.0", "____12.0", "____12.1", 0};
+
+/*
+ *
+ * Holds the maximum size of each respective buffer. These variables are used
+ * to write the HEX files when converting VME to HEX.
+ *
+*/
+
+static unsigned short g_usTDOSize;
+static unsigned short g_usMASKSize;
+static unsigned short g_usTDISize;
+static unsigned short g_usDMASKSize;
+static unsigned short g_usLCOUNTSize;
+static unsigned short g_usHDRSize;
+static unsigned short g_usTDRSize;
+static unsigned short g_usHIRSize;
+static unsigned short g_usTIRSize;
+static unsigned short g_usHeapSize;
+
+/*
+ *
+ * Global variables used to store data.
+ *
+ * g_pucOutMaskData: local RAM to hold one row of MASK data.
+ * g_pucInData: local RAM to hold one row of TDI data.
+ * g_pucOutData: local RAM to hold one row of TDO data.
+ * g_pucHIRData: local RAM to hold the current SIR header.
+ * g_pucTIRData: local RAM to hold the current SIR trailer.
+ * g_pucHDRData: local RAM to hold the current SDR header.
+ * g_pucTDRData: local RAM to hold the current SDR trailer.
+ * g_pucIntelBuffer: local RAM to hold the current intelligent buffer
+ * g_pucOutDMaskData: local RAM to hold one row of DMASK data.
+ *
+ */
+
+unsigned char *g_pucOutMaskData = NULL,
+ *g_pucInData = NULL,
+ *g_pucOutData = NULL,
+ *g_pucHIRData = NULL,
+ *g_pucTIRData = NULL,
+ *g_pucHDRData = NULL,
+ *g_pucTDRData = NULL,
+ *g_pucIntelBuffer = NULL,
+ *g_pucOutDMaskData = NULL;
+
+/*
+ *
+ * JTAG state machine transition table.
+ *
+ */
+
+struct {
+ unsigned char CurState; /* From this state */
+ unsigned char NextState; /* Step to this state */
+ unsigned char Pattern; /* The tragetory of TMS */
+ unsigned char Pulses; /* The number of steps */
+} g_JTAGTransistions[25] = {
+{ RESET, RESET, 0xFC, 6 }, /* Transitions from RESET */
+{ RESET, IDLE, 0x00, 1 },
+{ RESET, DRPAUSE, 0x50, 5 },
+{ RESET, IRPAUSE, 0x68, 6 },
+{ IDLE, RESET, 0xE0, 3 }, /* Transitions from IDLE */
+{ IDLE, DRPAUSE, 0xA0, 4 },
+{ IDLE, IRPAUSE, 0xD0, 5 },
+{ DRPAUSE, RESET, 0xF8, 5 }, /* Transitions from DRPAUSE */
+{ DRPAUSE, IDLE, 0xC0, 3 },
+{ DRPAUSE, IRPAUSE, 0xF4, 7 },
+{ DRPAUSE, DRPAUSE, 0xE8, 6 },/* 06/14/06 Support POLL STATUS LOOP*/
+{ IRPAUSE, RESET, 0xF8, 5 }, /* Transitions from IRPAUSE */
+{ IRPAUSE, IDLE, 0xC0, 3 },
+{ IRPAUSE, DRPAUSE, 0xE8, 6 },
+{ DRPAUSE, SHIFTDR, 0x80, 2 }, /* Extra transitions using SHIFTDR */
+{ IRPAUSE, SHIFTDR, 0xE0, 5 },
+{ SHIFTDR, DRPAUSE, 0x80, 2 },
+{ SHIFTDR, IDLE, 0xC0, 3 },
+{ IRPAUSE, SHIFTIR, 0x80, 2 },/* Extra transitions using SHIFTIR */
+{ SHIFTIR, IRPAUSE, 0x80, 2 },
+{ SHIFTIR, IDLE, 0xC0, 3 },
+{ DRPAUSE, DRCAPTURE, 0xE0, 4 }, /* 11/15/05 Support DRCAPTURE*/
+{ DRCAPTURE, DRPAUSE, 0x80, 2 },
+{ IDLE, DRCAPTURE, 0x80, 2 },
+{ IRPAUSE, DRCAPTURE, 0xE0, 4 }
+};
+
+/*
+ *
+ * List to hold all LVDS pairs.
+ *
+ */
+
+LVDSPair *g_pLVDSList;
+unsigned short g_usLVDSPairCount;
+
+/*
+ *
+ * Function prototypes.
+ *
+ */
+
+static signed char ispVMDataCode(void);
+static long int ispVMDataSize(void);
+static void ispVMData(unsigned char *Data);
+static signed char ispVMShift(signed char Code);
+static signed char ispVMAmble(signed char Code);
+static signed char ispVMLoop(unsigned short a_usLoopCount);
+static signed char ispVMBitShift(signed char mode, unsigned short bits);
+static void ispVMComment(unsigned short a_usCommentSize);
+static void ispVMHeader(unsigned short a_usHeaderSize);
+static signed char ispVMLCOUNT(unsigned short a_usCountSize);
+static void ispVMClocks(unsigned short Clocks);
+static void ispVMBypass(signed char ScanType, unsigned short Bits);
+static void ispVMStateMachine(signed char NextState);
+static signed char ispVMSend(unsigned short int);
+static signed char ispVMRead(unsigned short int);
+static signed char ispVMReadandSave(unsigned short int);
+static signed char ispVMProcessLVDS(unsigned short a_usLVDSCount);
+static void ispVMMemManager(signed char types, unsigned short size);
+
+/*
+ *
+ * External variables and functions in hardware.c module
+ *
+ */
+static signed char g_cCurrentJTAGState;
+
+#ifdef DEBUG
+
+/*
+ *
+ * GetState
+ *
+ * Returns the state as a string based on the opcode. Only used
+ * for debugging purposes.
+ *
+ */
+
+const char *GetState(unsigned char a_ucState)
+{
+ switch (a_ucState) {
+ case RESET:
+ return "RESET";
+ case IDLE:
+ return "IDLE";
+ case IRPAUSE:
+ return "IRPAUSE";
+ case DRPAUSE:
+ return "DRPAUSE";
+ case SHIFTIR:
+ return "SHIFTIR";
+ case SHIFTDR:
+ return "SHIFTDR";
+ case DRCAPTURE:/* 11/15/05 support DRCAPTURE*/
+ return "DRCAPTURE";
+ default:
+ break;
+ }
+
+ return 0;
+}
+
+/*
+ *
+ * PrintData
+ *
+ * Prints the data. Only used for debugging purposes.
+ *
+ */
+
+void PrintData(unsigned short a_iDataSize, unsigned char *a_pucData)
+{
+ /* 09/11/07 NN added local variables initialization */
+ unsigned short usByteSize = 0;
+ unsigned short usBitIndex = 0;
+ signed short usByteIndex = 0;
+ unsigned char ucByte = 0;
+ unsigned char ucFlipByte = 0;
+
+ if (a_iDataSize % 8) {
+ /* 09/11/07 NN Type cast mismatch variables */
+ usByteSize = (unsigned short)(a_iDataSize / 8 + 1);
+ } else {
+ /* 09/11/07 NN Type cast mismatch variables */
+ usByteSize = (unsigned short)(a_iDataSize / 8);
+ }
+ puts("(");
+ /* 09/11/07 NN Type cast mismatch variables */
+ for (usByteIndex = (signed short)(usByteSize - 1);
+ usByteIndex >= 0; usByteIndex--) {
+ ucByte = a_pucData[usByteIndex];
+ ucFlipByte = 0x00;
+
+ /*
+ *
+ * Flip each byte.
+ *
+ */
+
+ for (usBitIndex = 0; usBitIndex < 8; usBitIndex++) {
+ ucFlipByte <<= 1;
+ if (ucByte & 0x1) {
+ ucFlipByte |= 0x1;
+ }
+
+ ucByte >>= 1;
+ }
+
+ /*
+ *
+ * Print the flipped byte.
+ *
+ */
+
+ printf("%.02X", ucFlipByte);
+ if ((usByteSize - usByteIndex) % 40 == 39) {
+ puts("\n\t\t");
+ }
+ if (usByteIndex < 0)
+ break;
+ }
+ puts(")");
+}
+#endif /* DEBUG */
+
+void ispVMMemManager(signed char cTarget, unsigned short usSize)
+{
+ switch (cTarget) {
+ case XTDI:
+ case TDI:
+ if (g_pucInData != NULL) {
+ if (previous_size == usSize) {/*memory exist*/
+ break;
+ } else {
+ free(g_pucInData);
+ g_pucInData = NULL;
+ }
+ }
+ g_pucInData = (unsigned char *) malloc(usSize / 8 + 2);
+ previous_size = usSize;
+ case XTDO:
+ case TDO:
+ if (g_pucOutData != NULL) {
+ if (previous_size == usSize) { /*already exist*/
+ break;
+ } else {
+ free(g_pucOutData);
+ g_pucOutData = NULL;
+ }
+ }
+ g_pucOutData = (unsigned char *) malloc(usSize / 8 + 2);
+ previous_size = usSize;
+ break;
+ case MASK:
+ if (g_pucOutMaskData != NULL) {
+ if (previous_size == usSize) {/*already allocated*/
+ break;
+ } else {
+ free(g_pucOutMaskData);
+ g_pucOutMaskData = NULL;
+ }
+ }
+ g_pucOutMaskData = (unsigned char *) malloc(usSize / 8 + 2);
+ previous_size = usSize;
+ break;
+ case HIR:
+ if (g_pucHIRData != NULL) {
+ free(g_pucHIRData);
+ g_pucHIRData = NULL;
+ }
+ g_pucHIRData = (unsigned char *) malloc(usSize / 8 + 2);
+ break;
+ case TIR:
+ if (g_pucTIRData != NULL) {
+ free(g_pucTIRData);
+ g_pucTIRData = NULL;
+ }
+ g_pucTIRData = (unsigned char *) malloc(usSize / 8 + 2);
+ break;
+ case HDR:
+ if (g_pucHDRData != NULL) {
+ free(g_pucHDRData);
+ g_pucHDRData = NULL;
+ }
+ g_pucHDRData = (unsigned char *) malloc(usSize / 8 + 2);
+ break;
+ case TDR:
+ if (g_pucTDRData != NULL) {
+ free(g_pucTDRData);
+ g_pucTDRData = NULL;
+ }
+ g_pucTDRData = (unsigned char *) malloc(usSize / 8 + 2);
+ break;
+ case HEAP:
+ if (g_pucHeapMemory != NULL) {
+ free(g_pucHeapMemory);
+ g_pucHeapMemory = NULL;
+ }
+ g_pucHeapMemory = (unsigned char *) malloc(usSize + 2);
+ break;
+ case DMASK:
+ if (g_pucOutDMaskData != NULL) {
+ if (previous_size == usSize) { /*already allocated*/
+ break;
+ } else {
+ free(g_pucOutDMaskData);
+ g_pucOutDMaskData = NULL;
+ }
+ }
+ g_pucOutDMaskData = (unsigned char *) malloc(usSize / 8 + 2);
+ previous_size = usSize;
+ break;
+ case LHEAP:
+ if (g_pucIntelBuffer != NULL) {
+ free(g_pucIntelBuffer);
+ g_pucIntelBuffer = NULL;
+ }
+ g_pucIntelBuffer = (unsigned char *) malloc(usSize + 2);
+ break;
+ case LVDS:
+ if (g_pLVDSList != NULL) {
+ free(g_pLVDSList);
+ g_pLVDSList = NULL;
+ }
+ g_pLVDSList = (LVDSPair *) malloc(usSize * sizeof(LVDSPair));
+ if (g_pLVDSList)
+ memset(g_pLVDSList, 0, usSize * sizeof(LVDSPair));
+ break;
+ default:
+ return;
+ }
+}
+
+void ispVMFreeMem(void)
+{
+ if (g_pucHeapMemory != NULL) {
+ free(g_pucHeapMemory);
+ g_pucHeapMemory = NULL;
+ }
+
+ if (g_pucOutMaskData != NULL) {
+ free(g_pucOutMaskData);
+ g_pucOutMaskData = NULL;
+ }
+
+ if (g_pucInData != NULL) {
+ free(g_pucInData);
+ g_pucInData = NULL;
+ }
+
+ if (g_pucOutData != NULL) {
+ free(g_pucOutData);
+ g_pucOutData = NULL;
+ }
+
+ if (g_pucHIRData != NULL) {
+ free(g_pucHIRData);
+ g_pucHIRData = NULL;
+ }
+
+ if (g_pucTIRData != NULL) {
+ free(g_pucTIRData);
+ g_pucTIRData = NULL;
+ }
+
+ if (g_pucHDRData != NULL) {
+ free(g_pucHDRData);
+ g_pucHDRData = NULL;
+ }
+
+ if (g_pucTDRData != NULL) {
+ free(g_pucTDRData);
+ g_pucTDRData = NULL;
+ }
+
+ if (g_pucOutDMaskData != NULL) {
+ free(g_pucOutDMaskData);
+ g_pucOutDMaskData = NULL;
+ }
+
+ if (g_pucIntelBuffer != NULL) {
+ free(g_pucIntelBuffer);
+ g_pucIntelBuffer = NULL;
+ }
+
+ if (g_pLVDSList != NULL) {
+ free(g_pLVDSList);
+ g_pLVDSList = NULL;
+ }
+}
+
+
+/*
+ *
+ * ispVMDataSize
+ *
+ * Returns a VME-encoded number, usually used to indicate the
+ * bit length of an SIR/SDR command.
