/* * Support for Digigram Lola PCI-e boards * * Copyright (c) 2011 Takashi Iwai * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include #include #include #include "lola.h" unsigned int lola_sample_rate_convert(unsigned int coded) { unsigned int freq; /* base frequency */ switch (coded & 0x3) { case 0: freq = 48000; break; case 1: freq = 44100; break; case 2: freq = 32000; break; default: return 0; /* error */ } /* multiplier / devisor */ switch (coded & 0x1c) { case (0 << 2): break; case (4 << 2): break; case (1 << 2): freq *= 2; break; case (2 << 2): freq *= 4; break; case (5 << 2): freq /= 2; break; case (6 << 2): freq /= 4; break; default: return 0; /* error */ } /* ajustement */ switch (coded & 0x60) { case (0 << 5): break; case (1 << 5): freq = (freq * 999) / 1000; break; case (2 << 5): freq = (freq * 1001) / 1000; break; default: return 0; /* error */ } return freq; } /* * Granualrity */ #define LOLA_MAXFREQ_AT_GRANULARITY_MIN 48000 #define LOLA_MAXFREQ_AT_GRANULARITY_BELOW_MAX 96000 static bool check_gran_clock_compatibility(struct lola *chip, unsigned int val, unsigned int freq) { if (!chip->granularity) return true; if (val < LOLA_GRANULARITY_MIN || val > LOLA_GRANULARITY_MAX || (val % LOLA_GRANULARITY_STEP) != 0) return false; if (val == LOLA_GRANULARITY_MIN) { if (freq > LOLA_MAXFREQ_AT_GRANULARITY_MIN) return false; } else if (val < LOLA_GRANULARITY_MAX) { if (freq > LOLA_MAXFREQ_AT_GRANULARITY_BELOW_MAX) return false; } return true; } int lola_set_granularity(struct lola *chip, unsigned int val, bool force) { int err; if (!force) { if (val == chip->granularity) return 0; #if 0 /* change Gran only if there are no streams allocated ! */ if (chip->audio_in_alloc_mask || chip->audio_out_alloc_mask) return -EBUSY; #endif if (!check_gran_clock_compatibility(chip, val, chip->clock.cur_freq)) return -EINVAL; } chip->granularity = val; val /= LOLA_GRANULARITY_STEP; /* audio function group */ err = lola_codec_write(chip, 1, LOLA_VERB_SET_GRANULARITY_STEPS, val, 0); if (err < 0) return err; /* this can be a very slow function !!! */ usleep_range(400 * val, 20000); return lola_codec_flush(chip); } /* * Clock widget handling */ int __devinit lola_init_clock_widget(struct lola *chip, int nid) { unsigned int val; int i, j, nitems, nb_verbs, idx, idx_list; int err; err = lola_read_param(chip, nid, LOLA_PAR_AUDIO_WIDGET_CAP, &val); if (err < 0) { printk(KERN_ERR SFX "Can't read wcaps for 0x%x\n", nid); return err; } if ((val & 0xfff00000) != 0x01f00000) { /* test SubType and Type */ snd_printdd("No valid clock widget\n"); return 0; } chip->clock.nid = nid; chip->clock.items = val & 0xff; snd_printdd("clock_list nid=%x, entries=%d\n", nid, chip->clock.items); if (chip->clock.items > MAX_SAMPLE_CLOCK_COUNT) { printk(KERN_ERR SFX "CLOCK_LIST too big: %d\n", chip->clock.items); return -EINVAL; } nitems = chip->clock.items; nb_verbs = (nitems + 3) / 4; idx = 0; idx_list = 0; for (i = 0; i < nb_verbs; i++) { unsigned int res_ex; unsigned short items[4]; err = lola_codec_read(chip, nid, LOLA_VERB_GET_CLOCK_LIST, idx, 0, &val, &res_ex); if (err < 0) { printk(KERN_ERR SFX "Can't read CLOCK_LIST\n"); return -EINVAL; } items[0] = val & 0xfff; items[1] = (val >> 16) & 0xfff; items[2] = res_ex & 0xfff; items[3] = (res_ex >> 16) & 0xfff; for (j = 0; j < 4; j++) { unsigned char type = items[j] >> 8; unsigned int freq = items[j] & 0xff; int format = LOLA_CLOCK_FORMAT_NONE; bool add_clock = true; if (type == LOLA_CLOCK_TYPE_INTERNAL) { freq = lola_sample_rate_convert(freq); if (freq < chip->sample_rate_min) add_clock = false; else if (freq == 48000) { chip->clock.cur_index = idx_list; chip->clock.cur_freq = 48000; chip->clock.cur_valid = true; } } else if (type == LOLA_CLOCK_TYPE_VIDEO) { freq = lola_sample_rate_convert(freq); if (freq < chip->sample_rate_min) add_clock = false; /* video clock has a format (0:NTSC, 1:PAL)*/ if (items[j] & 0x80) format = LOLA_CLOCK_FORMAT_NTSC; else format = LOLA_CLOCK_FORMAT_PAL; } if (add_clock) { struct lola_sample_clock *sc; sc = &chip->clock.sample_clock[idx_list]; sc->type = type; sc->format = format; sc->freq = freq; /* keep the index used with the board */ chip->clock.idx_lookup[idx_list] = idx; idx_list++; } else { chip->clock.items--; } if (++idx >= nitems) break; } } return 0; } /* enable unsolicited events of the clock widget */ int lola_enable_clock_events(struct lola *chip) { unsigned int res; int err; err = lola_codec_read(chip, chip->clock.nid, LOLA_VERB_SET_UNSOLICITED_ENABLE, LOLA_UNSOLICITED_ENABLE | LOLA_UNSOLICITED_TAG, 0, &res, NULL); if (err < 0) return err; if (res) { printk(KERN_WARNING SFX "error in enable_clock_events %d\n", res); return -EINVAL; } return 0; } int lola_set_clock_index(struct lola *chip, unsigned int idx) { unsigned int res; int err; err = lola_codec_read(chip, chip->clock.nid, LOLA_VERB_SET_CLOCK_SELECT, chip->clock.idx_lookup[idx], 0, &res, NULL); if (err < 0) return err; if (res) { printk(KERN_WARNING SFX "error in set_clock %d\n", res); return -EINVAL; } return 0; } bool lola_update_ext_clock_freq(struct lola *chip, unsigned int val) { unsigned int tag; /* the current EXTERNAL clock information gets updated by interrupt * with an unsolicited response */ if (!val) return false; tag = (val >> LOLA_UNSOL_RESP_TAG_OFFSET) & LOLA_UNSOLICITED_TAG_MASK; if (tag != LOLA_UNSOLICITED_TAG) return false; /* only for current = external clocks */ if (chip->clock.sample_clock[chip->clock.cur_index].type != LOLA_CLOCK_TYPE_INTERNAL) { chip->clock.cur_freq = lola_sample_rate_convert(val & 0x7f); chip->clock.cur_valid = (val & 0x100) != 0; } return true; } int lola_set_clock(struct lola *chip, int idx) { int freq = 0; bool valid = false; if (idx == chip->clock.cur_index) { /* current clock is allowed */ freq = chip->clock.cur_freq; valid = chip->clock.cur_valid; } else if (chip->clock.sample_clock[idx].type == LOLA_CLOCK_TYPE_INTERNAL) { /* internal clocks allowed */ freq = chip->clock.sample_clock[idx].freq; valid = true; } if (!freq || !valid) return -EINVAL; if (!check_gran_clock_compatibility(chip, chip->granularity, freq)) return -EINVAL; if (idx != chip->clock.cur_index) { int err = lola_set_clock_index(chip, idx); if (err < 0) return err; /* update new settings */ chip->clock.cur_index = idx; chip->clock.cur_freq = freq; chip->clock.cur_valid = true; } return 0; } int lola_set_sample_rate(struct lola *chip, int rate) { int i; if (chip->clock.cur_freq == rate && chip->clock.cur_valid) return 0; /* search for new dwClockIndex */ for (i = 0; i < chip->clock.items; i++) { if (chip->clock.sample_clock[i].type == LOLA_CLOCK_TYPE_INTERNAL && chip->clock.sample_clock[i].freq == rate) break; } if (i >= chip->clock.items) return -EINVAL; return lola_set_clock(chip, i); }