/* -*- mode: c; c-basic-offset: 8; -*- * vim: noexpandtab sw=8 ts=8 sts=0: * * super.c * * load/unload driver, mount/dismount volumes * * Copyright (C) 2002, 2004 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MLOG_MASK_PREFIX ML_SUPER #include #include "ocfs2.h" /* this should be the only file to include a version 1 header */ #include "ocfs1_fs_compat.h" #include "alloc.h" #include "dlmglue.h" #include "export.h" #include "extent_map.h" #include "heartbeat.h" #include "inode.h" #include "journal.h" #include "localalloc.h" #include "namei.h" #include "slot_map.h" #include "super.h" #include "sysfile.h" #include "uptodate.h" #include "ver.h" #include "vote.h" #include "buffer_head_io.h" static kmem_cache_t *ocfs2_inode_cachep = NULL; kmem_cache_t *ocfs2_lock_cache = NULL; /* OCFS2 needs to schedule several differnt types of work which * require cluster locking, disk I/O, recovery waits, etc. Since these * types of work tend to be heavy we avoid using the kernel events * workqueue and schedule on our own. */ struct workqueue_struct *ocfs2_wq = NULL; static struct dentry *ocfs2_debugfs_root = NULL; MODULE_AUTHOR("Oracle"); MODULE_LICENSE("GPL"); static int ocfs2_parse_options(struct super_block *sb, char *options, unsigned long *mount_opt, int is_remount); static void ocfs2_put_super(struct super_block *sb); static int ocfs2_mount_volume(struct super_block *sb); static int ocfs2_remount(struct super_block *sb, int *flags, char *data); static void ocfs2_dismount_volume(struct super_block *sb, int mnt_err); static int ocfs2_initialize_mem_caches(void); static void ocfs2_free_mem_caches(void); static void ocfs2_delete_osb(struct ocfs2_super *osb); static int ocfs2_statfs(struct dentry *dentry, struct kstatfs *buf); static int ocfs2_sync_fs(struct super_block *sb, int wait); static int ocfs2_init_global_system_inodes(struct ocfs2_super *osb); static int ocfs2_init_local_system_inodes(struct ocfs2_super *osb); static int ocfs2_release_system_inodes(struct ocfs2_super *osb); static int ocfs2_fill_local_node_info(struct ocfs2_super *osb); static int ocfs2_check_volume(struct ocfs2_super *osb); static int ocfs2_verify_volume(struct ocfs2_dinode *di, struct buffer_head *bh, u32 sectsize); static int ocfs2_initialize_super(struct super_block *sb, struct buffer_head *bh, int sector_size); static int ocfs2_get_sector(struct super_block *sb, struct buffer_head **bh, int block, int sect_size); static void ocfs2_write_super(struct super_block *sb); static struct inode *ocfs2_alloc_inode(struct super_block *sb); static void ocfs2_destroy_inode(struct inode *inode); static unsigned long long ocfs2_max_file_offset(unsigned int blockshift); static struct super_operations ocfs2_sops = { .statfs = ocfs2_statfs, .alloc_inode = ocfs2_alloc_inode, .destroy_inode = ocfs2_destroy_inode, .drop_inode = ocfs2_drop_inode, .clear_inode = ocfs2_clear_inode, .delete_inode = ocfs2_delete_inode, .sync_fs = ocfs2_sync_fs, .write_super = ocfs2_write_super, .put_super = ocfs2_put_super, .remount_fs = ocfs2_remount, }; enum { Opt_barrier, Opt_err_panic, Opt_err_ro, Opt_intr, Opt_nointr, Opt_hb_none, Opt_hb_local, Opt_data_ordered, Opt_data_writeback, Opt_err, }; static match_table_t tokens = { {Opt_barrier, "barrier=%u"}, {Opt_err_panic, "errors=panic"}, {Opt_err_ro, "errors=remount-ro"}, {Opt_intr, "intr"}, {Opt_nointr, "nointr"}, {Opt_hb_none, OCFS2_HB_NONE}, {Opt_hb_local, OCFS2_HB_LOCAL}, {Opt_data_ordered, "data=ordered"}, {Opt_data_writeback, "data=writeback"}, {Opt_err, NULL} }; /* * write_super and sync_fs ripped right out of ext3. */ static void ocfs2_write_super(struct super_block *sb) { if (mutex_trylock(&sb->s_lock) != 0) BUG(); sb->s_dirt = 0; } static int ocfs2_sync_fs(struct super_block *sb, int wait) { int status = 0; tid_t target; struct ocfs2_super *osb = OCFS2_SB(sb); sb->s_dirt = 0; if (ocfs2_is_hard_readonly(osb)) return -EROFS; if (wait) { status = ocfs2_flush_truncate_log(osb); if (status < 0) mlog_errno(status); } else { ocfs2_schedule_truncate_log_flush(osb, 0); } if (journal_start_commit(OCFS2_SB(sb)->journal->j_journal, &target)) { if (wait) log_wait_commit(OCFS2_SB(sb)->journal->j_journal, target); } return 0; } static int ocfs2_init_global_system_inodes(struct ocfs2_super *osb) { struct inode *new = NULL; int status = 0; int i; mlog_entry_void(); new = ocfs2_iget(osb, osb->root_blkno, OCFS2_FI_FLAG_SYSFILE); if (IS_ERR(new)) { status = PTR_ERR(new); mlog_errno(status); goto bail; } osb->root_inode = new; new = ocfs2_iget(osb, osb->system_dir_blkno, OCFS2_FI_FLAG_SYSFILE); if (IS_ERR(new)) { status = PTR_ERR(new); mlog_errno(status); goto bail; } osb->sys_root_inode = new; for (i = OCFS2_FIRST_ONLINE_SYSTEM_INODE; i <= OCFS2_LAST_GLOBAL_SYSTEM_INODE; i++) { new = ocfs2_get_system_file_inode(osb, i, osb->slot_num); if (!new) { ocfs2_release_system_inodes(osb); status = -EINVAL; mlog_errno(status); /* FIXME: Should ERROR_RO_FS */ mlog(ML_ERROR, "Unable to load system inode %d, " "possibly corrupt fs?", i); goto bail; } // the array now has one ref, so drop this one iput(new); } bail: mlog_exit(status); return status; } static int ocfs2_init_local_system_inodes(struct ocfs2_super *osb) { struct inode *new = NULL; int status = 0; int i; mlog_entry_void(); for (i = OCFS2_LAST_GLOBAL_SYSTEM_INODE + 1; i < NUM_SYSTEM_INODES; i++) { new = ocfs2_get_system_file_inode(osb, i, osb->slot_num); if (!new) { ocfs2_release_system_inodes(osb); status = -EINVAL; mlog(ML_ERROR, "status=%d, sysfile=%d, slot=%d\n", status, i, osb->slot_num); goto bail; } /* the array now has one ref, so drop this one */ iput(new); } bail: mlog_exit(status); return status; } static int ocfs2_release_system_inodes(struct ocfs2_super *osb) { int status = 0, i; struct inode *inode; mlog_entry_void(); for (i = 0; i < NUM_SYSTEM_INODES; i++) { inode = osb->system_inodes[i]; if (inode) { iput(inode); osb->system_inodes[i] = NULL; } } inode = osb->sys_root_inode; if (inode) { iput(inode); osb->sys_root_inode = NULL; } inode = osb->root_inode; if (inode) { iput(inode); osb->root_inode = NULL; } mlog_exit(status); return status; } /* We're allocating fs objects, use GFP_NOFS */ static struct inode *ocfs2_alloc_inode(struct super_block *sb) { struct ocfs2_inode_info *oi; oi = kmem_cache_alloc(ocfs2_inode_cachep, SLAB_NOFS); if (!oi) return NULL; return &oi->vfs_inode; } static void ocfs2_destroy_inode(struct inode *inode) { kmem_cache_free(ocfs2_inode_cachep, OCFS2_I(inode)); } /* From xfs_super.c:xfs_max_file_offset * Copyright (c) 2000-2004 Silicon Graphics, Inc. */ static unsigned long long ocfs2_max_file_offset(unsigned int blockshift) { unsigned int pagefactor = 1; unsigned int bitshift = BITS_PER_LONG - 1; /* Figure out maximum filesize, on Linux this can depend on * the filesystem blocksize (on 32 bit platforms). * __block_prepare_write does this in an [unsigned] long... * page->index << (PAGE_CACHE_SHIFT - bbits) * So, for page sized blocks (4K on 32 bit platforms), * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1) * but for smaller blocksizes it is less (bbits = log2 bsize). * Note1: get_block_t takes a long (implicit cast from above) * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch * can optionally convert the [unsigned] long from above into * an [unsigned] long long. */ #if BITS_PER_LONG == 32 # if defined(CONFIG_LBD) BUILD_BUG_ON(sizeof(sector_t) != 8); pagefactor = PAGE_CACHE_SIZE; bitshift = BITS_PER_LONG; # else pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift); # endif #endif return (((unsigned long long)pagefactor) << bitshift) - 1; } static int ocfs2_remount(struct super_block *sb, int *flags, char *data) { int incompat_features; int ret = 0; unsigned long parsed_options; struct ocfs2_super *osb = OCFS2_SB(sb); if (!ocfs2_parse_options(sb, data, &parsed_options, 1)) { ret = -EINVAL; goto out; } if ((osb->s_mount_opt & OCFS2_MOUNT_HB_LOCAL) != (parsed_options & OCFS2_MOUNT_HB_LOCAL)) { ret = -EINVAL; mlog(ML_ERROR, "Cannot change heartbeat mode on remount\n"); goto out; } if ((osb->s_mount_opt & OCFS2_MOUNT_DATA_WRITEBACK) != (parsed_options & OCFS2_MOUNT_DATA_WRITEBACK)) { ret = -EINVAL; mlog(ML_ERROR, "Cannot change data mode on remount\n"); goto out; } /* We're going to/from readonly mode. */ if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { /* Lock here so the check of HARD_RO and the potential * setting of SOFT_RO is atomic. */ spin_lock(&osb->osb_lock); if (osb->osb_flags & OCFS2_OSB_HARD_RO) { mlog(ML_ERROR, "Remount on readonly device is forbidden.