/* * IEEE 1394 for Linux * * Core support: hpsb_packet management, packet handling and forwarding to * highlevel or lowlevel code * * Copyright (C) 1999, 2000 Andreas E. Bombe * 2002 Manfred Weihs * * This code is licensed under the GPL. See the file COPYING in the root * directory of the kernel sources for details. * * * Contributions: * * Manfred Weihs * loopback functionality in hpsb_send_packet * allow highlevel drivers to disable automatic response generation * and to generate responses themselves (deferred) * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ieee1394_types.h" #include "ieee1394.h" #include "hosts.h" #include "ieee1394_core.h" #include "highlevel.h" #include "ieee1394_transactions.h" #include "csr.h" #include "nodemgr.h" #include "dma.h" #include "iso.h" #include "config_roms.h" /* * Disable the nodemgr detection and config rom reading functionality. */ static int disable_nodemgr; module_param(disable_nodemgr, int, 0444); MODULE_PARM_DESC(disable_nodemgr, "Disable nodemgr functionality."); /* Disable Isochronous Resource Manager functionality */ int hpsb_disable_irm = 0; module_param_named(disable_irm, hpsb_disable_irm, bool, 0444); MODULE_PARM_DESC(disable_irm, "Disable Isochronous Resource Manager functionality."); /* We are GPL, so treat us special */ MODULE_LICENSE("GPL"); /* Some globals used */ const char *hpsb_speedto_str[] = { "S100", "S200", "S400", "S800", "S1600", "S3200" }; struct class *hpsb_protocol_class; #ifdef CONFIG_IEEE1394_VERBOSEDEBUG static void dump_packet(const char *text, quadlet_t *data, int size, int speed) { int i; size /= 4; size = (size > 4 ? 4 : size); printk(KERN_DEBUG "ieee1394: %s", text); if (speed > -1 && speed < 6) printk(" at %s", hpsb_speedto_str[speed]); printk(":"); for (i = 0; i < size; i++) printk(" %08x", data[i]); printk("\n"); } #else #define dump_packet(a,b,c,d) do {} while (0) #endif static void abort_requests(struct hpsb_host *host); static void queue_packet_complete(struct hpsb_packet *packet); /** * hpsb_set_packet_complete_task - set task that runs when a packet completes * @packet: the packet whose completion we want the task added to * @routine: function to call * @data: data (if any) to pass to the above function * * Set the task that runs when a packet completes. You cannot call this more * than once on a single packet before it is sent. * * Typically, the complete @routine is responsible to call hpsb_free_packet(). */ void hpsb_set_packet_complete_task(struct hpsb_packet *packet, void (*routine)(void *), void *data) { WARN_ON(packet->complete_routine != NULL); packet->complete_routine = routine; packet->complete_data = data; return; } /** * hpsb_alloc_packet - allocate new packet structure * @data_size: size of the data block to be allocated, in bytes * * This function allocates, initializes and returns a new &struct hpsb_packet. * It can be used in interrupt context. A header block is always included and * initialized with zeros. Its size is big enough to contain all possible 1394 * headers. The data block is only allocated if @data_size is not zero. * * For packets for which responses will be received the @data_size has to be big * enough to contain the response's data block since no further allocation * occurs at response matching time. * * The packet's generation value will be set to the current generation number * for ease of use. Remember to overwrite it with your own recorded generation * number if you can not be sure that your code will not race with a bus reset. * * Return value: A pointer to a &struct hpsb_packet or NULL on allocation * failure. */ struct hpsb_packet *hpsb_alloc_packet(size_t data_size) { struct hpsb_packet *packet; data_size = ((data_size + 3) & ~3); packet = kzalloc(sizeof(*packet) + data_size, GFP_ATOMIC); if (!packet) return NULL; packet->state = hpsb_unused; packet->generation = -1; INIT_LIST_HEAD(&packet->driver_list); INIT_LIST_HEAD(&packet->queue); atomic_set(&packet->refcnt, 1); if (data_size) { packet->data = packet->embedded_data; packet->allocated_data_size = data_size; } return packet; } /** * hpsb_free_packet - free packet and data associated with it * @packet: packet to free (is NULL safe) * * Frees @packet->data only if it was allocated through hpsb_alloc_packet(). */ void hpsb_free_packet(struct hpsb_packet *packet) { if (packet && atomic_dec_and_test(&packet->refcnt)) { BUG_ON(!list_empty(&packet->driver_list) || !list_empty(&packet->queue)); kfree(packet); } } /** * hpsb_reset_bus - initiate bus reset on the given host * @host: host controller whose bus to reset * @type: one of enum reset_types * * Returns 1 if bus reset already in progress, 0 otherwise. */ int hpsb_reset_bus(struct hpsb_host *host, int type) { if (!host->in_bus_reset) { host->driver->devctl(host, RESET_BUS, type); return 0; } else { return 1; } } /** * hpsb_read_cycle_timer - read cycle timer register and system time * @host: host whose isochronous cycle timer register is read * @cycle_timer: address of bitfield to return the register contents * @local_time: address to return the system time * * The format of * @cycle_timer, is described in OHCI 1.1 clause 5.13. This * format is also read from non-OHCI controllers. * @local_time contains the * system time in microseconds since the Epoch, read at the moment when the * cycle timer was read. * * Return value: 0 for success or error number otherwise. */ int hpsb_read_cycle_timer(struct hpsb_host *host, u32 *cycle_timer, u64 *local_time) { int ctr; struct timeval tv; unsigned long flags; if (!host || !cycle_timer || !local_time) return -EINVAL; preempt_disable(); local_irq_save(flags); ctr = host->driver->devctl(host, GET_CYCLE_COUNTER, 0); if (ctr) do_gettimeofday(&tv); local_irq_restore(flags); preempt_enable(); if (!ctr) return -EIO; *cycle_timer = ctr; *local_time = tv.tv_sec * 1000000ULL + tv.tv_usec; return 0; } /** * hpsb_bus_reset - notify a bus reset to the core * * For host driver module usage. Safe to use in interrupt context, although * quite complex; so you may want to run it in the bottom rather than top half. * * Returns 1 if bus reset already in progress, 0 otherwise. */ int hpsb_bus_reset(struct hpsb_host *host) { if (host->in_bus_reset) { HPSB_NOTICE("%s called while bus reset already in progress", __FUNCTION__); return 1; } abort_requests(host); host->in_bus_reset = 1; host->irm_id = -1; host->is_irm = 0; host->busmgr_id = -1; host->is_busmgr = 0; host->is_cycmst = 0; host->node_count = 0; host->selfid_count = 0; return 0; } /* * Verify num_of_selfids SelfIDs and return number of nodes. Return zero in * case verification failed. */ static int check_selfids(struct hpsb_host *host) { int nodeid = -1; int rest_of_selfids = host->selfid_count; struct selfid *sid = (struct selfid *)host->topology_map; struct ext_selfid *esid; int esid_seq = 23; host->nodes_active = 0; while (rest_of_selfids--) { if (!sid->extended) { nodeid++; esid_seq = 0; if (sid->phy_id != nodeid) { HPSB_INFO("SelfIDs failed monotony check with " "%d", sid->phy_id); return 0; } if (sid->link_active) { host->nodes_active++; if (sid->contender) host->irm_id = LOCAL_BUS | sid->phy_id; } } else { esid = (struct ext_selfid *)sid; if ((esid->phy_id != nodeid) || (esid->seq_nr != esid_seq)) { HPSB_INFO("SelfIDs failed monotony check with " "%d/%d", esid->phy_id, esid->seq_nr); return 0; } esid_seq++; } sid++; } esid = (struct ext_selfid *)(sid - 1); while (esid->extended) { if ((esid->porta == SELFID_PORT_PARENT) || (esid->portb == SELFID_PORT_PARENT) || (esid->portc == SELFID_PORT_PARENT) || (esid->portd == SELFID_PORT_PARENT) || (esid->porte == SELFID_PORT_PARENT) || (esid->portf == SELFID_PORT_PARENT) || (esid->portg == SELFID_PORT_PARENT) || (esid->porth == SELFID_PORT_PARENT)) { HPSB_INFO("SelfIDs failed root check on " "extended SelfID"); return 0; } esid--; } sid = (struct selfid *)esid; if ((sid->port0 == SELFID_PORT_PARENT) || (sid->port1 == SELFID_PORT_PARENT) || (sid->port2 == SELFID_PORT_PARENT)) { HPSB_INFO("SelfIDs failed root check"); return 0; } host->node_count = nodeid + 1; return 1; } static void build_speed_map(struct hpsb_host *host, int nodecount) { u8 cldcnt[nodecount]; u8 *map = host->speed_map; u8 *speedcap = host->speed; struct selfid *sid; struct ext_selfid *esid; int i, j, n; for (i = 0; i < (nodecount * 64); i += 64) { for (j = 0; j < nodecount; j++) { map[i+j] = IEEE1394_SPEED_MAX; } } for (i = 0; i < nodecount; i++) { cldcnt[i] = 0; } /* find direct children count and speed */ for (sid = (struct selfid *)&host->topology_map[host->selfid_count-1], n = nodecount - 1; (void *)sid >= (void *)host->topology_map; sid--) { if (sid->extended) { esid = (struct ext_selfid *)sid; if (esid->porta == SELFID_PORT_CHILD) cldcnt[n]++; if (esid->portb == SELFID_PORT_CHILD) cldcnt[n]++; if (esid->portc == SELFID_PORT_CHILD) cldcnt[n]++; if (esid->portd == SELFID_PORT_CHILD) cldcnt[n]++; if (esid->porte == SELFID_PORT_CHILD) cldcnt[n]++; if (esid->portf == SELFID_PORT_CHILD) cldcnt[n]++; if (esid->portg == SELFID_PORT_CHILD) cldcnt[n]++; if (esid->porth == SELFID_PORT_CHILD) cldcnt[n]++; } else { if (sid->port0 == SELFID_PORT_CHILD) cldcnt[n]++; if (sid->port1 == SELFID_PORT_CHILD) cldcnt[n]++; if (sid->port2 == SELFID_PORT_CHILD) cldcnt[n]++; speedcap[n] = sid->speed; n--; } } /* set self mapping */ for (i = 0; i < nodecount; i++) { map[64*i + i] = speedcap[i]; } /* fix up direct children count to total children count; * also fix up speedcaps for sibling and parent communication */ for (i = 1; i < nodecount; i++) { for (j = cldcnt[i], n = i - 1; j > 0; j--) { cldcnt[i] += cldcnt[n]; speedcap[n] = min(speedcap[n], speedcap[i]); n -= cldcnt[n] + 1; } } for (n = 0; n < nodecount; n++) { for (i = n - cldcnt[n]; i <= n; i++) { for (j = 0; j < (n - cldcnt[n]); j++) { map[j*64 + i] = map[i*64 + j] = min(map[i*64 + j], speedcap[n]); } for (j = n + 1; j < nodecount; j++) { map[j*64 + i] = map[i*64 + j] = min(map[i*64 + j], speedcap[n]); } } } #if SELFID_SPEED_UNKNOWN != IEEE1394_SPEED_MAX /* assume maximum speed for 1394b PHYs, nodemgr will correct it */ for (n = 0; n < nodecount; n++) if (speedcap[n] == SELFID_SPEED_UNKNOWN) speedcap[n] = IEEE1394_SPEED_MAX; #endif } /** * hpsb_selfid_received - hand over received selfid packet to the core * * For host driver module usage. Safe to use in interrupt context. * * The host driver should have done a successful complement check (second * quadlet is complement of first) beforehand. */ void hpsb_selfid_received(struct hpsb_host *host, quadlet_t sid) { if (host->in_bus_reset) { HPSB_VERBOSE("Including SelfID 0x%x", sid); host->topology_map[host->selfid_count++] = sid; } else { HPSB_NOTICE("Spurious SelfID packet (0x%08x) received from bus %d", sid, NODEID_TO_BUS(host->node_id)); } } /** * hpsb_selfid_complete - notify completion of SelfID stage to the core * * For host driver module usage. Safe to use in interrupt context, although * quite complex; so you may want to run it in the bottom rather than top half. * * Notify completion of SelfID stage to the core and report new physical ID * and whether host is root now. */ void hpsb_selfid_complete(struct hpsb_host *host, int phyid, int isroot) { if (!host->in_bus_reset) HPSB_NOTICE("SelfID completion called outside of bus reset!"); host->node_id = LOCAL_BUS | phyid; host->is_root = isroot; if (!check_selfids(host)) { if (host->reset_retries++ < 20) { /* selfid stage did not complete without error */ HPSB_NOTICE("Error in SelfID stage, resetting"); host->in_bus_reset = 0; /* this should work from ohci1394 now... */ hpsb_reset_bus(host, LONG_RESET); return; } else { HPSB_NOTICE("Stopping out-of-control reset loop"); HPSB_NOTICE("Warning - topology map and speed map will not be valid"); host->reset_retries = 0; } } else { host->reset_retries = 0; build_speed_map(host, host->node_count); } HPSB_VERBOSE("selfid_complete called with successful SelfID stage " "... irm_id: 0x%X node_id: 0x%X",host->irm_id,host->node_id); /* irm_id is kept up to date by check_selfids() */ if (host->irm_id == host->node_id) { host->is_irm = 1; } else { host->is_busmgr = 0; host->is_irm = 0; } if (isroot) { host->driver->devctl(host, ACT_CYCLE_MASTER, 1); host->is_cycmst = 1; } atomic_inc(&host->generation); host->in_bus_reset = 0; highlevel_host_reset(host); } static DEFINE_SPINLOCK(pending_packets_lock); /** * hpsb_packet_sent - notify core of sending a packet * * For host driver module usage. Safe to call from within a transmit packet * routine. * * Notify core of sending a packet. Ackcode is the ack code returned for async * transmits or ACKX_SEND_ERROR if the transmission failed completely; ACKX_NONE * for other cases (internal errors that don't justify a panic). */ void hpsb_packet_sent(struct hpsb_host *host, struct hpsb_packet *packet, int ackcode) { unsigned long flags; spin_lock_irqsave(&pending_packets_lock, flags); packet->ack_code = ackcode; if (packet->no_waiter || packet->state == hpsb_complete) { /* if packet->no_waiter, must not have a tlabel allocated */ spin_unlock_irqrestore(&pending_packets_lock, flags); hpsb_free_packet(packet); return; } atomic_dec(&packet->refcnt); /* drop