+ *
+ */
+
+long int ispVMDataSize()
+{
+ /* 09/11/07 NN added local variables initialization */
+ long int iSize = 0;
+ signed char cCurrentByte = 0;
+ signed char cIndex = 0;
+ cIndex = 0;
+ while ((cCurrentByte = GetByte()) & 0x80) {
+ iSize |= ((long int) (cCurrentByte & 0x7F)) << cIndex;
+ cIndex += 7;
+ }
+ iSize |= ((long int) (cCurrentByte & 0x7F)) << cIndex;
+ return iSize;
+}
+
+/*
+ *
+ * ispVMCode
+ *
+ * This is the heart of the embedded engine. All the high-level opcodes
+ * are extracted here. Once they have been identified, then it
+ * will call other functions to handle the processing.
+ *
+ */
+
+signed char ispVMCode()
+{
+ /* 09/11/07 NN added local variables initialization */
+ unsigned short iRepeatSize = 0;
+ signed char cOpcode = 0;
+ signed char cRetCode = 0;
+ unsigned char ucState = 0;
+ unsigned short usDelay = 0;
+ unsigned short usToggle = 0;
+ unsigned char usByte = 0;
+
+ /*
+ *
+ * Check the compression flag only if this is the first time
+ * this function is entered. Do not check the compression flag if
+ * it is being called recursively from other functions within
+ * the embedded engine.
+ *
+ */
+
+ if (!(g_usDataType & LHEAP_IN) && !(g_usDataType & HEAP_IN)) {
+ usByte = GetByte();
+ if (usByte == 0xf1) {
+ g_usDataType |= COMPRESS;
+ } else if (usByte == 0xf2) {
+ g_usDataType &= ~COMPRESS;
+ } else {
+ return VME_INVALID_FILE;
+ }
+ }
+
+ /*
+ *
+ * Begin looping through all the VME opcodes.
+ *
+ */
+
+ while ((cOpcode = GetByte()) >= 0) {
+
+ switch (cOpcode) {
+ case STATE:
+
+ /*
+ * Step the JTAG state machine.
+ */
+
+ ucState = GetByte();
+
+ /*
+ * Step the JTAG state machine to DRCAPTURE
+ * to support Looping.
+ */
+
+ if ((g_usDataType & LHEAP_IN) &&
+ (ucState == DRPAUSE) &&
+ (g_cCurrentJTAGState == ucState)) {
+ ispVMStateMachine(DRCAPTURE);
+ }
+
+ ispVMStateMachine(ucState);
+
+#ifdef DEBUG
+ if (g_usDataType & LHEAP_IN) {
+ debug("LDELAY %s ", GetState(ucState));
+ } else {
+ debug("STATE %s;\n", GetState(ucState));
+ }
+#endif /* DEBUG */
+ break;
+ case SIR:
+ case SDR:
+ case XSDR:
+
+#ifdef DEBUG
+ switch (cOpcode) {
+ case SIR:
+ puts("SIR ");
+ break;
+ case SDR:
+ case XSDR:
+ if (g_usDataType & LHEAP_IN) {
+ puts("LSDR ");
+ } else {
+ puts("SDR ");
+ }
+ break;
+ }
+#endif /* DEBUG */
+ /*
+ *
+ * Shift in data into the device.
+ *
+ */
+
+ cRetCode = ispVMShift(cOpcode);
+ if (cRetCode != 0) {
+ return cRetCode;
+ }
+ break;
+ case WAIT:
+
+ /*
+ *
+ * Observe delay.
+ *
+ */
+
+ /* 09/11/07 NN Type cast mismatch variables */
+ usDelay = (unsigned short) ispVMDataSize();
+ ispVMDelay(usDelay);
+
+#ifdef DEBUG
+ if (usDelay & 0x8000) {
+
+ /*
+ * Since MSB is set, the delay time must be
+ * decoded to millisecond. The SVF2VME encodes
+ * the MSB to represent millisecond.
+ */
+
+ usDelay &= ~0x8000;
+ if (g_usDataType & LHEAP_IN) {
+ printf("%.2E SEC;\n",
+ (float) usDelay / 1000);
+ } else {
+ printf("RUNTEST %.2E SEC;\n",
+ (float) usDelay / 1000);
+ }
+ } else {
+ /*
+ * Since MSB is not set, the delay time
+ * is given as microseconds.
+ */
+
+ if (g_usDataType & LHEAP_IN) {
+ printf("%.2E SEC;\n",
+ (float) usDelay / 1000000);
+ } else {
+ printf("RUNTEST %.2E SEC;\n",
+ (float) usDelay / 1000000);
+ }
+ }
+#endif /* DEBUG */
+ break;
+ case TCK:
+
+ /*
+ * Issue clock toggles.
+ */
+
+ /* 09/11/07 NN Type cast mismatch variables */
+ usToggle = (unsigned short) ispVMDataSize();
+ ispVMClocks(usToggle);
+
+#ifdef DEBUG
+ printf("RUNTEST %d TCK;\n", usToggle);
+#endif /* DEBUG */
+ break;
+ case ENDDR:
+
+ /*
+ *
+ * Set the ENDDR.
+ *
+ */
+
+ g_ucEndDR = GetByte();
+
+#ifdef DEBUG
+ printf("ENDDR %s;\n", GetState(g_ucEndDR));
+#endif /* DEBUG */
+ break;
+ case ENDIR:
+
+ /*
+ *
+ * Set the ENDIR.
+ *
+ */
+
+ g_ucEndIR = GetByte();
+
+#ifdef DEBUG
+ printf("ENDIR %s;\n", GetState(g_ucEndIR));
+#endif /* DEBUG */
+ break;
+ case HIR:
+ case TIR:
+ case HDR:
+ case TDR:
+
+#ifdef DEBUG
+ switch (cOpcode) {
+ case HIR:
+ puts("HIR ");
+ break;
+ case TIR:
+ puts("TIR ");
+ break;
+ case HDR:
+ puts("HDR ");
+ break;
+ case TDR:
+ puts("TDR ");
+ break;
+ }
+#endif /* DEBUG */
+ /*
+ * Set the header/trailer of the device in order
+ * to bypass
+ * successfully.
+ */
+
+ cRetCode = ispVMAmble(cOpcode);
+ if (cRetCode != 0) {
+ return cRetCode;
+ }
+
+#ifdef DEBUG
+ puts(";\n");
+#endif /* DEBUG */
+ break;
+ case MEM:
+
+ /*
+ * The maximum RAM required to support
+ * processing one row of the VME file.
+ */
+
+ /* 09/11/07 NN Type cast mismatch variables */
+ g_usMaxSize = (unsigned short) ispVMDataSize();
+
+#ifdef DEBUG
+ printf("// MEMSIZE %d\n", g_usMaxSize);
+#endif /* DEBUG */
+ break;
+ case VENDOR:
+
+ /*
+ *
+ * Set the VENDOR type.
+ *
+ */
+
+ cOpcode = GetByte();
+ switch (cOpcode) {
+ case LATTICE:
+#ifdef DEBUG
+ puts("// VENDOR LATTICE\n");
+#endif /* DEBUG */
+ g_cVendor = LATTICE;
+ break;
+ case ALTERA:
+#ifdef DEBUG
+ puts("// VENDOR ALTERA\n");
+#endif /* DEBUG */
+ g_cVendor = ALTERA;
+ break;
+ case XILINX:
+#ifdef DEBUG
+ puts("// VENDOR XILINX\n");
+#endif /* DEBUG */
+ g_cVendor = XILINX;
+ break;
+ default:
+ break;
+ }
+ break;
+ case SETFLOW:
+
+ /*
+ * Set the flow control. Flow control determines
+ * the personality of the embedded engine.
+ */
+
+ /* 09/11/07 NN Type cast mismatch variables */
+ g_usFlowControl |= (unsigned short) ispVMDataSize();
+ break;
+ case RESETFLOW:
+
+ /*
+ *
+ * Unset the flow control.
+ *
+ */
+
+ /* 09/11/07 NN Type cast mismatch variables */
+ g_usFlowControl &= (unsigned short) ~(ispVMDataSize());
+ break;
+ case HEAP:
+
+ /*
+ *
+ * Allocate heap size to store loops.
+ *
+ */
+
+ cRetCode = GetByte();
+ if (cRetCode != SECUREHEAP) {
+ return VME_INVALID_FILE;
+ }
+ /* 09/11/07 NN Type cast mismatch variables */
+ g_iHEAPSize = (unsigned short) ispVMDataSize();
+
+ /*
+ * Store the maximum size of the HEAP buffer.
+ * Used to convert VME to HEX.
+ */
+
+ if (g_iHEAPSize > g_usHeapSize) {
+ g_usHeapSize = g_iHEAPSize;
+ }
+
+ ispVMMemManager(HEAP, (unsigned short) g_iHEAPSize);
+ break;
+ case REPEAT:
+
+ /*
+ *
+ * Execute loops.
+ *
+ */
+
+ g_usRepeatLoops = 0;
+
+ /* 09/11/07 NN Type cast mismatch variables */
+ iRepeatSize = (unsigned short) ispVMDataSize();
+
+ cRetCode = ispVMLoop((unsigned short) iRepeatSize);
+ if (cRetCode != 0) {
+ return cRetCode;
+ }
+ break;
+ case ENDLOOP:
+
+ /*
+ *
+ * Exit point from processing loops.
+ *
+ */
+
+ return cRetCode;
+ case ENDVME:
+
+ /*
+ * The only valid exit point that indicates
+ * end of programming.
+ */
+
+ return cRetCode;
+ case SHR:
+
+ /*
+ *
+ * Right-shift address.
+ *
+ */
+
+ g_usFlowControl |= SHIFTRIGHT;
+
+ /* 09/11/07 NN Type cast mismatch variables */
+ g_usShiftValue = (unsigned short) (g_usRepeatLoops *
+ (unsigned short)GetByte());
+ break;
+ case SHL:
+
+ /*
+ * Left-shift address.
+ */
+
+ g_usFlowControl |= SHIFTLEFT;
+
+ /* 09/11/07 NN Type cast mismatch variables */
+ g_usShiftValue = (unsigned short) (g_usRepeatLoops *
+ (unsigned short)GetByte());
+ break;
+ case FREQUENCY:
+
+ /*
+ *
+ * Set the frequency.
+ *
+ */
+
+ /* 09/11/07 NN Type cast mismatch variables */
+ g_iFrequency = (int) (ispVMDataSize() / 1000);
+ if (g_iFrequency == 1)
+ g_iFrequency = 1000;
+
+#ifdef DEBUG
+ printf("FREQUENCY %.2E HZ;\n",
+ (float) g_iFrequency * 1000);
+#endif /* DEBUG */
+ break;
+ case LCOUNT:
+
+ /*
+ *
+ * Process LCOUNT command.
+ *
+ */
+
+ cRetCode = ispVMLCOUNT((unsigned short)ispVMDataSize());
+ if (cRetCode != 0) {
+ return cRetCode;
+ }
+ break;
+ case VUES:
+
+ /*
+ *
+ * Set the flow control to verify USERCODE.