\n"); ret = -EROFS; goto unlock_osb; } if (*flags & MS_RDONLY) { mlog(0, "Going to ro mode.\n"); sb->s_flags |= MS_RDONLY; osb->osb_flags |= OCFS2_OSB_SOFT_RO; } else { mlog(0, "Making ro filesystem writeable.\n"); if (osb->osb_flags & OCFS2_OSB_ERROR_FS) { mlog(ML_ERROR, "Cannot remount RDWR " "filesystem due to previous errors.\n"); ret = -EROFS; goto unlock_osb; } incompat_features = OCFS2_HAS_RO_COMPAT_FEATURE(sb, ~OCFS2_FEATURE_RO_COMPAT_SUPP); if (incompat_features) { mlog(ML_ERROR, "Cannot remount RDWR because " "of unsupported optional features " "(%x).\n", incompat_features); ret = -EINVAL; goto unlock_osb; } sb->s_flags &= ~MS_RDONLY; osb->osb_flags &= ~OCFS2_OSB_SOFT_RO; } unlock_osb: spin_unlock(&osb->osb_lock); } if (!ret) { if (!ocfs2_is_hard_readonly(osb)) ocfs2_set_journal_params(osb); /* Only save off the new mount options in case of a successful * remount. */ osb->s_mount_opt = parsed_options; } out: return ret; } static int ocfs2_sb_probe(struct super_block *sb, struct buffer_head **bh, int *sector_size) { int status = 0, tmpstat; struct ocfs1_vol_disk_hdr *hdr; struct ocfs2_dinode *di; int blksize; *bh = NULL; /* may be > 512 */ *sector_size = bdev_hardsect_size(sb->s_bdev); if (*sector_size > OCFS2_MAX_BLOCKSIZE) { mlog(ML_ERROR, "Hardware sector size too large: %d (max=%d)\n", *sector_size, OCFS2_MAX_BLOCKSIZE); status = -EINVAL; goto bail; } /* Can this really happen? */ if (*sector_size < OCFS2_MIN_BLOCKSIZE) *sector_size = OCFS2_MIN_BLOCKSIZE; /* check block zero for old format */ status = ocfs2_get_sector(sb, bh, 0, *sector_size); if (status < 0) { mlog_errno(status); goto bail; } hdr = (struct ocfs1_vol_disk_hdr *) (*bh)->b_data; if (hdr->major_version == OCFS1_MAJOR_VERSION) { mlog(ML_ERROR, "incompatible version: %u.%u\n", hdr->major_version, hdr->minor_version); status = -EINVAL; } if (memcmp(hdr->signature, OCFS1_VOLUME_SIGNATURE, strlen(OCFS1_VOLUME_SIGNATURE)) == 0) { mlog(ML_ERROR, "incompatible volume signature: %8s\n", hdr->signature); status = -EINVAL; } brelse(*bh); *bh = NULL; if (status < 0) { mlog(ML_ERROR, "This is an ocfs v1 filesystem which must be " "upgraded before mounting with ocfs v2\n"); goto bail; } /* * Now check at magic offset for 512, 1024, 2048, 4096 * blocksizes. 4096 is the maximum blocksize because it is * the minimum clustersize. */ status = -EINVAL; for (blksize = *sector_size; blksize <= OCFS2_MAX_BLOCKSIZE; blksize <<= 1) { tmpstat = ocfs2_get_sector(sb, bh, OCFS2_SUPER_BLOCK_BLKNO, blksize); if (tmpstat < 0) { status = tmpstat; mlog_errno(status); goto bail; } di = (struct ocfs2_dinode *) (*bh)->b_data; status = ocfs2_verify_volume(di, *bh, blksize); if (status >= 0) goto bail; brelse(*bh); *bh = NULL; if (status != -EAGAIN) break; } bail: return status; } static int ocfs2_fill_super(struct super_block *sb, void *data, int silent) { struct dentry *root; int status, sector_size; unsigned long parsed_opt; struct inode *inode = NULL; struct ocfs2_super *osb = NULL; struct buffer_head *bh = NULL; mlog_entry("%p, %p, %i", sb, data, silent); /* for now we only have one cluster/node, make sure we see it * in the heartbeat universe */ if (!o2hb_check_local_node_heartbeating()) { status = -EINVAL; goto read_super_error; } /* probe for superblock */ status = ocfs2_sb_probe(sb, &bh, §or_size); if (status < 0) { mlog(ML_ERROR, "superblock probe failed!\n"); goto read_super_error; } status = ocfs2_initialize_super(sb, bh, sector_size); osb = OCFS2_SB(sb); if (status < 0) { mlog_errno(status); goto read_super_error; } brelse(bh); bh = NULL; if (!ocfs2_parse_options(sb, data, &parsed_opt, 0)) { status = -EINVAL; goto read_super_error; } osb->s_mount_opt = parsed_opt; sb->s_magic = OCFS2_SUPER_MAGIC; /* Hard readonly mode only if: bdev_read_only, MS_RDONLY, * heartbeat=none */ if (bdev_read_only(sb->s_bdev)) { if (!(sb->s_flags & MS_RDONLY)) { status = -EACCES; mlog(ML_ERROR, "Readonly device detected but readonly " "mount was not specified.\n"); goto read_super_error; } /* You should not be able to start a local heartbeat * on a readonly device. */ if (osb->s_mount_opt & OCFS2_MOUNT_HB_LOCAL) { status = -EROFS; mlog(ML_ERROR, "Local heartbeat specified on readonly " "device.\n"); goto read_super_error; } status = ocfs2_check_journals_nolocks(osb); if (status < 0) { if (status == -EROFS) mlog(ML_ERROR, "Recovery required on readonly " "file system, but write access is " "unavailable.