HC's reference */ /* here the packet must be on the host->pending_packets queue */ if (ackcode != ACK_PENDING || !packet->expect_response) { packet->state = hpsb_complete; list_del_init(&packet->queue); spin_unlock_irqrestore(&pending_packets_lock, flags); queue_packet_complete(packet); return; } packet->state = hpsb_pending; packet->sendtime = jiffies; spin_unlock_irqrestore(&pending_packets_lock, flags); mod_timer(&host->timeout, jiffies + host->timeout_interval); } /** * hpsb_send_phy_config - transmit a PHY configuration packet on the bus * @host: host that PHY config packet gets sent through * @rootid: root whose force_root bit should get set (-1 = don't set force_root) * @gapcnt: gap count value to set (-1 = don't set gap count) * * This function sends a PHY config packet on the bus through the specified * host. * * Return value: 0 for success or negative error number otherwise. */ int hpsb_send_phy_config(struct hpsb_host *host, int rootid, int gapcnt) { struct hpsb_packet *packet; quadlet_t d = 0; int retval = 0; if (rootid >= ALL_NODES || rootid < -1 || gapcnt > 0x3f || gapcnt < -1 || (rootid == -1 && gapcnt == -1)) { HPSB_DEBUG("Invalid Parameter: rootid = %d gapcnt = %d", rootid, gapcnt); return -EINVAL; } if (rootid != -1) d |= PHYPACKET_PHYCONFIG_R | rootid << PHYPACKET_PORT_SHIFT; if (gapcnt != -1) d |= PHYPACKET_PHYCONFIG_T | gapcnt << PHYPACKET_GAPCOUNT_SHIFT; packet = hpsb_make_phypacket(host, d); if (!packet) return -ENOMEM; packet->generation = get_hpsb_generation(host); retval = hpsb_send_packet_and_wait(packet); hpsb_free_packet(packet); return retval; } /** * hpsb_send_packet - transmit a packet on the bus * @packet: packet to send * * The packet is sent through the host specified in the packet->host field. * Before sending, the packet's transmit speed is automatically determined * using the local speed map when it is an async, non-broadcast packet. * * Possibilities for failure are that host is either not initialized, in bus * reset, the packet's generation number doesn't match the current generation * number or the host reports a transmit error. * * Return value: 0 on success, negative errno on failure. */ int hpsb_send_packet(struct hpsb_packet *packet) { struct hpsb_host *host = packet->host; if (host->is_shutdown) return -EINVAL; if (host->in_bus_reset || (packet->generation != get_hpsb_generation(host))) return -EAGAIN; packet->state = hpsb_queued; /* This just seems silly to me */ WARN_ON(packet->no_waiter && packet->expect_response); if (!packet->no_waiter || packet->expect_response) { unsigned long flags; atomic_inc(&packet->refcnt); /* Set the initial "sendtime" to 10 seconds from now, to prevent premature expiry. If a packet takes more than 10 seconds to hit the wire, we have bigger problems :) */ packet->sendtime = jiffies + 10 * HZ; spin_lock_irqsave(&pending_packets_lock, flags); list_add_tail(&packet->queue, &host->pending_packets); spin_unlock_irqrestore(&pending_packets_lock, flags); } if (packet->node_id == host->node_id) { /* it is a local request, so handle it locally */ quadlet_t *data; size_t size = packet->data_size + packet->header_size; data = kmalloc(size, GFP_ATOMIC); if (!data) { HPSB_ERR("unable to allocate memory for concatenating header and data"); return -ENOMEM; } memcpy(data, packet->header, packet->header_size); if (packet->data_size) memcpy(((u8*)data) + packet->header_size, packet->data, packet->data_size); dump_packet("send packet local", packet->header, packet->header_size, -1); hpsb_packet_sent(host, packet, packet->expect_response ? ACK_PENDING : ACK_COMPLETE); hpsb_packet_received(host, data, size, 0); kfree(data); return 0; } if (packet->type == hpsb_async && NODEID_TO_NODE(packet->node_id) != ALL_NODES) packet->speed_code = host->speed[NODEID_TO_NODE(packet->node_id)]; dump_packet("send packet", packet->header, packet->header_size, packet->speed_code); return host->driver->transmit_packet(host, packet); } /* We could just use complete() directly as the packet complete * callback, but this is more typesafe, in the sense that we get a * compiler error if the prototype for complete() changes. */ static void complete_packet(void *data) { complete((struct completion *) data); } /** * hpsb_send_packet_and_wait - enqueue packet, block until transaction completes * @packet: packet to send * * Return value: 0 on success, negative errno on failure. */ int hpsb_send_packet_and_wait(struct hpsb_packet *packet) { struct completion done; int retval; init_completion(&done); hpsb_set_packet_complete_task(packet, complete_packet, &done); retval = hpsb_send_packet(packet); if (retval == 0) wait_for_completion(&done); return retval; } static void send_packet_nocare(struct hpsb_packet *packet) { if (hpsb_send_packet(packet) < 0) { hpsb_free_packet(packet); } } static size_t packet_size_to_data_size(size_t packet_size, size_t header_size, size_t buffer_size, int tcode) { size_t ret = packet_size <= header_size ? 