+ *
+ */
+
+ g_usFlowControl |= VERIFYUES;
+ break;
+ case COMMENT:
+
+ /*
+ *
+ * Display comment.
+ *
+ */
+
+ ispVMComment((unsigned short) ispVMDataSize());
+ break;
+ case LVDS:
+
+ /*
+ *
+ * Process LVDS command.
+ *
+ */
+
+ ispVMProcessLVDS((unsigned short) ispVMDataSize());
+ break;
+ case HEADER:
+
+ /*
+ *
+ * Discard header.
+ *
+ */
+
+ ispVMHeader((unsigned short) ispVMDataSize());
+ break;
+ /* 03/14/06 Support Toggle ispENABLE signal*/
+ case ispEN:
+ ucState = GetByte();
+ if ((ucState == ON) || (ucState == 0x01))
+ writePort(g_ucPinENABLE, 0x01);
+ else
+ writePort(g_ucPinENABLE, 0x00);
+ ispVMDelay(1);
+ break;
+ /* 05/24/06 support Toggle TRST pin*/
+ case TRST:
+ ucState = GetByte();
+ if (ucState == 0x01)
+ writePort(g_ucPinTRST, 0x01);
+ else
+ writePort(g_ucPinTRST, 0x00);
+ ispVMDelay(1);
+ break;
+ default:
+
+ /*
+ *
+ * Invalid opcode encountered.
+ *
+ */
+
+#ifdef DEBUG
+ printf("\nINVALID OPCODE: 0x%.2X\n", cOpcode);
+#endif /* DEBUG */
+
+ return VME_INVALID_FILE;
+ }
+ }
+
+ /*
+ *
+ * Invalid exit point. Processing the token 'ENDVME' is the only
+ * valid way to exit the embedded engine.
+ *
+ */
+
+ return VME_INVALID_FILE;
+}
+
+/*
+ *
+ * ispVMDataCode
+ *
+ * Processes the TDI/TDO/MASK/DMASK etc of an SIR/SDR command.
+ *
+ */
+
+signed char ispVMDataCode()
+{
+ /* 09/11/07 NN added local variables initialization */
+ signed char cDataByte = 0;
+ signed char siDataSource = 0; /*source of data from file by default*/
+
+ if (g_usDataType & HEAP_IN) {
+ siDataSource = 1; /*the source of data from memory*/
+ }
+
+ /*
+ *
+ * Clear the data type register.
+ *
+ **/
+
+ g_usDataType &= ~(MASK_DATA + TDI_DATA +
+ TDO_DATA + DMASK_DATA + CMASK_DATA);
+
+ /*
+ * Iterate through SIR/SDR command and look for TDI,
+ * TDO, MASK, etc.
+ */
+
+ while ((cDataByte = GetByte()) >= 0) {
+ ispVMMemManager(cDataByte, g_usMaxSize);
+ switch (cDataByte) {
+ case TDI:
+
+ /*
+ * Store the maximum size of the TDI buffer.
+ * Used to convert VME to HEX.
+ */
+
+ if (g_usiDataSize > g_usTDISize) {
+ g_usTDISize = g_usiDataSize;
+ }
+ /*
+ * Updated data type register to indicate that
+ * TDI data is currently being used. Process the
+ * data in the VME file into the TDI buffer.
+ */
+
+ g_usDataType |= TDI_DATA;
+ ispVMData(g_pucInData);
+ break;
+ case XTDO:
+
+ /*
+ * Store the maximum size of the TDO buffer.
+ * Used to convert VME to HEX.
+ */
+
+ if (g_usiDataSize > g_usTDOSize) {
+ g_usTDOSize = g_usiDataSize;
+ }
+
+ /*
+ * Updated data type register to indicate that
+ * TDO data is currently being used.
+ */
+
+ g_usDataType |= TDO_DATA;
+ break;
+ case TDO:
+
+ /*
+ * Store the maximum size of the TDO buffer.
+ * Used to convert VME to HEX.
+ */
+
+ if (g_usiDataSize > g_usTDOSize) {
+ g_usTDOSize = g_usiDataSize;
+ }
+
+ /*
+ * Updated data type register to indicate
+ * that TDO data is currently being used.
+ * Process the data in the VME file into the
+ * TDO buffer.
+ */
+
+ g_usDataType |= TDO_DATA;
+ ispVMData(g_pucOutData);
+ break;
+ case MASK:
+
+ /*
+ * Store the maximum size of the MASK buffer.
+ * Used to convert VME to HEX.
+ */
+
+ if (g_usiDataSize > g_usMASKSize) {
+ g_usMASKSize = g_usiDataSize;
+ }
+
+ /*
+ * Updated data type register to indicate that
+ * MASK data is currently being used. Process
+ * the data in the VME file into the MASK buffer
+ */
+
+ g_usDataType |= MASK_DATA;
+ ispVMData(g_pucOutMaskData);
+ break;
+ case DMASK:
+
+ /*
+ * Store the maximum size of the DMASK buffer.
+ * Used to convert VME to HEX.
+ */
+
+ if (g_usiDataSize > g_usDMASKSize) {
+ g_usDMASKSize = g_usiDataSize;
+ }
+
+ /*
+ * Updated data type register to indicate that
+ * DMASK data is currently being used. Process
+ * the data in the VME file into the DMASK
+ * buffer.
+ */
+
+ g_usDataType |= DMASK_DATA;
+ ispVMData(g_pucOutDMaskData);
+ break;
+ case CMASK:
+
+ /*
+ * Updated data type register to indicate that
+ * MASK data is currently being used. Process
+ * the data in the VME file into the MASK buffer
+ */
+
+ g_usDataType |= CMASK_DATA;
+ ispVMData(g_pucOutMaskData);
+ break;
+ case CONTINUE:
+ return 0;
+ default:
+ /*
+ * Encountered invalid opcode.
+ */
+ return VME_INVALID_FILE;
+ }
+
+ switch (cDataByte) {
+ case TDI:
+
+ /*
+ * Left bit shift. Used when performing
+ * algorithm looping.
+ */
+
+ if (g_usFlowControl & SHIFTLEFT) {
+ ispVMBitShift(SHL, g_usShiftValue);
+ g_usFlowControl &= ~SHIFTLEFT;
+ }
+
+ /*
+ * Right bit shift. Used when performing
+ * algorithm looping.
+ */
+
+ if (g_usFlowControl & SHIFTRIGHT) {
+ ispVMBitShift(SHR, g_usShiftValue);
+ g_usFlowControl &= ~SHIFTRIGHT;
+ }
+ default:
+ break;
+ }
+
+ if (siDataSource) {
+ g_usDataType |= HEAP_IN; /*restore from memory*/
+ }
+ }
+
+ if (siDataSource) { /*fetch data from heap memory upon return*/
+ g_usDataType |= HEAP_IN;
+ }
+
+ if (cDataByte < 0) {
+
+ /*
+ * Encountered invalid opcode.
+ */
+
+ return VME_INVALID_FILE;
+ } else {
+ return 0;
+ }
+}
+
+/*
+ *
+ * ispVMData
+ * Extract one row of data operand from the current data type opcode. Perform
+ * the decompression if necessary. Extra RAM is not required for the
+ * decompression process. The decompression scheme employed in this module
+ * is on row by row basis. The format of the data stream:
+ * [compression code][compressed data stream]
+ * 0x00 --No compression
+ * 0x01 --Compress by 0x00.
+ * Example:
+ * Original stream: 0x000000000000000000000001
+ * Compressed stream: 0x01000901
+ * Detail: 0x01 is the code, 0x00 is the key,
+ * 0x09 is the count of 0x00 bytes,
+ * 0x01 is the uncompressed byte.
+ * 0x02 --Compress by 0xFF.
+ * Example:
+ * Original stream: 0xFFFFFFFFFFFFFFFFFFFFFF01
+ * Compressed stream: 0x02FF0901
+ * Detail: 0x02 is the code, 0xFF is the key,
+ * 0x09 is the count of 0xFF bytes,
+ * 0x01 is the uncompressed byte.
+ * 0x03
+ * : :
+ * 0xFE -- Compress by nibble blocks.
+ * Example:
+ * Original stream: 0x84210842108421084210
+ * Compressed stream: 0x0584210
+ * Detail: 0x05 is the code, means 5 nibbles block.
+ * 0x84210 is the 5 nibble blocks.
+ * The whole row is 80 bits given by g_usiDataSize.
+ * The number of times the block repeat itself
+ * is found by g_usiDataSize/(4*0x05) which is 4.
+ * 0xFF -- Compress by the most frequently happen byte.
+ * Example:
+ * Original stream: 0x04020401030904040404
+ * Compressed stream: 0xFF04(0,1,0x02,0,1,0x01,1,0x03,1,0x09,0,0,0)
+ * or: 0xFF044090181C240
+ * Detail: 0xFF is the code, 0x04 is the key.
+ * a bit of 0 represent the key shall be put into
+ * the current bit position and a bit of 1
+ * represent copying the next of 8 bits of data
+ * in.
+ *
+ */
+
+void ispVMData(unsigned char *ByteData)
+{
+ /* 09/11/07 NN added local variables initialization */
+ unsigned short size = 0;
+ unsigned short i, j, m, getData = 0;
+ unsigned char cDataByte = 0;
+ unsigned char compress = 0;
+ unsigned short FFcount = 0;
+ unsigned char compr_char = 0xFF;
+ unsigned short index = 0;
+ signed char compression = 0;
+
+ /*convert number in bits to bytes*/
+ if (g_usiDataSize % 8 > 0) {
+ /* 09/11/07 NN Type cast mismatch variables */
+ size = (unsigned short)(g_usiDataSize / 8 + 1);
+ } else {
+ /* 09/11/07 NN Type cast mismatch variables */
+ size = (unsigned short)(g_usiDataSize / 8);
+ }
+
+ /*
+ * If there is compression, then check if compress by key
+ * of 0x00 or 0xFF or by other keys or by nibble blocks
+ */
+
+ if (g_usDataType & COMPRESS) {
+ compression = 1;
+ compress = GetByte();
+ if ((compress == VAR) && (g_usDataType & HEAP_IN)) {
+ getData = 1;
+ g_usDataType &= ~(HEAP_IN);
+ compress = GetByte();
+ }
+
+ switch (compress) {
+ case 0x00:
+ /* No compression */
+ compression = 0;
+ break;
+ case 0x01:
+ /* Compress by byte 0x00 */
+ compr_char = 0x00;
+ break;
+ case 0x02:
+ /* Compress by byte 0xFF */
+ compr_char = 0xFF;
+ break;
+ case 0xFF:
+ /* Huffman encoding */
+ compr_char = GetByte();
+ i = 8;
+ for (index = 0; index < size; index++) {
+ ByteData[index] = 0x00;
+ if (i > 7) {
+ cDataByte = GetByte();
+ i = 0;
+ }
+ if ((cDataByte << i++) & 0x80)
+ m = 8;
+ else {
+ ByteData[index] = compr_char;
+ m = 0;
+ }
+
+ for (j = 0; j < m; j++) {
+ if (i > 7) {
+ cDataByte = GetByte();
+ i = 0;
+ }
+ ByteData[index] |=
+ ((cDataByte << i++) & 0x80) >> j;
+ }
+ }
+ size = 0;
+ break;
+ default:
+ for (index = 0; index < size; index++)
+ ByteData[index] = 0x00;
+ for (index = 0; index < compress; index++) {
+ if (index % 2 == 0)
+ cDataByte = GetByte();
+ for (i = 0; i < size * 2 / compress; i++) {
+ j = (unsigned short)(index +
+ (i * (unsigned short)compress));
+ /*clear the nibble to zero first*/
+ if (j%2) {
+ if (index % 2)
+ ByteData[j/2] |=
+ cDataByte & 0xF;
+ else
+ ByteData[j/2] |=
+ cDataByte >> 4;
+ } else {
+ if (index % 2)
+ ByteData[j/2] |=
+ cDataByte << 4;
+ else
+ ByteData[j/2] |=
+ cDataByte & 0xF0;
+ }
+ }
+ }
+ size = 0;
+ break;
+ }
+ }
+
+ FFcount = 0;
+
+ /* Decompress by byte 0x00 or 0xFF */
+ for (index = 0; index < size; index++) {
+ if (FFcount <= 0) {
+ cDataByte = GetByte();
+ if ((cDataByte == VAR) && (g_usDataType&HEAP_IN) &&
+ !getData && !(g_usDataType&COMPRESS)) {
+ getData = 1;
+ g_usDataType &= ~(HEAP_IN);
+ cDataByte = GetByte();
+ }
+ ByteData[index] = cDataByte;
+ if ((compression) && (cDataByte == compr_char))
+ /* 09/11/07 NN Type cast mismatch variables */
+ FFcount = (unsigned short) ispVMDataSize();
+ /*The number of 0xFF or 0x00 bytes*/
+ } else {
+ FFcount--; /*Use up the 0xFF chain first*/
+ ByteData[index] = compr_char;
+ }
+ }
+
+ if (getData) {
+ g_usDataType |= HEAP_IN;
+ getData = 0;
+ }
+}
+
+/*
+ *
+ * ispVMShift
+ *
+ * Processes the SDR/XSDR/SIR commands.