\n"); else mlog_errno(status); goto read_super_error; } ocfs2_set_ro_flag(osb, 1); printk(KERN_NOTICE "Readonly device detected. No cluster " "services will be utilized for this mount. Recovery " "will be skipped.\n"); } if (!ocfs2_is_hard_readonly(osb)) { /* If this isn't a hard readonly mount, then we need * to make sure that heartbeat is in a valid state, * and that we mark ourselves soft readonly is -oro * was specified. */ if (!(osb->s_mount_opt & OCFS2_MOUNT_HB_LOCAL)) { mlog(ML_ERROR, "No heartbeat for device (%s)\n", sb->s_id); status = -EINVAL; goto read_super_error; } if (sb->s_flags & MS_RDONLY) ocfs2_set_ro_flag(osb, 0); } osb->osb_debug_root = debugfs_create_dir(osb->uuid_str, ocfs2_debugfs_root); if (!osb->osb_debug_root) { status = -EINVAL; mlog(ML_ERROR, "Unable to create per-mount debugfs root.\n"); goto read_super_error; } status = ocfs2_mount_volume(sb); if (osb->root_inode) inode = igrab(osb->root_inode); if (status < 0) goto read_super_error; if (!inode) { status = -EIO; mlog_errno(status); goto read_super_error; } root = d_alloc_root(inode); if (!root) { status = -ENOMEM; mlog_errno(status); goto read_super_error; } sb->s_root = root; ocfs2_complete_mount_recovery(osb); printk(KERN_INFO "ocfs2: Mounting device (%s) on (node %d, slot %d) " "with %s data mode.\n", osb->dev_str, osb->node_num, osb->slot_num, osb->s_mount_opt & OCFS2_MOUNT_DATA_WRITEBACK ? "writeback" : "ordered"); atomic_set(&osb->vol_state, VOLUME_MOUNTED); wake_up(&osb->osb_mount_event); mlog_exit(status); return status; read_super_error: if (bh != NULL) brelse(bh); if (inode) iput(inode); if (osb) { atomic_set(&osb->vol_state, VOLUME_DISABLED); wake_up(&osb->osb_mount_event); ocfs2_dismount_volume(sb, 1); } mlog_exit(status); return status; } static int ocfs2_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data, struct vfsmount *mnt) { return get_sb_bdev(fs_type, flags, dev_name, data, ocfs2_fill_super, mnt); } static struct file_system_type ocfs2_fs_type = { .owner = THIS_MODULE, .name = "ocfs2", .get_sb = ocfs2_get_sb, /* is this called when we mount * the fs? */ .kill_sb = kill_block_super, /* set to the generic one * right now, but do we * need to change that? */ .fs_flags = FS_REQUIRES_DEV|FS_RENAME_DOES_D_MOVE, .next = NULL }; static int ocfs2_parse_options(struct super_block *sb, char *options, unsigned long *mount_opt, int is_remount) { int status; char *p; mlog_entry("remount: %d, options: \"%s\"\n", is_remount, options ? options : "(none)"); *mount_opt = 0; if (!options) { status = 1; goto bail; } while ((p = strsep(&options, ",")) != NULL) { int token, option; substring_t args[MAX_OPT_ARGS]; if (!*p) continue; token = match_token(p, tokens, args); switch (token) { case Opt_hb_local: *mount_opt |= OCFS2_MOUNT_HB_LOCAL; break; case Opt_hb_none: *mount_opt &= ~OCFS2_MOUNT_HB_LOCAL; break; case Opt_barrier: if (match_int(&args[0], &option)) { status = 0; goto bail; } if (option) *mount_opt |= OCFS2_MOUNT_BARRIER; else *mount_opt &= ~OCFS2_MOUNT_BARRIER; break; case Opt_intr: *mount_opt &= ~OCFS2_MOUNT_NOINTR; break; case Opt_nointr: *mount_opt |= OCFS2_MOUNT_NOINTR; break; case Opt_err_panic: *mount_opt |= OCFS2_MOUNT_ERRORS_PANIC; break; case Opt_err_ro: *mount_opt &= ~OCFS2_MOUNT_ERRORS_PANIC; break; case Opt_data_ordered: *mount_opt &= ~OCFS2_MOUNT_DATA_WRITEBACK; break; case Opt_data_writeback: *mount_opt |= OCFS2_MOUNT_DATA_WRITEBACK; break; default: mlog(ML_ERROR, "Unrecognized mount option \"%s\" " "or missing value\n", p); status = 0; goto bail; } } status = 1; bail: mlog_exit(status); return status; } static int __init ocfs2_init(void) { int status; mlog_entry_void(); ocfs2_print_version(); if (init_ocfs2_extent_maps()) return -ENOMEM; status = init_ocfs2_uptodate_cache(); if (status < 0) { mlog_errno(status); goto leave; } status = ocfs2_initialize_mem_caches(); if (status < 0) { mlog_errno(status); goto leave; } ocfs2_wq = create_singlethread_workqueue("ocfs2_wq"); if (!ocfs2_wq) { status = -ENOMEM; goto leave; } ocfs2_debugfs_root = debugfs_create_dir("ocfs2", NULL); if (!ocfs2_debugfs_root) { status = -EFAULT; mlog(ML_ERROR, "Unable to create ocfs2 debugfs root.