aboutsummaryrefslogtreecommitdiff
path: root/fs/jffs2/wbuf.c
diff options
context:
space:
mode:
authorThomas Gleixner <tglx@cruncher.tec.linutronix.de>2006-05-29 03:26:58 +0200
committerThomas Gleixner <tglx@cruncher.tec.linutronix.de>2006-05-29 15:06:51 +0200
commit8593fbc68b0df1168995de76d1af38eb62fd6b62 (patch)
treedd244def53d2be4f1fbff9f74eac404fab8e240f /fs/jffs2/wbuf.c
parentf4a43cfcecfcaeeaa40a9dbc1d1378298c22446e (diff)
[MTD] Rework the out of band handling completely
Hopefully the last iteration on this! The handling of out of band data on NAND was accompanied by tons of fruitless discussions and halfarsed patches to make it work for a particular problem. Sufficiently annoyed by I all those "I know it better" mails and the resonable amount of discarded "it solves my problem" patches, I finally decided to go for the big rework. After removing the _ecc variants of mtd read/write functions the solution to satisfy the various requirements was to refactor the read/write _oob functions in mtd. The major change is that read/write_oob now takes a pointer to an operation descriptor structure "struct mtd_oob_ops".instead of having a function with at least seven arguments. read/write_oob which should probably renamed to a more descriptive name, can do the following tasks: - read/write out of band data - read/write data content and out of band data - read/write raw data content and out of band data (ecc disabled) struct mtd_oob_ops has a mode field, which determines the oob handling mode. Aside of the MTD_OOB_RAW mode, which is intended to be especially for diagnostic purposes and some internal functions e.g. bad block table creation, the other two modes are for mtd clients: MTD_OOB_PLACE puts/gets the given oob data exactly to/from the place which is described by the ooboffs and ooblen fields of the mtd_oob_ops strcuture. It's up to the caller to make sure that the byte positions are not used by the ECC placement algorithms. MTD_OOB_AUTO puts/gets the given oob data automaticaly to/from the places in the out of band area which are described by the oobfree tuples in the ecclayout data structre which is associated to the devicee. The decision whether data plus oob or oob only handling is done depends on the setting of the datbuf member of the data structure. When datbuf == NULL then the internal read/write_oob functions are selected, otherwise the read/write data routines are invoked. Tested on a few platforms with all variants. Please be aware of possible regressions for your particular device / application scenario Disclaimer: Any whining will be ignored from those who just contributed "hot air blurb" and never sat down to tackle the underlying problem of the mess in the NAND driver grown over time and the big chunk of work to fix up the existing users. The problem was not the holiness of the existing MTD interfaces. The problems was the lack of time to go for the big overhaul. It's easy to add more mess to the existing one, but it takes alot of effort to go for a real solution. Improvements and bugfixes are welcome! Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Diffstat (limited to 'fs/jffs2/wbuf.c')
-rw-r--r--fs/jffs2/wbuf.c230
1 files changed, 118 insertions, 112 deletions
diff --git a/fs/jffs2/wbuf.c b/fs/jffs2/wbuf.c
index c6a62e16296..1195d06d437 100644
--- a/fs/jffs2/wbuf.c
+++ b/fs/jffs2/wbuf.c
@@ -955,158 +955,159 @@ exit:
return ret;
}
+#define NR_OOB_SCAN_PAGES 4
+
/*
- * Check, if the out of band area is empty
+ * Check, if the out of band area is empty
*/