+ *
+ */
+
+signed char ispVMShift(signed char a_cCode)
+{
+ /* 09/11/07 NN added local variables initialization */
+ unsigned short iDataIndex = 0;
+ unsigned short iReadLoop = 0;
+ signed char cRetCode = 0;
+
+ cRetCode = 0;
+ /* 09/11/07 NN Type cast mismatch variables */
+ g_usiDataSize = (unsigned short) ispVMDataSize();
+
+ /*clear the flags first*/
+ g_usDataType &= ~(SIR_DATA + EXPRESS + SDR_DATA);
+ switch (a_cCode) {
+ case SIR:
+ g_usDataType |= SIR_DATA;
+ /*
+ * 1/15/04 If performing cascading, then go directly to SHIFTIR.
+ * Else, go to IRPAUSE before going to SHIFTIR
+ */
+ if (g_usFlowControl & CASCADE) {
+ ispVMStateMachine(SHIFTIR);
+ } else {
+ ispVMStateMachine(IRPAUSE);
+ ispVMStateMachine(SHIFTIR);
+ if (g_usHeadIR > 0) {
+ ispVMBypass(HIR, g_usHeadIR);
+ sclock();
+ }
+ }
+ break;
+ case XSDR:
+ g_usDataType |= EXPRESS; /*mark simultaneous in and out*/
+ case SDR:
+ g_usDataType |= SDR_DATA;
+ /*
+ * 1/15/04 If already in SHIFTDR, then do not move state or
+ * shift in header. This would imply that the previously
+ * shifted frame was a cascaded frame.
+ */
+ if (g_cCurrentJTAGState != SHIFTDR) {
+ /*
+ * 1/15/04 If performing cascading, then go directly
+ * to SHIFTDR. Else, go to DRPAUSE before going
+ * to SHIFTDR
+ */
+ if (g_usFlowControl & CASCADE) {
+ if (g_cCurrentJTAGState == DRPAUSE) {
+ ispVMStateMachine(SHIFTDR);
+ /*
+ * 1/15/04 If cascade flag has been seat
+ * and the current state is DRPAUSE,
+ * this implies that the first cascaded
+ * frame is about to be shifted in. The
+ * header must be shifted prior to
+ * shifting the first cascaded frame.
+ */
+ if (g_usHeadDR > 0) {
+ ispVMBypass(HDR, g_usHeadDR);
+ sclock();
+ }
+ } else {
+ ispVMStateMachine(SHIFTDR);
+ }
+ } else {
+ ispVMStateMachine(DRPAUSE);
+ ispVMStateMachine(SHIFTDR);
+ if (g_usHeadDR > 0) {
+ ispVMBypass(HDR, g_usHeadDR);
+ sclock();
+ }
+ }
+ }
+ break;
+ default:
+ return VME_INVALID_FILE;
+ }
+
+ cRetCode = ispVMDataCode();
+
+ if (cRetCode != 0) {
+ return VME_INVALID_FILE;
+ }
+
+#ifdef DEBUG
+ printf("%d ", g_usiDataSize);
+
+ if (g_usDataType & TDI_DATA) {
+ puts("TDI ");
+ PrintData(g_usiDataSize, g_pucInData);
+ }
+
+ if (g_usDataType & TDO_DATA) {
+ puts("\n\t\tTDO ");
+ PrintData(g_usiDataSize, g_pucOutData);
+ }
+
+ if (g_usDataType & MASK_DATA) {
+ puts("\n\t\tMASK ");
+ PrintData(g_usiDataSize, g_pucOutMaskData);
+ }
+
+ if (g_usDataType & DMASK_DATA) {
+ puts("\n\t\tDMASK ");
+ PrintData(g_usiDataSize, g_pucOutDMaskData);
+ }
+
+ puts(";\n");
+#endif /* DEBUG */
+
+ if (g_usDataType & TDO_DATA || g_usDataType & DMASK_DATA) {
+ if (g_usDataType & DMASK_DATA) {
+ cRetCode = ispVMReadandSave(g_usiDataSize);
+ if (!cRetCode) {
+ if (g_usTailDR > 0) {
+ sclock();
+ ispVMBypass(TDR, g_usTailDR);
+ }
+ ispVMStateMachine(DRPAUSE);
+ ispVMStateMachine(SHIFTDR);
+ if (g_usHeadDR > 0) {
+ ispVMBypass(HDR, g_usHeadDR);
+ sclock();
+ }
+ for (iDataIndex = 0;
+ iDataIndex < g_usiDataSize / 8 + 1;
+ iDataIndex++)
+ g_pucInData[iDataIndex] =
+ g_pucOutData[iDataIndex];
+ g_usDataType &= ~(TDO_DATA + DMASK_DATA);
+ cRetCode = ispVMSend(g_usiDataSize);
+ }
+ } else {
+ cRetCode = ispVMRead(g_usiDataSize);
+ if (cRetCode == -1 && g_cVendor == XILINX) {
+ for (iReadLoop = 0; iReadLoop < 30;
+ iReadLoop++) {
+ cRetCode = ispVMRead(g_usiDataSize);
+ if (!cRetCode) {
+ break;
+ } else {
+ /* Always DRPAUSE */
+ ispVMStateMachine(DRPAUSE);
+ /*
+ * Bypass other devices
+ * when appropriate
+ */
+ ispVMBypass(TDR, g_usTailDR);
+ ispVMStateMachine(g_ucEndDR);
+ ispVMStateMachine(IDLE);
+ ispVMDelay(1000);
+ }
+ }
+ }
+ }
+ } else { /*TDI only*/
+ cRetCode = ispVMSend(g_usiDataSize);
+ }
+
+ /*transfer the input data to the output buffer for the next verify*/
+ if ((g_usDataType & EXPRESS) || (a_cCode == SDR)) {
+ if (g_pucOutData) {
+ for (iDataIndex = 0; iDataIndex < g_usiDataSize / 8 + 1;
+ iDataIndex++)
+ g_pucOutData[iDataIndex] =
+ g_pucInData[iDataIndex];
+ }
+ }
+
+ switch (a_cCode) {
+ case SIR:
+ /* 1/15/04 If not performing cascading, then shift ENDIR */
+ if (!(g_usFlowControl & CASCADE)) {
+ if (g_usTailIR > 0) {
+ sclock();
+ ispVMBypass(TIR, g_usTailIR);
+ }
+ ispVMStateMachine(g_ucEndIR);
+ }
+ break;
+ case XSDR:
+ case SDR:
+ /* 1/15/04 If not performing cascading, then shift ENDDR */
+ if (!(g_usFlowControl & CASCADE)) {
+ if (g_usTailDR > 0) {
+ sclock();
+ ispVMBypass(TDR, g_usTailDR);
+ }
+ ispVMStateMachine(g_ucEndDR);
+ }
+ break;
+ default:
+ break;
+ }
+
+ return cRetCode;
+}
+
+/*
+ *
+ * ispVMAmble
+ *
+ * This routine is to extract Header and Trailer parameter for SIR and
+ * SDR operations.
+ *
+ * The Header and Trailer parameter are the pre-amble and post-amble bit
+ * stream need to be shifted into TDI or out of TDO of the devices. Mostly
+ * is for the purpose of bypassing the leading or trailing devices. ispVM
+ * supports only shifting data into TDI to bypass the devices.
+ *
+ * For a single device, the header and trailer parameters are all set to 0
+ * as default by ispVM. If it is for multiple devices, the header and trailer
+ * value will change as specified by the VME file.
+ *
+ */
+
+signed char ispVMAmble(signed char Code)
+{
+ signed char compress = 0;
+ /* 09/11/07 NN Type cast mismatch variables */
+ g_usiDataSize = (unsigned short)ispVMDataSize();
+
+#ifdef DEBUG
+ printf("%d", g_usiDataSize);
+#endif /* DEBUG */
+
+ if (g_usiDataSize) {
+
+ /*
+ * Discard the TDI byte and set the compression bit in the data
+ * type register to false if compression is set because TDI data
+ * after HIR/HDR/TIR/TDR is not compressed.
+ */
+
+ GetByte();
+ if (g_usDataType & COMPRESS) {
+ g_usDataType &= ~(COMPRESS);
+ compress = 1;
+ }
+ }
+
+ switch (Code) {
+ case HIR:
+
+ /*
+ * Store the maximum size of the HIR buffer.
+ * Used to convert VME to HEX.
+ */
+
+ if (g_usiDataSize > g_usHIRSize) {
+ g_usHIRSize = g_usiDataSize;
+ }
+
+ /*
+ * Assign the HIR value and allocate memory.
+ */
+
+ g_usHeadIR = g_usiDataSize;
+ if (g_usHeadIR) {
+ ispVMMemManager(HIR, g_usHeadIR);
+ ispVMData(g_pucHIRData);
+
+#ifdef DEBUG
+ puts(" TDI ");
+ PrintData(g_usHeadIR, g_pucHIRData);
+#endif /* DEBUG */
+ }
+ break;
+ case TIR:
+
+ /*
+ * Store the maximum size of the TIR buffer.
+ * Used to convert VME to HEX.
+ */
+
+ if (g_usiDataSize > g_usTIRSize) {
+ g_usTIRSize = g_usiDataSize;
+ }
+
+ /*
+ * Assign the TIR value and allocate memory.
+ */
+
+ g_usTailIR = g_usiDataSize;
+ if (g_usTailIR) {
+ ispVMMemManager(TIR, g_usTailIR);
+ ispVMData(g_pucTIRData);
+
+#ifdef DEBUG
+ puts(" TDI ");
+ PrintData(g_usTailIR, g_pucTIRData);
+#endif /* DEBUG */
+ }
+ break;
+ case HDR:
+
+ /*
+ * Store the maximum size of the HDR buffer.
+ * Used to convert VME to HEX.
+ */
+
+ if (g_usiDataSize > g_usHDRSize) {
+ g_usHDRSize = g_usiDataSize;
+ }
+
+ /*
+ * Assign the HDR value and allocate memory.
+ *
+ */
+
+ g_usHeadDR = g_usiDataSize;
+ if (g_usHeadDR) {
+ ispVMMemManager(HDR, g_usHeadDR);
+ ispVMData(g_pucHDRData);
+
+#ifdef DEBUG
+ puts(" TDI ");
+ PrintData(g_usHeadDR, g_pucHDRData);
+#endif /* DEBUG */
+ }
+ break;
+ case TDR:
+
+ /*
+ * Store the maximum size of the TDR buffer.
+ * Used to convert VME to HEX.
+ */
+
+ if (g_usiDataSize > g_usTDRSize) {
+ g_usTDRSize = g_usiDataSize;
+ }
+
+ /*
+ * Assign the TDR value and allocate memory.
+ *
+ */
+
+ g_usTailDR = g_usiDataSize;
+ if (g_usTailDR) {
+ ispVMMemManager(TDR, g_usTailDR);
+ ispVMData(g_pucTDRData);
+
+#ifdef DEBUG
+ puts(" TDI ");
+ PrintData(g_usTailDR, g_pucTDRData);
+#endif /* DEBUG */
+ }
+ break;
+ default:
+ break;
+ }
+
+ /*
+ *
+ * Re-enable compression if it was previously set.
+ *
+ **/
+
+ if (compress) {
+ g_usDataType |= COMPRESS;
+ }
+
+ if (g_usiDataSize) {
+ Code = GetByte();
+ if (Code == CONTINUE) {
+ return 0;
+ } else {
+
+ /*
+ * Encountered invalid opcode.