\n"); } leave: if (status < 0) { ocfs2_free_mem_caches(); exit_ocfs2_uptodate_cache(); exit_ocfs2_extent_maps(); } mlog_exit(status); if (status >= 0) { return register_filesystem(&ocfs2_fs_type); } else return -1; } static void __exit ocfs2_exit(void) { mlog_entry_void(); if (ocfs2_wq) { flush_workqueue(ocfs2_wq); destroy_workqueue(ocfs2_wq); } debugfs_remove(ocfs2_debugfs_root); ocfs2_free_mem_caches(); unregister_filesystem(&ocfs2_fs_type); exit_ocfs2_extent_maps(); exit_ocfs2_uptodate_cache(); mlog_exit_void(); } static void ocfs2_put_super(struct super_block *sb) { mlog_entry("(0x%p)\n", sb); ocfs2_sync_blockdev(sb); ocfs2_dismount_volume(sb, 0); mlog_exit_void(); } static int ocfs2_statfs(struct dentry *dentry, struct kstatfs *buf) { struct ocfs2_super *osb; u32 numbits, freebits; int status; struct ocfs2_dinode *bm_lock; struct buffer_head *bh = NULL; struct inode *inode = NULL; mlog_entry("(%p, %p)\n", dentry->d_sb, buf); osb = OCFS2_SB(dentry->d_sb); inode = ocfs2_get_system_file_inode(osb, GLOBAL_BITMAP_SYSTEM_INODE, OCFS2_INVALID_SLOT); if (!inode) { mlog(ML_ERROR, "failed to get bitmap inode\n"); status = -EIO; goto bail; } status = ocfs2_meta_lock(inode, NULL, &bh, 0); if (status < 0) { mlog_errno(status); goto bail; } bm_lock = (struct ocfs2_dinode *) bh->b_data; numbits = le32_to_cpu(bm_lock->id1.bitmap1.i_total); freebits = numbits - le32_to_cpu(bm_lock->id1.bitmap1.i_used); buf->f_type = OCFS2_SUPER_MAGIC; buf->f_bsize = dentry->d_sb->s_blocksize; buf->f_namelen = OCFS2_MAX_FILENAME_LEN; buf->f_blocks = ((sector_t) numbits) * (osb->s_clustersize >> osb->sb->s_blocksize_bits); buf->f_bfree = ((sector_t) freebits) * (osb->s_clustersize >> osb->sb->s_blocksize_bits); buf->f_bavail = buf->f_bfree; buf->f_files = numbits; buf->f_ffree = freebits; brelse(bh); ocfs2_meta_unlock(inode, 0); status = 0; bail: if (inode) iput(inode); mlog_exit(status); return status; } static void ocfs2_inode_init_once(void *data, kmem_cache_t *cachep, unsigned long flags) { struct ocfs2_inode_info *oi = data; if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == SLAB_CTOR_CONSTRUCTOR) { oi->ip_flags = 0; oi->ip_open_count = 0; spin_lock_init(&oi->ip_lock); ocfs2_extent_map_init(&oi->vfs_inode); INIT_LIST_HEAD(&oi->ip_handle_list); INIT_LIST_HEAD(&oi->ip_io_markers); oi->ip_handle = NULL; oi->ip_created_trans = 0; oi->ip_last_trans = 0; oi->ip_dir_start_lookup = 0; init_rwsem(&oi->ip_alloc_sem); mutex_init(&oi->ip_io_mutex); oi->ip_blkno = 0ULL; oi->ip_clusters = 0; ocfs2_lock_res_init_once(&oi->ip_rw_lockres); ocfs2_lock_res_init_once(&oi->ip_meta_lockres); ocfs2_lock_res_init_once(&oi->ip_data_lockres); ocfs2_metadata_cache_init(&oi->vfs_inode); inode_init_once(&oi->vfs_inode); } } static int ocfs2_initialize_mem_caches(void) { ocfs2_inode_cachep = kmem_cache_create("ocfs2_inode_cache", sizeof(struct ocfs2_inode_info), 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| SLAB_MEM_SPREAD), ocfs2_inode_init_once, NULL); if (!ocfs2_inode_cachep) return -ENOMEM; ocfs2_lock_cache = kmem_cache_create("ocfs2_lock", sizeof(struct ocfs2_journal_lock), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (!ocfs2_lock_cache) return -ENOMEM; return 0; } static void ocfs2_free_mem_caches(void) { if (ocfs2_inode_cachep) kmem_cache_destroy(ocfs2_inode_cachep); if (ocfs2_lock_cache) kmem_cache_destroy(ocfs2_lock_cache); ocfs2_inode_cachep = NULL; ocfs2_lock_cache = NULL; } static int ocfs2_get_sector(struct super_block *sb, struct buffer_head **bh, int block, int sect_size) { if (!sb_set_blocksize(sb, sect_size)) { mlog(ML_ERROR, "unable to set blocksize\n"); return -EIO; } *bh = sb_getblk(sb, block); if (!*bh) { mlog_errno(-EIO); return -EIO; } lock_buffer(*bh); if (!buffer_dirty(*bh)) clear_buffer_uptodate(*bh); unlock_buffer(*bh); ll_rw_block(READ, 1, bh); wait_on_buffer(*bh); return 0; } /* ocfs2 1.0 only allows one cluster and node identity per kernel image. */ static int ocfs2_fill_local_node_info(struct ocfs2_super *osb) { int status; /* XXX hold a ref on the node while mounte? easy enough, if * desirable. */ osb->node_num = o2nm_this_node(); if (osb->node_num == O2NM_MAX_NODES) { mlog(ML_ERROR, "could not find this host's node number\n"); status = -ENOENT; goto bail; } mlog(0, "I am node %d\n", osb->node_num); status = 0; bail: return