0 : packet_size - header_size; if (unlikely(ret > buffer_size)) ret = buffer_size; if (unlikely(ret + header_size != packet_size)) HPSB_ERR("unexpected packet size %zd (tcode %d), bug?", packet_size, tcode); return ret; } static void handle_packet_response(struct hpsb_host *host, int tcode, quadlet_t *data, size_t size) { struct hpsb_packet *packet; int tlabel = (data[0] >> 10) & 0x3f; size_t header_size; unsigned long flags; spin_lock_irqsave(&pending_packets_lock, flags); list_for_each_entry(packet, &host->pending_packets, queue) if (packet->tlabel == tlabel && packet->node_id == (data[1] >> 16)) goto found; spin_unlock_irqrestore(&pending_packets_lock, flags); HPSB_DEBUG("unsolicited response packet received - %s", "no tlabel match"); dump_packet("contents", data, 16, -1); return; found: switch (packet->tcode) { case TCODE_WRITEQ: case TCODE_WRITEB: if (unlikely(tcode != TCODE_WRITE_RESPONSE)) break; header_size = 12; size = 0; goto dequeue; case TCODE_READQ: if (unlikely(tcode != TCODE_READQ_RESPONSE)) break; header_size = 16; size = 0; goto dequeue; case TCODE_READB: if (unlikely(tcode != TCODE_READB_RESPONSE)) break; header_size = 16; size = packet_size_to_data_size(size, header_size, packet->allocated_data_size, tcode); goto dequeue; case TCODE_LOCK_REQUEST: if (unlikely(tcode != TCODE_LOCK_RESPONSE)) break; header_size = 16; size = packet_size_to_data_size(min(size, (size_t)(16 + 8)), header_size, packet->allocated_data_size, tcode); goto dequeue; } spin_unlock_irqrestore(&pending_packets_lock, flags); HPSB_DEBUG("unsolicited response packet received - %s", "tcode mismatch"); dump_packet("contents", data, 16, -1); return; dequeue: list_del_init(&packet->queue); spin_unlock_irqrestore(&pending_packets_lock, flags); if (packet->state == hpsb_queued) { packet->sendtime = jiffies; packet->ack_code = ACK_PENDING; } packet->state = hpsb_complete; memcpy(packet->header, data, header_size); if (size) memcpy(packet->data, data + 4, size); queue_packet_complete(packet); } static struct hpsb_packet *create_reply_packet(struct hpsb_host *host, quadlet_t *data, size_t dsize) { struct hpsb_packet *p; p = hpsb_alloc_packet(dsize); if (unlikely(p == NULL)) { /* FIXME - send data_error response */ HPSB_ERR("out of memory, cannot send response packet"); return NULL; } p->type = hpsb_async; p->state = hpsb_unused; p->host = host; p->node_id = data[1] >> 16; p->tlabel = (data[0] >> 10) & 0x3f; p->no_waiter = 1; p->generation = get_hpsb_generation(host); if (dsize % 4) p->data[dsize / 4] = 0; return p; } #define PREP_ASYNC_HEAD_RCODE(tc) \ packet->tcode = tc; \ packet->header[0] = (packet->node_id << 16) | (packet->tlabel << 10) \ | (1 << 8) | (tc << 4); \ packet->header[1] = (packet->host->node_id << 16) | (rcode << 12); \ packet->header[2] = 0 static void fill_async_readquad_resp(struct hpsb_packet *packet, int rcode, quadlet_t data) { PREP_ASYNC_HEAD_RCODE(TCODE_READQ_RESPONSE); packet->header[3] = data; packet->header_size = 16; packet->data_size = 0; } static void fill_async_readblock_resp(struct hpsb_packet *packet, int rcode, int length) { if (rcode != RCODE_COMPLETE) length = 0; PREP_ASYNC_HEAD_RCODE(TCODE_READB_RESPONSE); packet->header[3] = length << 16; packet->header_size = 16; packet->data_size = length + (length % 4 ? 