-int jffs2_check_oob_empty( struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int mode)
+int jffs2_check_oob_empty(struct jffs2_sb_info *c,
+ struct jffs2_eraseblock *jeb, int mode)
{
- unsigned char *buf;
- int ret = 0;
- int i,len,page;
- size_t retlen;
- int oob_size;
-
- /* allocate a buffer for all oob data in this sector */
- oob_size = c->mtd->oobsize;
- len = 4 * oob_size;
- buf = kmalloc(len, GFP_KERNEL);
- if (!buf) {
- printk(KERN_NOTICE "jffs2_check_oob_empty(): allocation of temporary data buffer for oob check failed\n");
- return -ENOMEM;
- }
- /*
- * if mode = 0, we scan for a total empty oob area, else we have
- * to take care of the cleanmarker in the first page of the block
- */
- ret = jffs2_flash_read_oob(c, jeb->offset, len , &retlen, buf);
+ int i, page, ret;
+ int oobsize = c->mtd->oobsize;
+ struct mtd_oob_ops ops;
+
+ ops.len = NR_OOB_SCAN_PAGES * oobsize;
+ ops.ooblen = oobsize;
+ ops.oobbuf = c->oobbuf;
+ ops.ooboffs = 0;
+ ops.datbuf = NULL;
+ ops.mode = MTD_OOB_PLACE;
+
+ ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops);
if (ret) {
- D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
- goto out;
+ D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB "
+ "failed %d for block at %08x\n", ret, jeb->offset));
+ return ret;
}
- if (retlen < len) {
- D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB return short read "
- "(%zd bytes not %d) for block at %08x\n", retlen, len, jeb->offset));
- ret = -EIO;
- goto out;
+ if (ops.retlen < ops.len) {
+ D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB "
+ "returned short read (%zd bytes not %d) for block "
+ "at %08x\n", ops.retlen, ops.len, jeb->offset));
+ return -EIO;
}
/* Special check for first page */
- for(i = 0; i < oob_size ; i++) {
+ for(i = 0; i < oobsize ; i++) {
/* Yeah, we know about the cleanmarker. */
if (mode && i >= c->fsdata_pos &&
i < c->fsdata_pos + c->fsdata_len)
continue;
- if (buf[i] != 0xFF) {
- D2(printk(KERN_DEBUG "Found %02x at %x in OOB for %08x\n",
- buf[i], i, jeb->offset));
- ret = 1;
- goto out;
+ if (ops.oobbuf[i] != 0xFF) {
+ D2(printk(KERN_DEBUG "Found %02x at %x in OOB for "
+ "%08x\n", ops.oobbuf[i], i, jeb->offset));
+ return 1;
}
}
/* we know, we are aligned :) */
- for (page = oob_size; page < len; page += sizeof(long)) {
- unsigned long dat = *(unsigned long *)(&buf[page]);
- if(dat != -1) {
- ret = 1;
- goto out;
- }
+ for (page = oobsize; page < ops.len; page += sizeof(long)) {
+ long dat = *(long *)(&ops.oobbuf[page]);
+ if(dat != -1)
+ return 1;
}
-
-out:
- kfree(buf);
-
- return ret;
+ return 0;
}
/*
-* Scan for a valid cleanmarker and for bad blocks
-* For virtual blocks (concatenated physical blocks) check the cleanmarker
-* only in the first page of the first physical block, but scan for bad blocks in all
-* physical blocks
-*/
-int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
+ * Scan for a valid cleanmarker and for bad blocks
+ */
+int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c,
+ struct jffs2_eraseblock *jeb)
{
struct jffs2_unknown_node n;
- unsigned char buf[2 * NAND_MAX_OOBSIZE];
- unsigned char *p;
- int ret, i, cnt, retval = 0;
- size_t retlen, offset;
- int oob_size;
-
- offset = jeb->offset;
- oob_size = c->mtd->oobsize;
-
- /* Loop through the physical blocks */
- for (cnt = 0; cnt < (c->sector_size / c->mtd->erasesize); cnt++) {
- /* Check first if the block is bad. */
- if (c->mtd->block_isbad (c->mtd, offset)) {
- D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Bad block at %08x\n", jeb->offset));
- return 2;
- }
- /*
- * We read oob data from page 0 and 1 of the block.