+ */
+
+ return VME_INVALID_FILE;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ *
+ * ispVMLoop
+ *
+ * Perform the function call upon by the REPEAT opcode.
+ * Memory is to be allocated to store the entire loop from REPEAT to ENDLOOP.
+ * After the loop is stored then execution begin. The REPEATLOOP flag is set
+ * on the g_usFlowControl register to indicate the repeat loop is in session
+ * and therefore fetch opcode from the memory instead of from the file.
+ *
+ */
+
+signed char ispVMLoop(unsigned short a_usLoopCount)
+{
+ /* 09/11/07 NN added local variables initialization */
+ signed char cRetCode = 0;
+ unsigned short iHeapIndex = 0;
+ unsigned short iLoopIndex = 0;
+
+ g_usShiftValue = 0;
+ for (iHeapIndex = 0; iHeapIndex < g_iHEAPSize; iHeapIndex++) {
+ g_pucHeapMemory[iHeapIndex] = GetByte();
+ }
+
+ if (g_pucHeapMemory[iHeapIndex - 1] != ENDLOOP) {
+ return VME_INVALID_FILE;
+ }
+
+ g_usFlowControl |= REPEATLOOP;
+ g_usDataType |= HEAP_IN;
+
+ for (iLoopIndex = 0; iLoopIndex < a_usLoopCount; iLoopIndex++) {
+ g_iHeapCounter = 0;
+ cRetCode = ispVMCode();
+ g_usRepeatLoops++;
+ if (cRetCode < 0) {
+ break;
+ }
+ }
+
+ g_usDataType &= ~(HEAP_IN);
+ g_usFlowControl &= ~(REPEATLOOP);
+ return cRetCode;
+}
+
+/*
+ *
+ * ispVMBitShift
+ *
+ * Shift the TDI stream left or right by the number of bits. The data in
+ * *g_pucInData is of the VME format, so the actual shifting is the reverse of
+ * IEEE 1532 or SVF format.
+ *
+ */
+
+signed char ispVMBitShift(signed char mode, unsigned short bits)
+{
+ /* 09/11/07 NN added local variables initialization */
+ unsigned short i = 0;
+ unsigned short size = 0;
+ unsigned short tmpbits = 0;
+
+ if (g_usiDataSize % 8 > 0) {
+ /* 09/11/07 NN Type cast mismatch variables */
+ size = (unsigned short)(g_usiDataSize / 8 + 1);
+ } else {
+ /* 09/11/07 NN Type cast mismatch variables */
+ size = (unsigned short)(g_usiDataSize / 8);
+ }
+
+ switch (mode) {
+ case SHR:
+ for (i = 0; i < size; i++) {
+ if (g_pucInData[i] != 0) {
+ tmpbits = bits;
+ while (tmpbits > 0) {
+ g_pucInData[i] <<= 1;
+ if (g_pucInData[i] == 0) {
+ i--;
+ g_pucInData[i] = 1;
+ }
+ tmpbits--;
+ }
+ }
+ }
+ break;
+ case SHL:
+ for (i = 0; i < size; i++) {
+ if (g_pucInData[i] != 0) {
+ tmpbits = bits;
+ while (tmpbits > 0) {
+ g_pucInData[i] >>= 1;
+ if (g_pucInData[i] == 0) {
+ i--;
+ g_pucInData[i] = 8;
+ }
+ tmpbits--;
+ }
+ }
+ }
+ break;
+ default:
+ return VME_INVALID_FILE;
+ }
+
+ return 0;
+}
+
+/*
+ *
+ * ispVMComment
+ *
+ * Displays the SVF comments.
+ *
+ */
+
+void ispVMComment(unsigned short a_usCommentSize)
+{
+ char cCurByte = 0;
+ for (; a_usCommentSize > 0; a_usCommentSize--) {
+ /*
+ *
+ * Print character to the terminal.
+ *
+ **/
+ cCurByte = GetByte();
+ vme_out_char(cCurByte);
+ }
+ cCurByte = '\n';
+ vme_out_char(cCurByte);
+}
+
+/*
+ *
+ * ispVMHeader
+ *
+ * Iterate the length of the header and discard it.
+ *
+ */
+
+void ispVMHeader(unsigned short a_usHeaderSize)
+{
+ for (; a_usHeaderSize > 0; a_usHeaderSize--) {
+ GetByte();
+ }
+}
+
+/*
+ *
+ * ispVMCalculateCRC32
+ *
+ * Calculate the 32-bit CRC.
+ *
+ */
+
+void ispVMCalculateCRC32(unsigned char a_ucData)
+{
+ /* 09/11/07 NN added local variables initialization */
+ unsigned char ucIndex = 0;
+ unsigned char ucFlipData = 0;
+ unsigned short usCRCTableEntry = 0;
+ unsigned int crc_table[16] = {
+ 0x0000, 0xCC01, 0xD801,
+ 0x1400, 0xF001, 0x3C00,
+ 0x2800, 0xE401, 0xA001,
+ 0x6C00, 0x7800, 0xB401,
+ 0x5000, 0x9C01, 0x8801,
+ 0x4400
+ };
+
+ for (ucIndex = 0; ucIndex < 8; ucIndex++) {
+ ucFlipData <<= 1;
+ if (a_ucData & 0x01) {
+ ucFlipData |= 0x01;
+ }
+ a_ucData >>= 1;
+ }
+
+ /* 09/11/07 NN Type cast mismatch variables */
+ usCRCTableEntry = (unsigned short)(crc_table[g_usCalculatedCRC & 0xF]);
+ g_usCalculatedCRC = (unsigned short)((g_usCalculatedCRC >> 4) & 0x0FFF);
+ g_usCalculatedCRC = (unsigned short)(g_usCalculatedCRC ^
+ usCRCTableEntry ^ crc_table[ucFlipData & 0xF]);
+ usCRCTableEntry = (unsigned short)(crc_table[g_usCalculatedCRC & 0xF]);
+ g_usCalculatedCRC = (unsigned short)((g_usCalculatedCRC >> 4) & 0x0FFF);
+ g_usCalculatedCRC = (unsigned short)(g_usCalculatedCRC ^
+ usCRCTableEntry ^ crc_table[(ucFlipData >> 4) & 0xF]);
+}
+
+/*
+ *
+ * ispVMLCOUNT
+ *
+ * Process the intelligent programming loops.
+ *
+ */
+
+signed char ispVMLCOUNT(unsigned short a_usCountSize)
+{
+ unsigned short usContinue = 1;
+ unsigned short usIntelBufferIndex = 0;
+ unsigned short usCountIndex = 0;
+ signed char cRetCode = 0;
+ signed char cRepeatHeap = 0;
+ signed char cOpcode = 0;
+ unsigned char ucState = 0;
+ unsigned short usDelay = 0;
+ unsigned short usToggle = 0;
+ unsigned char usByte = 0;
+
+ g_usIntelBufferSize = (unsigned short)ispVMDataSize();
+
+ /*
+ * Allocate memory for intel buffer.
+ *
+ */
+
+ ispVMMemManager(LHEAP, g_usIntelBufferSize);
+
+ /*
+ * Store the maximum size of the intelligent buffer.
+ * Used to convert VME to HEX.
+ */
+
+ if (g_usIntelBufferSize > g_usLCOUNTSize) {
+ g_usLCOUNTSize = g_usIntelBufferSize;
+ }
+
+ /*
+ * Copy intel data to the buffer.
+ */
+
+ for (usIntelBufferIndex = 0; usIntelBufferIndex < g_usIntelBufferSize;
+ usIntelBufferIndex++) {
+ g_pucIntelBuffer[usIntelBufferIndex] = GetByte();
+ }
+
+ /*
+ * Set the data type register to get data from the intelligent
+ * data buffer.
+ */
+
+ g_usDataType |= LHEAP_IN;
+
+ /*
+ *
+ * If the HEAP_IN flag is set, temporarily unset the flag so data will be
+ * retrieved from the status buffer.
+ *
+ **/
+
+ if (g_usDataType & HEAP_IN) {
+ g_usDataType &= ~HEAP_IN;
+ cRepeatHeap = 1;
+ }
+
+#ifdef DEBUG
+ printf("LCOUNT %d;\n", a_usCountSize);
+#endif /* DEBUG */
+
+ /*
+ * Iterate through the intelligent programming command.
+ */
+
+ for (usCountIndex = 0; usCountIndex < a_usCountSize; usCountIndex++) {
+
+ /*
+ *
+ * Initialize the intel data index to 0 before each iteration.
+ *
+ **/
+
+ g_usIntelDataIndex = 0;
+ cOpcode = 0;
+ ucState = 0;
+ usDelay = 0;
+ usToggle = 0;
+ usByte = 0;
+ usContinue = 1;
+
+ /*
+ *
+ * Begin looping through all the VME opcodes.
+ *
+ */
+ /*
+ * 4/1/09 Nguyen replaced the recursive function call codes on
+ * the ispVMLCOUNT function
+ *
+ */
+ while (usContinue) {
+ cOpcode = GetByte();
+ switch (cOpcode) {
+ case HIR:
+ case TIR:
+ case HDR:
+ case TDR:
+ /*
+ * Set the header/trailer of the device in order
+ * to bypass successfully.
+ */
+
+ ispVMAmble(cOpcode);
+ break;
+ case STATE:
+
+ /*
+ * Step the JTAG state machine.
+ */
+
+ ucState = GetByte();
+ /*
+ * Step the JTAG state machine to DRCAPTURE
+ * to support Looping.
+ */
+
+ if ((g_usDataType & LHEAP_IN) &&
+ (ucState == DRPAUSE) &&
+ (g_cCurrentJTAGState == ucState)) {
+ ispVMStateMachine(DRCAPTURE);
+ }
+ ispVMStateMachine(ucState);
+#ifdef DEBUG
+ printf("LDELAY %s ", GetState(ucState));
+#endif /* DEBUG */
+ break;
+ case SIR:
+#ifdef DEBUG
+ printf("SIR ");
+#endif /* DEBUG */
+ /*
+ * Shift in data into the device.
+ */
+
+ cRetCode = ispVMShift(cOpcode);
+ break;
+ case SDR:
+
+#ifdef DEBUG
+ printf("LSDR ");
+#endif /* DEBUG */
+ /*
+ * Shift in data into the device.
+ */
+
+ cRetCode = ispVMShift(cOpcode);
+ break;
+ case WAIT:
+
+ /*
+ *
+ * Observe delay.
+ *
+ */
+
+ usDelay = (unsigned short)ispVMDataSize();
+ ispVMDelay(usDelay);
+
+#ifdef DEBUG
+ if (usDelay & 0x8000) {
+
+ /*
+ * Since MSB is set, the delay time must
+ * be decoded to millisecond. The
+ * SVF2VME encodes the MSB to represent
+ * millisecond.
+ */
+
+ usDelay &= ~0x8000;
+ printf("%.2E SEC;\n",
+ (float) usDelay / 1000);
+ } else {
+ /*
+ * Since MSB is not set, the delay time
+ * is given as microseconds.
+ */
+
+ printf("%.2E SEC;\n",
+ (float) usDelay / 1000000);
+ }
+#endif /* DEBUG */
+ break;
+ case TCK:
+
+ /*
+ * Issue clock toggles.
+ */
+
+ usToggle = (unsigned short)ispVMDataSize();
+ ispVMClocks(usToggle);
+
+#ifdef DEBUG
+ printf("RUNTEST %d TCK;\n", usToggle);
+#endif /* DEBUG */
+ break;
+ case ENDLOOP:
+
+ /*
+ * Exit point from processing loops.
+ */
+ usContinue = 0;
+ break;
+
+ case COMMENT:
+
+ /*
+ * Display comment.
+ */
+
+ ispVMComment((unsigned short) ispVMDataSize());
+ break;
+ case ispEN:
+ ucState = GetByte();
+ if ((ucState == ON) || (ucState == 0x01))
+ writePort(g_ucPinENABLE, 0x01);
+ else
+ writePort(g_ucPinENABLE, 0x00);
+ ispVMDelay(1);
+ break;
+ case TRST:
+ if (GetByte() == 0x01)
+ writePort(g_ucPinTRST, 0x01);
+ else
+ writePort(g_ucPinTRST, 0x00);
+ ispVMDelay(1);
+ break;
+ default:
+
+ /*
+ * Invalid opcode encountered.