status; } static int ocfs2_mount_volume(struct super_block *sb) { int status = 0; int unlock_super = 0; struct ocfs2_super *osb = OCFS2_SB(sb); mlog_entry_void(); if (ocfs2_is_hard_readonly(osb)) goto leave; status = ocfs2_fill_local_node_info(osb); if (status < 0) { mlog_errno(status); goto leave; } status = ocfs2_register_hb_callbacks(osb); if (status < 0) { mlog_errno(status); goto leave; } status = ocfs2_dlm_init(osb); if (status < 0) { mlog_errno(status); goto leave; } /* requires vote_thread to be running. */ status = ocfs2_register_net_handlers(osb); if (status < 0) { mlog_errno(status); goto leave; } status = ocfs2_super_lock(osb, 1); if (status < 0) { mlog_errno(status); goto leave; } unlock_super = 1; /* This will load up the node map and add ourselves to it. */ status = ocfs2_find_slot(osb); if (status < 0) { mlog_errno(status); goto leave; } ocfs2_populate_mounted_map(osb); /* load all node-local system inodes */ status = ocfs2_init_local_system_inodes(osb); if (status < 0) { mlog_errno(status); goto leave; } status = ocfs2_check_volume(osb); if (status < 0) { mlog_errno(status); goto leave; } status = ocfs2_truncate_log_init(osb); if (status < 0) { mlog_errno(status); goto leave; } /* This should be sent *after* we recovered our journal as it * will cause other nodes to unmark us as needing * recovery. However, we need to send it *before* dropping the * super block lock as otherwise their recovery threads might * try to clean us up while we're live! */ status = ocfs2_request_mount_vote(osb); if (status < 0) mlog_errno(status); leave: if (unlock_super) ocfs2_super_unlock(osb, 1); mlog_exit(status); return status; } /* we can't grab the goofy sem lock from inside wait_event, so we use * memory barriers to make sure that we'll see the null task before * being woken up */ static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) { mb(); return osb->recovery_thread_task != NULL; } static void ocfs2_dismount_volume(struct super_block *sb, int mnt_err) { int tmp; struct ocfs2_super *osb = NULL; mlog_entry("(0x%p)\n", sb); BUG_ON(!sb); osb = OCFS2_SB(sb); BUG_ON(!osb); ocfs2_shutdown_local_alloc(osb); ocfs2_truncate_log_shutdown(osb); /* disable any new recovery threads and wait for any currently * running ones to exit. Do this before setting the vol_state. */ mutex_lock(&osb->recovery_lock); osb->disable_recovery = 1; mutex_unlock(&osb->recovery_lock); wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); /* At this point, we know that no more recovery threads can be * launched, so wait for any recovery completion work to * complete. */ flush_workqueue(ocfs2_wq); ocfs2_journal_shutdown(osb); ocfs2_sync_blockdev(sb); /* No dlm means we've failed during mount, so skip all the * steps which depended on that to complete. */ if (osb->dlm) { tmp = ocfs2_super_lock(osb, 1); if (tmp < 0) { mlog_errno(tmp); return; } tmp = ocfs2_request_umount_vote(osb); if (tmp < 0) mlog_errno(tmp); if (osb->slot_num != OCFS2_INVALID_SLOT) ocfs2_put_slot(osb); ocfs2_super_unlock(osb, 1); } ocfs2_release_system_inodes(osb); if (osb->dlm) { ocfs2_unregister_net_handlers(osb); ocfs2_dlm_shutdown(osb); } ocfs2_clear_hb_callbacks(osb); debugfs_remove(osb->osb_debug_root); if (!mnt_err) ocfs2_stop_heartbeat(osb); atomic_set(&osb->vol_state, VOLUME_DISMOUNTED); printk(KERN_INFO "ocfs2: Unmounting device (%s) on (node %d)\n", osb->dev_str, osb->node_num); ocfs2_delete_osb(osb); kfree(osb); sb->s_dev = 0; sb->s_fs_info = NULL; } static int ocfs2_setup_osb_uuid(struct ocfs2_super *osb, const unsigned char *uuid, unsigned uuid_bytes) { int i, ret; char *ptr; BUG_ON(uuid_bytes != OCFS2_VOL_UUID_LEN); osb->uuid_str = kcalloc(1, OCFS2_VOL_UUID_LEN * 2 + 1, GFP_KERNEL); if (osb->uuid_str == NULL) return -ENOMEM; for (i = 0, ptr = osb->uuid_str; i < OCFS2_VOL_UUID_LEN; i++) { /* print with null */ ret = snprintf(ptr, 3, "%02X", uuid[i]); if (ret != 2) /* drop super cleans up */ return -EINVAL; /* then only advance past the last char */ ptr += 2; } return 0; } static int ocfs2_initialize_super(struct super_block *sb, struct buffer_head *bh, int sector_size) { int status = 0; int i; struct ocfs2_dinode *di = NULL; struct inode *inode = NULL; struct buffer_head *bitmap_bh = NULL; struct ocfs2_journal *journal; __le32 