4 - (length % 4) : 0); } static void fill_async_write_resp(struct hpsb_packet *packet, int rcode) { PREP_ASYNC_HEAD_RCODE(TCODE_WRITE_RESPONSE); packet->header_size = 12; packet->data_size = 0; } static void fill_async_lock_resp(struct hpsb_packet *packet, int rcode, int extcode, int length) { if (rcode != RCODE_COMPLETE) length = 0; PREP_ASYNC_HEAD_RCODE(TCODE_LOCK_RESPONSE); packet->header[3] = (length << 16) | extcode; packet->header_size = 16; packet->data_size = length; } static void handle_incoming_packet(struct hpsb_host *host, int tcode, quadlet_t *data, size_t size, int write_acked) { struct hpsb_packet *packet; int length, rcode, extcode; quadlet_t buffer; nodeid_t source = data[1] >> 16; nodeid_t dest = data[0] >> 16; u16 flags = (u16) data[0]; u64 addr; /* FIXME? * Out-of-bounds lengths are left for highlevel_read|write to cap. */ switch (tcode) { case TCODE_WRITEQ: addr = (((u64)(data[1] & 0xffff)) << 32) | data[2]; rcode = highlevel_write(host, source, dest, data + 3, addr, 4, flags); goto handle_write_request; case TCODE_WRITEB: addr = (((u64)(data[1] & 0xffff)) << 32) | data[2]; rcode = highlevel_write(host, source, dest, data + 4, addr, data[3] >> 16, flags); handle_write_request: if (rcode < 0 || write_acked || NODEID_TO_NODE(data[0] >> 16) == NODE_MASK) return; /* not a broadcast write, reply */ packet = create_reply_packet(host, data, 0); if (packet) { fill_async_write_resp(packet, rcode); send_packet_nocare(packet); } return; case TCODE_READQ: addr = (((u64)(data[1] & 0xffff)) << 32) | data[2]; rcode = highlevel_read(host, source, &buffer, addr, 4, flags); if (rcode < 0) return; packet = create_reply_packet(host, data, 0); if (packet) { fill_async_readquad_resp(packet, rcode, buffer); send_packet_nocare(packet); } return; case TCODE_READB: length = data[3] >> 16; packet = create_reply_packet(host, data, length); if (!packet) return; addr = (((u64)(data[1] & 0xffff)) << 32) | data[2]; rcode = highlevel_read(host, source, packet->data, addr, length, flags); if (rcode < 0) { hpsb_free_packet(packet); return; } fill_async_readblock_resp(packet, rcode, length); send_packet_nocare(packet); return; case TCODE_LOCK_REQUEST: length = data[3] >> 16; extcode = data[3] & 0xffff; addr = (((u64)(data[1] & 0xffff)) << 32) | data[2]; packet = create_reply_packet(host, data, 8); if (!packet) return; if (extcode == 0 || extcode >= 7) { /* let switch default handle error */ length = 0; } switch (length) { case 4: rcode = highlevel_lock(host, source, packet->data, addr, data[4], 0, extcode, flags); fill_async_lock_resp(packet, rcode, extcode, 4); break; case 8: if (extcode != EXTCODE_FETCH_ADD && extcode != EXTCODE_LITTLE_ADD) { rcode = highlevel_lock(host, source, packet->data, addr, data[5], data[4], extcode, flags); fill_async_lock_resp(packet, rcode, extcode, 4); } else { rcode = highlevel_lock64(host, source, (octlet_t *)packet->data, addr, *(octlet_t *)(data + 4), 0ULL, extcode, flags); fill_async_lock_resp(packet, rcode, extcode, 8); } break; case 16: rcode = highlevel_lock64(host, source, (octlet_t *)packet->data, addr, *(octlet_t *)(data + 6), *(octlet_t *)(data + 4), extcode, flags); fill_async_lock_resp(packet, rcode, extcode, 8); break; default: rcode = RCODE_TYPE_ERROR; fill_async_lock_resp(packet, rcode, extcode, 0); } if (rcode < 0) hpsb_free_packet(packet); else send_packet_nocare(packet); return; } } /** * hpsb_packet_received - hand over received packet to the core * * For host driver module usage. * * The contents of data are expected to be the full packet but with the CRCs * left out (data block follows header immediately), with the header (i.e. the * first four quadlets) in machine byte order and the data block in big endian. * *@data can be safely overwritten after this call. * * If the packet is a write request, @write_acked is to be set to true if it was * ack_complete'd already, false otherwise. This argument is ignored for any * other packet type. */ void hpsb_packet_received(struct hpsb_host *host, quadlet_t *data, size_t size, int write_acked) { int tcode; if (unlikely(host->in_bus_reset)) { HPSB_DEBUG("received packet during reset; ignoring"); return; } dump_packet("received packet", data, size, -1); tcode = (data[0] >> 4) & 0xf; switch (tcode) { case TCODE_WRITE_RESPONSE: case TCODE_READQ_RESPONSE: case TCODE_READB_RESPONSE: case TCODE_LOCK_RESPONSE: handle_packet_response(host, tcode, data, size); break; case TCODE_WRITEQ: case TCODE_WRITEB: case TCODE_READQ: case TCODE_READB: case TCODE_LOCK_REQUEST: handle_incoming_packet(host, tcode, data, size, write_acked); break; case TCODE_CYCLE_START: /* simply ignore this packet if it is passed on */ break; default: HPSB_DEBUG("received packet with bogus transaction code %d", tcode); break; } } static void abort_requests(struct hpsb_host *host) { struct