+ */
+
+ debug("\nINVALID OPCODE: 0x%.2X\n", cOpcode);
+
+ return VME_INVALID_FILE;
+ }
+ }
+ if (cRetCode >= 0) {
+ /*
+ * Break if intelligent programming is successful.
+ */
+
+ break;
+ }
+
+ }
+ /*
+ * If HEAP_IN flag was temporarily disabled,
+ * re-enable it before exiting
+ */
+
+ if (cRepeatHeap) {
+ g_usDataType |= HEAP_IN;
+ }
+
+ /*
+ * Set the data type register to not get data from the
+ * intelligent data buffer.
+ */
+
+ g_usDataType &= ~LHEAP_IN;
+ return cRetCode;
+}
+/*
+ *
+ * ispVMClocks
+ *
+ * Applies the specified number of pulses to TCK.
+ *
+ */
+
+void ispVMClocks(unsigned short Clocks)
+{
+ unsigned short iClockIndex = 0;
+ for (iClockIndex = 0; iClockIndex < Clocks; iClockIndex++) {
+ sclock();
+ }
+}
+
+/*
+ *
+ * ispVMBypass
+ *
+ * This procedure takes care of the HIR, HDR, TIR, TDR for the
+ * purpose of putting the other devices into Bypass mode. The
+ * current state is checked to find out if it is at DRPAUSE or
+ * IRPAUSE. If it is at DRPAUSE, perform bypass register scan.
+ * If it is at IRPAUSE, scan into instruction registers the bypass
+ * instruction.
+ *
+ */
+
+void ispVMBypass(signed char ScanType, unsigned short Bits)
+{
+ /* 09/11/07 NN added local variables initialization */
+ unsigned short iIndex = 0;
+ unsigned short iSourceIndex = 0;
+ unsigned char cBitState = 0;
+ unsigned char cCurByte = 0;
+ unsigned char *pcSource = NULL;
+
+ if (Bits <= 0) {
+ return;
+ }
+
+ switch (ScanType) {
+ case HIR:
+ pcSource = g_pucHIRData;
+ break;
+ case TIR:
+ pcSource = g_pucTIRData;
+ break;
+ case HDR:
+ pcSource = g_pucHDRData;
+ break;
+ case TDR:
+ pcSource = g_pucTDRData;
+ break;
+ default:
+ break;
+ }
+
+ iSourceIndex = 0;
+ cBitState = 0;
+ for (iIndex = 0; iIndex < Bits - 1; iIndex++) {
+ /* Scan instruction or bypass register */
+ if (iIndex % 8 == 0) {
+ cCurByte = pcSource[iSourceIndex++];
+ }
+ cBitState = (unsigned char) (((cCurByte << iIndex % 8) & 0x80)
+ ? 0x01 : 0x00);
+ writePort(g_ucPinTDI, cBitState);
+ sclock();
+ }
+
+ if (iIndex % 8 == 0) {
+ cCurByte = pcSource[iSourceIndex++];
+ }
+
+ cBitState = (unsigned char) (((cCurByte << iIndex % 8) & 0x80)
+ ? 0x01 : 0x00);
+ writePort(g_ucPinTDI, cBitState);
+}
+
+/*
+ *
+ * ispVMStateMachine
+ *
+ * This procedure steps all devices in the daisy chain from a given
+ * JTAG state to the next desirable state. If the next state is TLR,
+ * the JTAG state machine is brute forced into TLR by driving TMS
+ * high and pulse TCK 6 times.
+ *
+ */
+
+void ispVMStateMachine(signed char cNextJTAGState)
+{
+ /* 09/11/07 NN added local variables initialization */
+ signed char cPathIndex = 0;
+ signed char cStateIndex = 0;
+
+ if ((g_cCurrentJTAGState == cNextJTAGState) &&
+ (cNextJTAGState != RESET)) {
+ return;
+ }
+
+ for (cStateIndex = 0; cStateIndex < 25; cStateIndex++) {
+ if ((g_cCurrentJTAGState ==
+ g_JTAGTransistions[cStateIndex].CurState) &&
+ (cNextJTAGState ==
+ g_JTAGTransistions[cStateIndex].NextState)) {
+ break;
+ }
+ }
+
+ g_cCurrentJTAGState = cNextJTAGState;
+ for (cPathIndex = 0;
+ cPathIndex < g_JTAGTransistions[cStateIndex].Pulses;
+ cPathIndex++) {
+ if ((g_JTAGTransistions[cStateIndex].Pattern << cPathIndex)
+ & 0x80) {
+ writePort(g_ucPinTMS, (unsigned char) 0x01);
+ } else {
+ writePort(g_ucPinTMS, (unsigned char) 0x00);
+ }
+ sclock();
+ }
+
+ writePort(g_ucPinTDI, 0x00);
+ writePort(g_ucPinTMS, 0x00);
+}
+
+/*
+ *
+ * ispVMStart
+ *
+ * Enable the port to the device and set the state to RESET (TLR).
+ *
+ */
+
+void ispVMStart()
+{
+#ifdef DEBUG
+ printf("// ISPVM EMBEDDED ADDED\n");
+ printf("STATE RESET;\n");
+#endif
+ g_usFlowControl = 0;
+ g_usDataType = g_uiChecksumIndex = g_cCurrentJTAGState = 0;
+ g_usHeadDR = g_usHeadIR = g_usTailDR = g_usTailIR = 0;
+ g_usMaxSize = g_usShiftValue = g_usRepeatLoops = 0;
+ g_usTDOSize = g_usMASKSize = g_usTDISize = 0;
+ g_usDMASKSize = g_usLCOUNTSize = g_usHDRSize = 0;
+ g_usTDRSize = g_usHIRSize = g_usTIRSize = g_usHeapSize = 0;
+ g_pLVDSList = NULL;
+ g_usLVDSPairCount = 0;
+ previous_size = 0;
+
+ ispVMStateMachine(RESET); /*step devices to RESET state*/
+}
+
+/*
+ *
+ * ispVMEnd
+ *
+ * Set the state of devices to RESET to enable the devices and disable
+ * the port.
+ *
+ */
+
+void ispVMEnd()
+{
+#ifdef DEBUG
+ printf("// ISPVM EMBEDDED ADDED\n");
+ printf("STATE RESET;\n");
+ printf("RUNTEST 1.00E-001 SEC;\n");
+#endif
+
+ ispVMStateMachine(RESET); /*step devices to RESET state */
+ ispVMDelay(1000); /*wake up devices*/
+}
+
+/*
+ *
+ * ispVMSend
+ *
+ * Send the TDI data stream to devices. The data stream can be
+ * instructions or data.
+ *
+ */
+
+signed char ispVMSend(unsigned short a_usiDataSize)
+{
+ /* 09/11/07 NN added local variables initialization */
+ unsigned short iIndex = 0;
+ unsigned short iInDataIndex = 0;
+ unsigned char cCurByte = 0;
+ unsigned char cBitState = 0;
+
+ for (iIndex = 0; iIndex < a_usiDataSize - 1; iIndex++) {
+ if (iIndex % 8 == 0) {
+ cCurByte = g_pucInData[iInDataIndex++];
+ }
+ cBitState = (unsigned char)(((cCurByte << iIndex % 8) & 0x80)
+ ? 0x01 : 0x00);
+ writePort(g_ucPinTDI, cBitState);
+ sclock();
+ }
+
+ if (iIndex % 8 == 0) {
+ /* Take care of the last bit */
+ cCurByte = g_pucInData[iInDataIndex];
+ }
+
+ cBitState = (unsigned char) (((cCurByte << iIndex % 8) & 0x80)
+ ? 0x01 : 0x00);
+
+ writePort(g_ucPinTDI, cBitState);
+ if (g_usFlowControl & CASCADE) {
+ /*1/15/04 Clock in last bit for the first n-1 cascaded frames */
+ sclock();
+ }
+
+ return 0;
+}
+
+/*
+ *
+ * ispVMRead
+ *
+ * Read the data stream from devices and verify.
+ *
+ */
+
+signed char ispVMRead(unsigned short a_usiDataSize)
+{
+ /* 09/11/07 NN added local variables initialization */
+ unsigned short usDataSizeIndex = 0;
+ unsigned short usErrorCount = 0;
+ unsigned short usLastBitIndex = 0;
+ unsigned char cDataByte = 0;
+ unsigned char cMaskByte = 0;
+ unsigned char cInDataByte = 0;
+ unsigned char cCurBit = 0;
+ unsigned char cByteIndex = 0;
+ unsigned short usBufferIndex = 0;
+ unsigned char ucDisplayByte = 0x00;
+ unsigned char ucDisplayFlag = 0x01;
+ char StrChecksum[256] = {0};
+ unsigned char g_usCalculateChecksum = 0x00;
+
+ /* 09/11/07 NN Type cast mismatch variables */
+ usLastBitIndex = (unsigned short)(a_usiDataSize - 1);
+
+#ifndef DEBUG
+ /*
+ * If mask is not all zeros, then set the display flag to 0x00,
+ * otherwise it shall be set to 0x01 to indicate that data read
+ * from the device shall be displayed. If DEBUG is defined,
+ * always display data.
+ */
+
+ for (usDataSizeIndex = 0; usDataSizeIndex < (a_usiDataSize + 7) / 8;
+ usDataSizeIndex++) {
+ if (g_usDataType & MASK_DATA) {
+ if (g_pucOutMaskData[usDataSizeIndex] != 0x00) {
+ ucDisplayFlag = 0x00;
+ break;
+ }
+ } else if (g_usDataType & CMASK_DATA) {
+ g_usCalculateChecksum = 0x01;
+ ucDisplayFlag = 0x00;
+ break;
+ } else {
+ ucDisplayFlag = 0x00;
+ break;
+ }
+ }
+#endif /* DEBUG */
+
+ /*
+ *
+ * Begin shifting data in and out of the device.
+ *
+ **/
+
+ for (usDataSizeIndex = 0; usDataSizeIndex < a_usiDataSize;
+ usDataSizeIndex++) {
+ if (cByteIndex == 0) {
+
+ /*
+ * Grab byte from TDO buffer.
+ */
+
+ if (g_usDataType & TDO_DATA) {
+ cDataByte = g_pucOutData[usBufferIndex];
+ }
+
+ /*
+ * Grab byte from MASK buffer.
+ */
+
+ if (g_usDataType & MASK_DATA) {
+ cMaskByte = g_pucOutMaskData[usBufferIndex];
+ } else {
+ cMaskByte = 0xFF;
+ }
+
+ /*
+ * Grab byte from CMASK buffer.
+ */
+
+ if (g_usDataType & CMASK_DATA) {
+ cMaskByte = 0x00;
+ g_usCalculateChecksum = 0x01;
+ }
+
+ /*
+ * Grab byte from TDI buffer.
+ */
+
+ if (g_usDataType & TDI_DATA) {
+ cInDataByte = g_pucInData[usBufferIndex];
+ }
+
+ usBufferIndex++;
+ }
+
+ cCurBit = readPort();
+
+ if (ucDisplayFlag) {
+ ucDisplayByte <<= 1;
+ ucDisplayByte |= cCurBit;
+ }
+
+ /*
+ * Check if data read from port matches with expected TDO.
+ */
+
+ if (g_usDataType & TDO_DATA) {
+ /* 08/28/08 NN Added Calculate checksum support. */
+ if (g_usCalculateChecksum) {
+ if (cCurBit == 0x01)
+ g_usChecksum +=
+ (1 << (g_uiChecksumIndex % 8));
+ g_uiChecksumIndex++;
+ } else {
+ if ((((cMaskByte << cByteIndex) & 0x80)
+ ? 0x01 : 0x00)) {
+ if (cCurBit != (unsigned char)
+ (((cDataByte << cByteIndex) & 0x80)
+ ? 0x01 : 0x00)) {
+ usErrorCount++;
+ }
+ }
+ }
+ }
+
+ /*
+ * Write TDI data to the port.
+ */
+
+ writePort(g_ucPinTDI,
+ (unsigned char)(((cInDataByte << cByteIndex) & 0x80)
+ ? 0x01 : 0x00));
+
+ if (usDataSizeIndex < usLastBitIndex) {
+
+ /*
+ * Clock data out from the data shift register.
+ */
+
+ sclock();
+ } else if (g_usFlowControl & CASCADE) {
+
+ /*
+ * Clock in last bit for the first N - 1 cascaded frames
+ */
+
+ sclock();
+ }
+
+ /*
+ * Increment the byte index. If it exceeds 7, then reset it back
+ * to zero.