uuid_net_key; struct ocfs2_super *osb; mlog_entry_void(); osb = kcalloc(1, sizeof(struct ocfs2_super), GFP_KERNEL); if (!osb) { status = -ENOMEM; mlog_errno(status); goto bail; } sb->s_fs_info = osb; sb->s_op = &ocfs2_sops; sb->s_export_op = &ocfs2_export_ops; sb->s_flags |= MS_NOATIME; /* this is needed to support O_LARGEFILE */ sb->s_maxbytes = ocfs2_max_file_offset(sb->s_blocksize_bits); osb->sb = sb; /* Save off for ocfs2_rw_direct */ osb->s_sectsize_bits = blksize_bits(sector_size); BUG_ON(!osb->s_sectsize_bits); osb->net_response_ids = 0; spin_lock_init(&osb->net_response_lock); INIT_LIST_HEAD(&osb->net_response_list); INIT_LIST_HEAD(&osb->osb_net_handlers); init_waitqueue_head(&osb->recovery_event); spin_lock_init(&osb->vote_task_lock); init_waitqueue_head(&osb->vote_event); osb->vote_work_sequence = 0; osb->vote_wake_sequence = 0; INIT_LIST_HEAD(&osb->blocked_lock_list); osb->blocked_lock_count = 0; INIT_LIST_HEAD(&osb->vote_list); spin_lock_init(&osb->osb_lock); atomic_set(&osb->alloc_stats.moves, 0); atomic_set(&osb->alloc_stats.local_data, 0); atomic_set(&osb->alloc_stats.bitmap_data, 0); atomic_set(&osb->alloc_stats.bg_allocs, 0); atomic_set(&osb->alloc_stats.bg_extends, 0); ocfs2_init_node_maps(osb); snprintf(osb->dev_str, sizeof(osb->dev_str), "%u,%u", MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); mutex_init(&osb->recovery_lock); osb->disable_recovery = 0; osb->recovery_thread_task = NULL; init_waitqueue_head(&osb->checkpoint_event); atomic_set(&osb->needs_checkpoint, 0); osb->node_num = O2NM_INVALID_NODE_NUM; osb->slot_num = OCFS2_INVALID_SLOT; osb->local_alloc_state = OCFS2_LA_UNUSED; osb->local_alloc_bh = NULL; ocfs2_setup_hb_callbacks(osb); init_waitqueue_head(&osb->osb_mount_event); osb->vol_label = kmalloc(OCFS2_MAX_VOL_LABEL_LEN, GFP_KERNEL); if (!osb->vol_label) { mlog(ML_ERROR, "unable to alloc vol label\n"); status = -ENOMEM; goto bail; } di = (struct ocfs2_dinode *)bh->b_data; osb->max_slots = le16_to_cpu(di->id2.i_super.s_max_slots); if (osb->max_slots > OCFS2_MAX_SLOTS || osb->max_slots == 0) { mlog(ML_ERROR, "Invalid number of node slots (%u)\n", osb->max_slots); status = -EINVAL; goto bail; } mlog(0, "max_slots for this device: %u\n", osb->max_slots); init_waitqueue_head(&osb->osb_wipe_event); osb->osb_orphan_wipes = kcalloc(osb->max_slots, sizeof(*osb->osb_orphan_wipes), GFP_KERNEL); if (!osb->osb_orphan_wipes) { status = -ENOMEM; mlog_errno(status); goto bail; } osb->s_feature_compat = le32_to_cpu(OCFS2_RAW_SB(di)->s_feature_compat); osb->s_feature_ro_compat = le32_to_cpu(OCFS2_RAW_SB(di)->s_feature_ro_compat); osb->s_feature_incompat = le32_to_cpu(OCFS2_RAW_SB(di)->s_feature_incompat); if ((i = OCFS2_HAS_INCOMPAT_FEATURE(osb->sb, ~OCFS2_FEATURE_INCOMPAT_SUPP))) { mlog(ML_ERROR, "couldn't mount because of unsupported " "optional features (%x).\n", i); status = -EINVAL; goto bail; } if (!(osb->sb->s_flags & MS_RDONLY) && (i = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, ~OCFS2_FEATURE_RO_COMPAT_SUPP))) { mlog(ML_ERROR, "couldn't mount RDWR because of " "unsupported optional features (%x).\n", i); status = -EINVAL; goto bail; } get_random_bytes(&osb->s_next_generation, sizeof(u32)); /* FIXME * This should be done in ocfs2_journal_init(), but unknown * ordering issues will cause the filesystem to crash. * If anyone wants to figure out what part of the code * refers to osb->journal before ocfs2_journal_init() is run, * be my guest. */ /* initialize our journal structure */ journal = kcalloc(1, sizeof(struct ocfs2_journal), GFP_KERNEL); if (!journal) { mlog(ML_ERROR, "unable to alloc journal\n"); status = -ENOMEM; goto bail; } osb->journal = journal; journal->j_osb = osb; atomic_set(&journal->j_num_trans, 0); init_rwsem(&journal->j_trans_barrier); init_waitqueue_head(&journal->j_checkpointed); spin_lock_init(&journal->j_lock); journal->j_trans_id = (unsigned long) 1; INIT_LIST_HEAD(&journal->j_la_cleanups); INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery, osb); journal->j_state = OCFS2_JOURNAL_FREE; /* get some pseudo constants for clustersize bits */ osb->s_clustersize_bits = le32_to_cpu(di->id2.i_super.s_clustersize_bits); osb->s_clustersize = 1 << osb->s_clustersize_bits; mlog(0, "clusterbits=%d\n", osb->s_clustersize_bits); if (osb->s_clustersize < OCFS2_MIN_CLUSTERSIZE || osb->s_clustersize > OCFS2_MAX_CLUSTERSIZE) { mlog(ML_ERROR, "Volume has invalid cluster size (%d)\n", osb->s_clustersize); status = -EINVAL; goto bail; } if (ocfs2_clusters_to_blocks(osb->sb, le32_to_cpu(di->i_clusters) - 1) > (u32)~0UL) { mlog(ML_ERROR, "Volume might try to write to blocks beyond " "what jbd can address in 32 bits.