hpsb_packet *packet, *p; struct list_head tmp; unsigned long flags; host->driver->devctl(host, CANCEL_REQUESTS, 0); INIT_LIST_HEAD(&tmp); spin_lock_irqsave(&pending_packets_lock, flags); list_splice_init(&host->pending_packets, &tmp); spin_unlock_irqrestore(&pending_packets_lock, flags); list_for_each_entry_safe(packet, p, &tmp, queue) { list_del_init(&packet->queue); packet->state = hpsb_complete; packet->ack_code = ACKX_ABORTED; queue_packet_complete(packet); } } void abort_timedouts(unsigned long __opaque) { struct hpsb_host *host = (struct hpsb_host *)__opaque; struct hpsb_packet *packet, *p; struct list_head tmp; unsigned long flags, expire, j; spin_lock_irqsave(&host->csr.lock, flags); expire = host->csr.expire; spin_unlock_irqrestore(&host->csr.lock, flags); j = jiffies; INIT_LIST_HEAD(&tmp); spin_lock_irqsave(&pending_packets_lock, flags); list_for_each_entry_safe(packet, p, &host->pending_packets, queue) { if (time_before(packet->sendtime + expire, j)) list_move_tail(&packet->queue, &tmp); else /* Since packets are added to the tail, the oldest * ones are first, always. When we get to one that * isn't timed out, the rest aren't either. */ break; } if (!list_empty(&host->pending_packets)) mod_timer(&host->timeout, j + host->timeout_interval); spin_unlock_irqrestore(&pending_packets_lock, flags); list_for_each_entry_safe(packet, p, &tmp, queue) { list_del_init(&packet->queue); packet->state = hpsb_complete; packet->ack_code = ACKX_TIMEOUT; queue_packet_complete(packet); } } static struct task_struct *khpsbpkt_thread; static LIST_HEAD(hpsbpkt_queue); static void queue_packet_complete(struct hpsb_packet *packet) { unsigned long flags; if (packet->no_waiter) { hpsb_free_packet(packet); return; } if (packet->complete_routine != NULL) { spin_lock_irqsave(&pending_packets_lock, flags); list_add_tail(&packet->queue, &hpsbpkt_queue); spin_unlock_irqrestore(&pending_packets_lock, flags); wake_up_process(khpsbpkt_thread); } return; } /* * Kernel thread which handles packets that are completed. This way the * packet's "complete" function is asynchronously run in process context. * Only packets which have a "complete" function may be sent here. */ static int hpsbpkt_thread(void *__hi) { struct hpsb_packet *packet, *p; struct list_head tmp; int may_schedule; while (!kthread_should_stop()) { INIT_LIST_HEAD(&tmp); spin_lock_irq(&pending_packets_lock); list_splice_init(&hpsbpkt_queue, &tmp); spin_unlock_irq(&pending_packets_lock); list_for_each_entry_safe(packet, p, &tmp, queue) { list_del_init(&packet->queue); packet->complete_routine(packet->complete_data); } set_current_state(TASK_INTERRUPTIBLE); spin_lock_irq(&pending_packets_lock); may_schedule = list_empty(&hpsbpkt_queue); spin_unlock_irq(&pending_packets_lock); if (may_schedule) schedule(); __set_current_state(TASK_RUNNING); } return 0; } static int __init ieee1394_init(void) { int i, ret; /* non-fatal error */ if (hpsb_init_config_roms()) { HPSB_ERR("Failed to initialize some config rom entries.\n"); HPSB_ERR("Some features may not be available\n"); } khpsbpkt_thread = kthread_run(hpsbpkt_thread, NULL, "khpsbpkt"); if (IS_ERR(khpsbpkt_thread)) { HPSB_ERR("Failed to start hpsbpkt thread!\n"); ret = PTR_ERR(khpsbpkt_thread); goto exit_cleanup_config_roms; } if (register_chrdev_region(IEEE1394_CORE_DEV, 256, "ieee1394")) { HPSB_ERR("unable to register character device major %d!\n", IEEE1394_MAJOR); ret = -ENODEV; goto exit_release_kernel_thread; } ret = bus_register(&ieee1394_bus_type); if (ret < 0) { HPSB_INFO("bus register failed"); goto release_chrdev; } for (i = 0; fw_bus_attrs[i]; i++) { ret = bus_create_file(&ieee1394_bus_type, fw_bus_attrs[i]); if (ret < 0) { while (i >= 0) { bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i--]); } bus_unregister(&ieee1394_bus_type); goto release_chrdev; } } ret = class_register(&hpsb_host_class); if (ret < 0) goto release_all_bus; hpsb_protocol_class = class_create(THIS_MODULE, "ieee1394_protocol"); if (IS_ERR(hpsb_protocol_class)) { ret = PTR_ERR(hpsb_protocol_class); goto release_class_host; } ret = init_csr(); if (ret) { HPSB_INFO("init csr failed"); ret = -ENOMEM; goto release_class_protocol; } if (disable_nodemgr) { HPSB_INFO("nodemgr and IRM functionality disabled"); /* We shouldn't contend for IRM with nodemgr disabled, since nodemgr implements functionality required of