- * page 0 contains cleanmarker and badblock info
- * page 1 contains failure count of this block
- */
- ret = c->mtd->read_oob (c->mtd, offset, oob_size << 1, &retlen, buf);
+ struct mtd_oob_ops ops;
+ int oobsize = c->mtd->oobsize;
+ unsigned char *p,*b;
+ int i, ret;
+ size_t offset = jeb->offset;
+
+ /* Check first if the block is bad. */
+ if (c->mtd->block_isbad(c->mtd, offset)) {
+ D1 (printk(KERN_WARNING "jffs2_check_nand_cleanmarker()"
+ ": Bad block at %08x\n", jeb->offset));
+ return 2;
+ }
- if (ret) {
- D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
- return ret;
- }
- if (retlen < (oob_size << 1)) {
- D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB return short read (%zd bytes not %d) for block at %08x\n", retlen, oob_size << 1, jeb->offset));
- return -EIO;
- }
+ ops.len = oobsize;
+ ops.ooblen = oobsize;
+ ops.oobbuf = c->oobbuf;
+ ops.ooboffs = 0;
+ ops.datbuf = NULL;
+ ops.mode = MTD_OOB_PLACE;
- /* Check cleanmarker only on the first physical block */
- if (!cnt) {
- n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
- n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
- n.totlen = cpu_to_je32 (8);
- p = (unsigned char *) &n;
+ ret = c->mtd->read_oob(c->mtd, offset, &ops);
+ if (ret) {
+ D1 (printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): "
+ "Read OOB failed %d for block at %08x\n",
+ ret, jeb->offset));
+ return ret;
+ }
- for (i = 0; i < c->fsdata_len; i++) {
- if (buf[c->fsdata_pos + i] != p[i]) {
- retval = 1;
- }
- }
- D1(if (retval == 1) {
- printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Cleanmarker node not detected in block at %08x\n", jeb->offset);
- printk(KERN_WARNING "OOB at %08zx was ", offset);
- for (i=0; i < oob_size; i++) {
- printk("%02x ", buf[i]);
- }
- printk("\n");
- })
- }
- offset += c->mtd->erasesize;
+ if (ops.retlen < ops.len) {
+ D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): "
+ "Read OOB return short read (%zd bytes not %d) "
+ "for block at %08x\n", ops.retlen, ops.len,
+ jeb->offset));
+ return -EIO;
}
- return retval;
+
+ n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
+ n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
+ n.totlen = cpu_to_je32 (8);
+ p = (unsigned char *) &n;
+ b = c->oobbuf + c->fsdata_pos;
+
+ for (i = c->fsdata_len; i; i--) {
+ if (*b++ != *p++)
+ ret = 1;
+ }
+
+ D1(if (ret == 1) {
+ printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): "
+ "Cleanmarker node not detected in block at %08x\n",
+ offset);
+ printk(KERN_WARNING "OOB at %08zx was ", offset);
+ for (i=0; i < oobsize; i++)
+ printk("%02x ", c->oobbuf[i]);
+ printk("\n");
+ });
+ return ret;
}
-int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
+int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c,
+ struct jffs2_eraseblock *jeb)
{
- struct jffs2_unknown_node n;
- int ret;
- size_t retlen;
+ struct jffs2_unknown_node n;
+ int ret;
+ struct mtd_oob_ops ops;
n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
n.totlen = cpu_to_je32(8);
- ret = jffs2_flash_write_oob(c, jeb->offset + c->fsdata_pos, c->fsdata_len, &retlen, (unsigned char *)&n);
+ ops.len = c->fsdata_len;
+ ops.ooblen = c->fsdata_len;;
+ ops.oobbuf = (uint8_t *)&n;
+ ops.ooboffs = c->fsdata_pos;
+ ops.datbuf = NULL;
+ ops.mode = MTD_OOB_PLACE;
+
+ ret = c->mtd->write_oob(c->mtd, jeb->offset, &ops);
if (ret) {
- D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
+ D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): "
+ "Write failed for block at %08x: error %d\n",
+ jeb->offset, ret));
return ret;
}
- if (retlen != c->fsdata_len) {
- D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Short write for block at %08x: %zd not %d\n", jeb->offset, retlen, c->fsdata_len));
- return ret;
+ if (ops.retlen != ops.len) {
+ D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): "
+ "Short write for block at %08x: %zd not %d\n",
+ jeb->offset, ops.retlen, ops.len));
+ return -EIO;
}
return 0;
}
@@ -1185,6 +1186,10 @@ int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
if (!c->wbuf)
return -ENOMEM;
+ c->oobbuf = kmalloc(NR_OOB_SCAN_PAGES * c->mtd->oobsize, GFP_KERNEL);
+ if (!c->oobbuf)
+ return -ENOMEM;
+
res = jffs2_nand_set_oobinfo(c);
#ifdef BREAKME
@@ -1202,6 +1207,7 @@ int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
{
kfree(c->wbuf);
+ kfree(c->oobbuf);
}
int jffs2_dataflash_setup(struct jffs2_sb_info *c) {