+ */
+
+ cByteIndex++;
+ if (cByteIndex >= 8) {
+ if (ucDisplayFlag) {
+
+ /*
+ * Store displayed data in the TDO buffer. By reusing
+ * the TDO buffer to store displayed data, there is no
+ * need to allocate a buffer simply to hold display
+ * data. This will not cause any false verification
+ * errors because the true TDO byte has already
+ * been consumed.
+ */
+
+ g_pucOutData[usBufferIndex - 1] = ucDisplayByte;
+ ucDisplayByte = 0;
+ }
+
+ cByteIndex = 0;
+ }
+ /* 09/12/07 Nguyen changed to display the 1 bit expected data */
+ else if (a_usiDataSize == 1) {
+ if (ucDisplayFlag) {
+
+ /*
+ * Store displayed data in the TDO buffer.
+ * By reusing the TDO buffer to store displayed
+ * data, there is no need to allocate
+ * a buffer simply to hold display data. This
+ * will not cause any false verification errors
+ * because the true TDO byte has already
+ * been consumed.
+ */
+
+ /*
+ * Flip ucDisplayByte and store it in cDataByte.
+ */
+ cDataByte = 0x00;
+ for (usBufferIndex = 0; usBufferIndex < 8;
+ usBufferIndex++) {
+ cDataByte <<= 1;
+ if (ucDisplayByte & 0x01) {
+ cDataByte |= 0x01;
+ }
+ ucDisplayByte >>= 1;
+ }
+ g_pucOutData[0] = cDataByte;
+ ucDisplayByte = 0;
+ }
+
+ cByteIndex = 0;
+ }
+ }
+
+ if (ucDisplayFlag) {
+
+#ifdef DEBUG
+ debug("RECEIVED TDO (");
+#else
+ vme_out_string("Display Data: 0x");
+#endif /* DEBUG */
+
+ /* 09/11/07 NN Type cast mismatch variables */
+ for (usDataSizeIndex = (unsigned short)
+ ((a_usiDataSize + 7) / 8);
+ usDataSizeIndex > 0 ; usDataSizeIndex--) {
+ cMaskByte = g_pucOutData[usDataSizeIndex - 1];
+ cDataByte = 0x00;
+
+ /*
+ * Flip cMaskByte and store it in cDataByte.
+ */
+
+ for (usBufferIndex = 0; usBufferIndex < 8;
+ usBufferIndex++) {
+ cDataByte <<= 1;
+ if (cMaskByte & 0x01) {
+ cDataByte |= 0x01;
+ }
+ cMaskByte >>= 1;
+ }
+#ifdef DEBUG
+ printf("%.2X", cDataByte);
+ if ((((a_usiDataSize + 7) / 8) - usDataSizeIndex)
+ % 40 == 39) {
+ printf("\n\t\t");
+ }
+#else
+ vme_out_hex(cDataByte);
+#endif /* DEBUG */
+ }
+
+#ifdef DEBUG
+ printf(")\n\n");
+#else
+ vme_out_string("\n\n");
+#endif /* DEBUG */
+ /* 09/02/08 Nguyen changed to display the data Checksum */
+ if (g_usChecksum != 0) {
+ g_usChecksum &= 0xFFFF;
+ sprintf(StrChecksum, "Data Checksum: %.4lX\n\n",
+ g_usChecksum);
+ vme_out_string(StrChecksum);
+ g_usChecksum = 0;
+ }
+ }
+
+ if (usErrorCount > 0) {
+ if (g_usFlowControl & VERIFYUES) {
+ vme_out_string(
+ "USERCODE verification failed. "
+ "Continue programming......\n\n");
+ g_usFlowControl &= ~(VERIFYUES);
+ return 0;
+ } else {
+
+#ifdef DEBUG
+ printf("TOTAL ERRORS: %d\n", usErrorCount);
+#endif /* DEBUG */
+
+ return VME_VERIFICATION_FAILURE;
+ }
+ } else {
+ if (g_usFlowControl & VERIFYUES) {
+ vme_out_string("USERCODE verification passed. "
+ "Programming aborted.\n\n");
+ g_usFlowControl &= ~(VERIFYUES);
+ return 1;
+ } else {
+ return 0;
+ }
+ }
+}
+
+/*
+ *
+ * ispVMReadandSave
+ *
+ * Support dynamic I/O.
+ *
+ */
+
+signed char ispVMReadandSave(unsigned short int a_usiDataSize)
+{
+ /* 09/11/07 NN added local variables initialization */
+ unsigned short int usDataSizeIndex = 0;
+ unsigned short int usLastBitIndex = 0;
+ unsigned short int usBufferIndex = 0;
+ unsigned short int usOutBitIndex = 0;
+ unsigned short int usLVDSIndex = 0;
+ unsigned char cDataByte = 0;
+ unsigned char cDMASKByte = 0;
+ unsigned char cInDataByte = 0;
+ unsigned char cCurBit = 0;
+ unsigned char cByteIndex = 0;
+ signed char cLVDSByteIndex = 0;
+
+ /* 09/11/07 NN Type cast mismatch variables */
+ usLastBitIndex = (unsigned short) (a_usiDataSize - 1);
+
+ /*
+ *
+ * Iterate through the data bits.
+ *
+ */
+
+ for (usDataSizeIndex = 0; usDataSizeIndex < a_usiDataSize;
+ usDataSizeIndex++) {
+ if (cByteIndex == 0) {
+
+ /*
+ * Grab byte from DMASK buffer.
+ */
+
+ if (g_usDataType & DMASK_DATA) {
+ cDMASKByte = g_pucOutDMaskData[usBufferIndex];
+ } else {
+ cDMASKByte = 0x00;
+ }
+
+ /*
+ * Grab byte from TDI buffer.
+ */
+
+ if (g_usDataType & TDI_DATA) {
+ cInDataByte = g_pucInData[usBufferIndex];
+ }
+
+ usBufferIndex++;
+ }
+
+ cCurBit = readPort();
+ cDataByte = (unsigned char)(((cInDataByte << cByteIndex) & 0x80)
+ ? 0x01 : 0x00);
+
+ /*
+ * Initialize the byte to be zero.
+ */
+
+ if (usOutBitIndex % 8 == 0) {
+ g_pucOutData[usOutBitIndex / 8] = 0x00;
+ }
+
+ /*
+ * Use TDI, DMASK, and device TDO to create new TDI (actually
+ * stored in g_pucOutData).
+ */
+
+ if ((((cDMASKByte << cByteIndex) & 0x80) ? 0x01 : 0x00)) {
+
+ if (g_pLVDSList) {
+ for (usLVDSIndex = 0;
+ usLVDSIndex < g_usLVDSPairCount;
+ usLVDSIndex++) {
+ if (g_pLVDSList[usLVDSIndex].
+ usNegativeIndex ==
+ usDataSizeIndex) {
+ g_pLVDSList[usLVDSIndex].
+ ucUpdate = 0x01;
+ break;
+ }
+ }
+ }
+
+ /*
+ * DMASK bit is 1, use TDI.
+ */
+
+ g_pucOutData[usOutBitIndex / 8] |= (unsigned char)
+ (((cDataByte & 0x1) ? 0x01 : 0x00) <<
+ (7 - usOutBitIndex % 8));
+ } else {
+
+ /*
+ * DMASK bit is 0, use device TDO.
+ */
+
+ g_pucOutData[usOutBitIndex / 8] |= (unsigned char)
+ (((cCurBit & 0x1) ? 0x01 : 0x00) <<
+ (7 - usOutBitIndex % 8));
+ }
+
+ /*
+ * Shift in TDI in order to get TDO out.
+ */
+
+ usOutBitIndex++;
+ writePort(g_ucPinTDI, cDataByte);
+ if (usDataSizeIndex < usLastBitIndex) {
+ sclock();
+ }
+
+ /*
+ * Increment the byte index. If it exceeds 7, then reset it back
+ * to zero.
+ */
+
+ cByteIndex++;
+ if (cByteIndex >= 8) {
+ cByteIndex = 0;
+ }
+ }
+
+ /*
+ * If g_pLVDSList exists and pairs need updating, then update
+ * the negative-pair to receive the flipped positive-pair value.
+ */
+
+ if (g_pLVDSList) {
+ for (usLVDSIndex = 0; usLVDSIndex < g_usLVDSPairCount;
+ usLVDSIndex++) {
+ if (g_pLVDSList[usLVDSIndex].ucUpdate) {
+
+ /*
+ * Read the positive value and flip it.
+ */
+
+ cDataByte = (unsigned char)
+ (((g_pucOutData[g_pLVDSList[usLVDSIndex].
+ usPositiveIndex / 8]
+ << (g_pLVDSList[usLVDSIndex].
+ usPositiveIndex % 8)) & 0x80) ?
+ 0x01 : 0x00);
+ /* 09/11/07 NN Type cast mismatch variables */
+ cDataByte = (unsigned char) (!cDataByte);
+
+ /*
+ * Get the byte that needs modification.
+ */
+
+ cInDataByte =
+ g_pucOutData[g_pLVDSList[usLVDSIndex].
+ usNegativeIndex / 8];
+
+ if (cDataByte) {
+
+ /*
+ * Copy over the current byte and
+ * set the negative bit to 1.
+ */
+
+ cDataByte = 0x00;
+ for (cLVDSByteIndex = 7;
+ cLVDSByteIndex >= 0;
+ cLVDSByteIndex--) {
+ cDataByte <<= 1;
+ if (7 -
+ (g_pLVDSList[usLVDSIndex].
+ usNegativeIndex % 8) ==
+ cLVDSByteIndex) {
+
+ /*
+ * Set negative bit to 1
+ */
+
+ cDataByte |= 0x01;
+ } else if (cInDataByte & 0x80) {
+ cDataByte |= 0x01;
+ }
+
+ cInDataByte <<= 1;
+ }
+
+ /*
+ * Store the modified byte.
+ */
+
+ g_pucOutData[g_pLVDSList[usLVDSIndex].
+ usNegativeIndex / 8] = cDataByte;
+ } else {
+
+ /*
+ * Copy over the current byte and set
+ * the negative bit to 0.
+ */
+
+ cDataByte = 0x00;
+ for (cLVDSByteIndex = 7;
+ cLVDSByteIndex >= 0;
+ cLVDSByteIndex--) {
+ cDataByte <<= 1;
+ if (7 -
+ (g_pLVDSList[usLVDSIndex].
+ usNegativeIndex % 8) ==
+ cLVDSByteIndex) {
+
+ /*
+ * Set negative bit to 0
+ */
+
+ cDataByte |= 0x00;
+ } else if (cInDataByte & 0x80) {
+ cDataByte |= 0x01;
+ }
+
+ cInDataByte <<= 1;
+ }
+
+ /*
+ * Store the modified byte.
+ */
+
+ g_pucOutData[g_pLVDSList[usLVDSIndex].
+ usNegativeIndex / 8] = cDataByte;
+ }
+
+ break;
+ }
+ }
+ }
+
+ return 0;
+}
+
+signed char ispVMProcessLVDS(unsigned short a_usLVDSCount)
+{
+ unsigned short usLVDSIndex = 0;
+
+ /*
+ * Allocate memory to hold LVDS pairs.
+ */
+
+ ispVMMemManager(LVDS, a_usLVDSCount);
+ g_usLVDSPairCount = a_usLVDSCount;
+
+#ifdef DEBUG
+ printf("LVDS %d (", a_usLVDSCount);
+#endif /* DEBUG */
+
+ /*
+ * Iterate through each given LVDS pair.
+ */
+
+ for (usLVDSIndex = 0; usLVDSIndex < g_usLVDSPairCount; usLVDSIndex++) {
+
+ /*
+ * Assign the positive and negative indices of the LVDS pair.