ieee1394a-2000 IRMs */ hpsb_disable_irm = 1; return 0; } if (hpsb_disable_irm) { HPSB_INFO("IRM functionality disabled"); } ret = init_ieee1394_nodemgr(); if (ret < 0) { HPSB_INFO("init nodemgr failed"); goto cleanup_csr; } return 0; cleanup_csr: cleanup_csr(); release_class_protocol: class_destroy(hpsb_protocol_class); release_class_host: class_unregister(&hpsb_host_class); release_all_bus: for (i = 0; fw_bus_attrs[i]; i++) bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i]); bus_unregister(&ieee1394_bus_type); release_chrdev: unregister_chrdev_region(IEEE1394_CORE_DEV, 256); exit_release_kernel_thread: kthread_stop(khpsbpkt_thread); exit_cleanup_config_roms: hpsb_cleanup_config_roms(); return ret; } static void __exit ieee1394_cleanup(void) { int i; if (!disable_nodemgr) cleanup_ieee1394_nodemgr(); cleanup_csr(); class_destroy(hpsb_protocol_class); class_unregister(&hpsb_host_class); for (i = 0; fw_bus_attrs[i]; i++) bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i]); bus_unregister(&ieee1394_bus_type); kthread_stop(khpsbpkt_thread); hpsb_cleanup_config_roms(); unregister_chrdev_region(IEEE1394_CORE_DEV, 256); } module_init(ieee1394_init); module_exit(ieee1394_cleanup); /* Exported symbols */ /** hosts.c **/ EXPORT_SYMBOL(hpsb_alloc_host); EXPORT_SYMBOL(hpsb_add_host); EXPORT_SYMBOL(hpsb_resume_host); EXPORT_SYMBOL(hpsb_remove_host); EXPORT_SYMBOL(hpsb_update_config_rom_image); /** ieee1394_core.c **/ EXPORT_SYMBOL(hpsb_speedto_str); EXPORT_SYMBOL(hpsb_protocol_class); EXPORT_SYMBOL(hpsb_set_packet_complete_task); EXPORT_SYMBOL(hpsb_alloc_packet); EXPORT_SYMBOL(hpsb_free_packet); EXPORT_SYMBOL(hpsb_send_packet); EXPORT_SYMBOL(hpsb_reset_bus); EXPORT_SYMBOL(hpsb_read_cycle_timer); EXPORT_SYMBOL(hpsb_bus_reset); EXPORT_SYMBOL(hpsb_selfid_received); EXPORT_SYMBOL(hpsb_selfid_complete); EXPORT_SYMBOL(hpsb_packet_sent); EXPORT_SYMBOL(hpsb_packet_received); EXPORT_SYMBOL_GPL(hpsb_disable_irm); /** ieee1394_transactions.c **/ EXPORT_SYMBOL(hpsb_get_tlabel); EXPORT_SYMBOL(hpsb_free_tlabel); EXPORT_SYMBOL(hpsb_make_readpacket); EXPORT_SYMBOL(hpsb_make_writepacket); EXPORT_SYMBOL(hpsb_make_streampacket); EXPORT_SYMBOL(hpsb_make_lockpacket); EXPORT_SYMBOL(hpsb_make_lock64packet); EXPORT_SYMBOL(hpsb_make_phypacket); EXPORT_SYMBOL(hpsb_read); EXPORT_SYMBOL(hpsb_write); EXPORT_SYMBOL(hpsb_packet_success); /** highlevel.c **/ EXPORT_SYMBOL(hpsb_register_highlevel); EXPORT_SYMBOL(hpsb_unregister_highlevel); EXPORT_SYMBOL(hpsb_register_addrspace); EXPORT_SYMBOL(hpsb_unregister_addrspace); EXPORT_SYMBOL(hpsb_allocate_and_register_addrspace); EXPORT_SYMBOL(hpsb_get_hostinfo); EXPORT_SYMBOL(hpsb_create_hostinfo); EXPORT_SYMBOL(hpsb_destroy_hostinfo); EXPORT_SYMBOL(hpsb_set_hostinfo_key); EXPORT_SYMBOL(hpsb_get_hostinfo_bykey); EXPORT_SYMBOL(hpsb_set_hostinfo); /** nodemgr.c **/ EXPORT_SYMBOL(hpsb_node_fill_packet); EXPORT_SYMBOL(hpsb_node_write); EXPORT_SYMBOL(__hpsb_register_protocol); EXPORT_SYMBOL(hpsb_unregister_protocol); /** csr.c **/ EXPORT_SYMBOL(hpsb_update_config_rom); /** dma.c **/ EXPORT_SYMBOL(dma_prog_region_init); EXPORT_SYMBOL(dma_prog_region_alloc); EXPORT_SYMBOL(dma_prog_region_free); EXPORT_SYMBOL(dma_region_init); EXPORT_SYMBOL(dma_region_alloc); EXPORT_SYMBOL(dma_region_free); EXPORT_SYMBOL(dma_region_sync_for_cpu); EXPORT_SYMBOL(dma_region_sync_for_device); EXPORT_SYMBOL(dma_region_mmap); EXPORT_SYMBOL(dma_region_offset_to_bus); /** iso.c **/ EXPORT_SYMBOL(hpsb_iso_xmit_init); EXPORT_SYMBOL(hpsb_iso_recv_init); EXPORT_SYMBOL(hpsb_iso_xmit_start); EXPORT_SYMBOL(hpsb_iso_recv_start); EXPORT_SYMBOL(hpsb_iso_recv_listen_channel); EXPORT_SYMBOL(hpsb_iso_recv_unlisten_channel); EXPORT_SYMBOL(hpsb_iso_recv_set_channel_mask); EXPORT_SYMBOL(hpsb_iso_stop); EXPORT_SYMBOL(hpsb_iso_shutdown); EXPORT_SYMBOL(hpsb_iso_xmit_queue_packet); EXPORT_SYMBOL(hpsb_iso_xmit_sync); EXPORT_SYMBOL(hpsb_iso_recv_release_packets); EXPORT_SYMBOL(hpsb_iso_n_ready); EXPORT_SYMBOL(hpsb_iso_packet_sent); EXPORT_SYMBOL(hpsb_iso_packet_received); EXPORT_SYMBOL(hpsb_iso_wake); EXPORT_SYMBOL(hpsb_iso_recv_flush); /** csr1212.c **/ EXPORT_SYMBOL(csr1212_attach_keyval_to_directory); EXPORT_SYMBOL(csr1212_detach_keyval_from_directory); EXPORT_SYMBOL(csr1212_get_keyval); EXPORT_SYMBOL(csr1212_new_directory); EXPORT_SYMBOL(csr1212_parse_keyval); EXPORT_SYMBOL(csr1212_read); EXPORT_SYMBOL(csr1212_release_keyval);