+ */
+
+ /* 09/11/07 NN Type cast mismatch variables */
+ g_pLVDSList[usLVDSIndex].usPositiveIndex =
+ (unsigned short) ispVMDataSize();
+ /* 09/11/07 NN Type cast mismatch variables */
+ g_pLVDSList[usLVDSIndex].usNegativeIndex =
+ (unsigned short)ispVMDataSize();
+
+#ifdef DEBUG
+ if (usLVDSIndex < g_usLVDSPairCount - 1) {
+ printf("%d:%d, ",
+ g_pLVDSList[usLVDSIndex].usPositiveIndex,
+ g_pLVDSList[usLVDSIndex].usNegativeIndex);
+ } else {
+ printf("%d:%d",
+ g_pLVDSList[usLVDSIndex].usPositiveIndex,
+ g_pLVDSList[usLVDSIndex].usNegativeIndex);
+ }
+#endif /* DEBUG */
+
+ }
+
+#ifdef DEBUG
+ printf(");\n", a_usLVDSCount);
+#endif /* DEBUG */
+
+ return 0;
+}
diff --git a/drivers/fpga/lattice.c b/drivers/fpga/lattice.c
new file mode 100644
index 000000000..a0e782310
--- /dev/null
+++ b/drivers/fpga/lattice.c
@@ -0,0 +1,399 @@
+/*
+ * (C) Copyright 2010
+ * Stefano Babic, DENX Software Engineering, sbabic@denx.de.
+ *
+ * (C) Copyright 2002
+ * Rich Ireland, Enterasys Networks, rireland@enterasys.com.
+ *
+ * ispVM functions adapted from Lattice's ispmVMEmbedded code:
+ * Copyright 2009 Lattice Semiconductor Corp.
+ *
+ * See file CREDITS for list of people who contributed to this
+ * project.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of
+ * the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ *
+ */
+
+#include <common.h>
+#include <malloc.h>
+#include <fpga.h>
+#include <lattice.h>
+
+static lattice_board_specific_func *pfns;
+static char *fpga_image;
+static unsigned long read_bytes;
+static unsigned long bufsize;
+static unsigned short expectedCRC;
+
+/*
+ * External variables and functions declared in ivm_core.c module.
+ */
+extern unsigned short g_usCalculatedCRC;
+extern unsigned short g_usDataType;
+extern unsigned char *g_pucIntelBuffer;
+extern unsigned char *g_pucHeapMemory;
+extern unsigned short g_iHeapCounter;
+extern unsigned short g_iHEAPSize;
+extern unsigned short g_usIntelDataIndex;
+extern unsigned short g_usIntelBufferSize;
+extern char *const g_szSupportedVersions[];
+
+
+/*
+ * ispVMDelay
+ *
+ * Users must implement a delay to observe a_usTimeDelay, where
+ * bit 15 of the a_usTimeDelay defines the unit.
+ * 1 = milliseconds
+ * 0 = microseconds
+ * Example:
+ * a_usTimeDelay = 0x0001 = 1 microsecond delay.
+ * a_usTimeDelay = 0x8001 = 1 millisecond delay.
+ *
+ * This subroutine is called upon to provide a delay from 1 millisecond to a few
+ * hundreds milliseconds each time.
+ * It is understood that due to a_usTimeDelay is defined as unsigned short, a 16
+ * bits integer, this function is restricted to produce a delay to 64000
+ * micro-seconds or 32000 milli-second maximum. The VME file will never pass on
+ * to this function a delay time > those maximum number. If it needs more than
+ * those maximum, the VME file will launch the delay function several times to
+ * realize a larger delay time cummulatively.
+ * It is perfectly alright to provide a longer delay than required. It is not
+ * acceptable if the delay is shorter.
+ */
+void ispVMDelay(unsigned short delay)
+{
+ if (delay & 0x8000)
+ delay = (delay & ~0x8000) * 1000;
+ udelay(delay);
+}
+
+void writePort(unsigned char a_ucPins, unsigned char a_ucValue)
+{
+ a_ucValue = a_ucValue ? 1 : 0;
+
+ switch (a_ucPins) {
+ case g_ucPinTDI:
+ pfns->jtag_set_tdi(a_ucValue);
+ break;
+ case g_ucPinTCK:
+ pfns->jtag_set_tck(a_ucValue);
+ break;
+ case g_ucPinTMS:
+ pfns->jtag_set_tms(a_ucValue);
+ break;
+ default:
+ printf("%s: requested unknown pin\n", __func__);
+ }
+}
+
+unsigned char readPort(void)
+{
+ return pfns->jtag_get_tdo();
+}
+
+void sclock(void)
+{
+ writePort(g_ucPinTCK, 0x01);
+ writePort(g_ucPinTCK, 0x00);
+}
+
+void calibration(void)
+{
+ /* Apply 2 pulses to TCK. */
+ writePort(g_ucPinTCK, 0x00);
+ writePort(g_ucPinTCK, 0x01);
+ writePort(g_ucPinTCK, 0x00);
+ writePort(g_ucPinTCK, 0x01);
+ writePort(g_ucPinTCK, 0x00);
+
+ ispVMDelay(0x8001);
+
+ /* Apply 2 pulses to TCK. */
+ writePort(g_ucPinTCK, 0x01);
+ writePort(g_ucPinTCK, 0x00);
+ writePort(g_ucPinTCK, 0x01);
+ writePort(g_ucPinTCK, 0x00);
+}
+
+/*
+ * GetByte
+ *
+ * Returns a byte to the caller. The returned byte depends on the
+ * g_usDataType register. If the HEAP_IN bit is set, then the byte
+ * is returned from the HEAP. If the LHEAP_IN bit is set, then
+ * the byte is returned from the intelligent buffer. Otherwise,
+ * the byte is returned directly from the VME file.
+ */
+unsigned char GetByte(void)
+{
+ unsigned char ucData;
+ unsigned int block_size = 4 * 1024;
+
+ if (g_usDataType & HEAP_IN) {
+
+ /*
+ * Get data from repeat buffer.
+ */
+
+ if (g_iHeapCounter > g_iHEAPSize) {
+
+ /*
+ * Data over-run.
+ */
+
+ return 0xFF;
+ }
+
+ ucData = g_pucHeapMemory[g_iHeapCounter++];
+ } else if (g_usDataType & LHEAP_IN) {
+
+ /*
+ * Get data from intel buffer.
+ */
+
+ if (g_usIntelDataIndex >= g_usIntelBufferSize) {
+ return 0xFF;
+ }
+
+ ucData = g_pucIntelBuffer[g_usIntelDataIndex++];
+ } else {
+ if (read_bytes == bufsize) {
+ return 0xFF;
+ }
+ ucData = *fpga_image++;
+ read_bytes++;
+
+ if (!(read_bytes % block_size)) {
+ printf("Downloading FPGA %ld/%ld completed\r",
+ read_bytes,
+ bufsize);
+ }
+
+ if (expectedCRC != 0) {
+ ispVMCalculateCRC32(ucData);
+ }
+ }
+
+ return ucData;
+}
+
+signed char ispVM(void)
+{
+ char szFileVersion[9] = { 0 };
+ signed char cRetCode = 0;
+ signed char cIndex = 0;
+ signed char cVersionIndex = 0;
+ unsigned char ucReadByte = 0;
+ unsigned short crc;
+
+ g_pucHeapMemory = NULL;
+ g_iHeapCounter = 0;
+ g_iHEAPSize = 0;
+ g_usIntelDataIndex = 0;
+ g_usIntelBufferSize = 0;
+ g_usCalculatedCRC = 0;
+ expectedCRC = 0;
+ ucReadByte = GetByte();
+ switch (ucReadByte) {
+ case FILE_CRC:
+ crc = (unsigned char)GetByte();
+ crc <<= 8;
+ crc |= GetByte();
+ expectedCRC = crc;
+
+ for (cIndex = 0; cIndex < 8; cIndex++)
+ szFileVersion[cIndex] = GetByte();
+
+ break;
+ default:
+ szFileVersion[0] = (signed char) ucReadByte;
+ for (cIndex = 1; cIndex < 8; cIndex++)
+ szFileVersion[cIndex] = GetByte();
+
+ break;
+ }
+
+ /*
+ *
+ * Compare the VME file version against the supported version.
+ *
+ */
+
+ for (cVersionIndex = 0; g_szSupportedVersions[cVersionIndex] != 0;
+ cVersionIndex++) {
+ for (cIndex = 0; cIndex < 8; cIndex++) {
+ if (szFileVersion[cIndex] !=
+ g_szSupportedVersions[cVersionIndex][cIndex]) {
+ cRetCode = VME_VERSION_FAILURE;
+ break;
+ }
+ cRetCode = 0;
+ }
+
+ if (cRetCode == 0) {
+ break;
+ }
+ }
+
+ if (cRetCode < 0) {
+ return VME_VERSION_FAILURE;
+ }
+
+ printf("VME file checked: starting downloading to FPGA\n");
+
+ ispVMStart();
+
+ cRetCode = ispVMCode();
+
+ ispVMEnd();
+ ispVMFreeMem();
+ puts("\n");
+
+ if (cRetCode == 0 && expectedCRC != 0 &&
+ (expectedCRC != g_usCalculatedCRC)) {
+ printf("Expected CRC: 0x%.4X\n", expectedCRC);
+ printf("Calculated CRC: 0x%.4X\n", g_usCalculatedCRC);
+ return VME_CRC_FAILURE;
+ }
+ return cRetCode;
+}
+
+static int lattice_validate(Lattice_desc *desc, const char *fn)
+{
+ int ret_val = FALSE;
+
+ if (desc) {
+ if ((desc->family > min_lattice_type) &&
+ (desc->family < max_lattice_type)) {
+ if ((desc->iface > min_lattice_iface_type) &&
+ (desc->iface < max_lattice_iface_type)) {
+ if (desc->size) {
+ ret_val = TRUE;
+ } else {
+ printf("%s: NULL part size\n", fn);
+ }
+ } else {
+ printf("%s: Invalid Interface type, %d\n",
+ fn, desc->iface);
+ }
+ } else {
+ printf("%s: Invalid family type, %d\n",
+ fn, desc->family);
+ }
+ } else {
+ printf("%s: NULL descriptor!\n", fn);
+ }
+
+ return ret_val;
+}
+
+int lattice_load(Lattice_desc *desc, void *buf, size_t bsize)
+{
+ int ret_val = FPGA_FAIL;
+
+ if (!lattice_validate(desc, (char *)__func__)) {
+ printf("%s: Invalid device descriptor\n", __func__);
+ } else {
+ pfns = desc->iface_fns;
+
+ switch (desc->family) {
+ case Lattice_XP2:
+ fpga_image = buf;
+ read_bytes = 0;
+ bufsize = bsize;
+ debug("%s: Launching the Lattice ISPVME Loader:"
+ " addr 0x%x size 0x%x...\n",
+ __func__, fpga_image, bufsize);
+ ret_val = ispVM();
+ if (ret_val)
+ printf("%s: error %d downloading FPGA image\n",
+ __func__, ret_val);
+ else
+ puts("FPGA downloaded successfully\n");
+ break;
+ default:
+ printf("%s: Unsupported family type, %d\n",
+ __func__, desc->family);
+ }
+ }
+
+ return ret_val;
+}
+
+int lattice_dump(Lattice_desc *desc, void *buf, size_t bsize)
+{
+ puts("Dump not supported for Lattice FPGA\n");
+
+ return FPGA_FAIL;
+
+}
+
+int lattice_info(Lattice_desc *desc)
+{
+ int ret_val = FPGA_FAIL;
+
+ if (lattice_validate(desc, (char *)__func__)) {
+ printf("Family: \t");
+ switch (desc->family) {
+ case Lattice_XP2:
+ puts("XP2\n");
+ break;
+ /* Add new family types here */
+ default:
+ printf("Unknown family type, %d\n", desc->family);
+ }
+
+ puts("Interface type:\t");
+ switch (desc->iface) {
+ case lattice_jtag_mode:
+ puts("JTAG Mode\n");
+ break;
+ /* Add new interface types here */
+ default:
+ printf("Unsupported interface type, %d\n", desc->iface);
+ }
+
+ printf("Device Size: \t%d bytes\n",
+ desc->size);
+
+ if (desc->iface_fns) {
+ printf("Device Function Table @ 0x%p\n",
+ desc->iface_fns);
+ switch (desc->family) {
+ case Lattice_XP2:
+ break;
+ /* Add new family types here */
+ default:
+ break;
+ }
+ } else {
+ puts("No Device Function Table.\n");
+ }
+
+ if (desc->desc)
+ printf("Model: \t%s\n", desc->desc);
+
+ ret_val = FPGA_SUCCESS;
+ } else {
+ printf("%s: Invalid device descriptor\n", __func__);
+ }
+
+ return ret_val;
+}
+
+