\n"); status = -EINVAL; goto bail; } if (ocfs2_setup_osb_uuid(osb, di->id2.i_super.s_uuid, sizeof(di->id2.i_super.s_uuid))) { mlog(ML_ERROR, "Out of memory trying to setup our uuid.\n"); status = -ENOMEM; goto bail; } memcpy(&uuid_net_key, di->id2.i_super.s_uuid, sizeof(uuid_net_key)); osb->net_key = le32_to_cpu(uuid_net_key); strncpy(osb->vol_label, di->id2.i_super.s_label, 63); osb->vol_label[63] = '\0'; osb->root_blkno = le64_to_cpu(di->id2.i_super.s_root_blkno); osb->system_dir_blkno = le64_to_cpu(di->id2.i_super.s_system_dir_blkno); osb->first_cluster_group_blkno = le64_to_cpu(di->id2.i_super.s_first_cluster_group); osb->fs_generation = le32_to_cpu(di->i_fs_generation); mlog(0, "vol_label: %s\n", osb->vol_label); mlog(0, "uuid: %s\n", osb->uuid_str); mlog(0, "root_blkno=%llu, system_dir_blkno=%llu\n", (unsigned long long)osb->root_blkno, (unsigned long long)osb->system_dir_blkno); osb->osb_dlm_debug = ocfs2_new_dlm_debug(); if (!osb->osb_dlm_debug) { status = -ENOMEM; mlog_errno(status); goto bail; } atomic_set(&osb->vol_state, VOLUME_INIT); /* load root, system_dir, and all global system inodes */ status = ocfs2_init_global_system_inodes(osb); if (status < 0) { mlog_errno(status); goto bail; } /* * global bitmap */ inode = ocfs2_get_system_file_inode(osb, GLOBAL_BITMAP_SYSTEM_INODE, OCFS2_INVALID_SLOT); if (!inode) { status = -EINVAL; mlog_errno(status); goto bail; } osb->bitmap_blkno = OCFS2_I(inode)->ip_blkno; /* We don't have a cluster lock on the bitmap here because * we're only interested in static information and the extra * complexity at mount time isn't worht it. Don't pass the * inode in to the read function though as we don't want it to * be put in the cache. */ status = ocfs2_read_block(osb, osb->bitmap_blkno, &bitmap_bh, 0, NULL); iput(inode); if (status < 0) { mlog_errno(status); goto bail; } di = (struct ocfs2_dinode *) bitmap_bh->b_data; osb->bitmap_cpg = le16_to_cpu(di->id2.i_chain.cl_cpg); brelse(bitmap_bh); mlog(0, "cluster bitmap inode: %llu, clusters per group: %u\n", (unsigned long long)osb->bitmap_blkno, osb->bitmap_cpg); status = ocfs2_init_slot_info(osb); if (status < 0) { mlog_errno(status); goto bail; } bail: mlog_exit(status); return status; } /* * will return: -EAGAIN if it is ok to keep searching for superblocks * -EINVAL if there is a bad superblock * 0 on success */ static int ocfs2_verify_volume(struct ocfs2_dinode *di, struct buffer_head *bh, u32 blksz) { int status = -EAGAIN; mlog_entry_void(); if (memcmp(di->i_signature, OCFS2_SUPER_BLOCK_SIGNATURE, strlen(OCFS2_SUPER_BLOCK_SIGNATURE)) == 0) { status = -EINVAL; if ((1 << le32_to_cpu(di->id2.i_super.s_blocksize_bits)) != blksz) { mlog(ML_ERROR, "found superblock with incorrect block " "size: found %u, should be %u\n", 1 << le32_to_cpu(di->id2.i_super.s_blocksize_bits), blksz); } else if (le16_to_cpu(di->id2.i_super.s_major_rev_level) != OCFS2_MAJOR_REV_LEVEL || le16_to_cpu(di->id2.i_super.s_minor_rev_level) != OCFS2_MINOR_REV_LEVEL) { mlog(ML_ERROR, "found superblock with bad version: " "found %u.%u, should be %u.%u\n", le16_to_cpu(di->id2.i_super.s_major_rev_level), le16_to_cpu(di->id2.i_super.s_minor_rev_level), OCFS2_MAJOR_REV_LEVEL, OCFS2_MINOR_REV_LEVEL); } else if (bh->b_blocknr != le64_to_cpu(di->i_blkno)) { mlog(ML_ERROR, "bad block number on superblock: " "found %llu, should be %llu\n", (unsigned long long)di->i_blkno, (unsigned long long)bh->b_blocknr); } else if (le32_to_cpu(di->id2.i_super.s_clustersize_bits) < 12 || le32_to_cpu(di->id2.i_super.s_clustersize_bits) > 20) { mlog(ML_ERROR, "bad cluster size found: %u\n", 1 << le32_to_cpu(di->id2.i_super.s_clustersize_bits)); } else if (!le64_to_cpu(di->id2.i_super.s_root_blkno)) { mlog(ML_ERROR, "bad root_blkno: 0\n"); } else if (!le64_to_cpu(di->id2.i_super.s_system_dir_blkno)) { mlog(ML_ERROR, "bad system_dir_blkno: 0\n"); } else if (le16_to_cpu(di->id2.i_super.s_max_slots) > OCFS2_MAX_SLOTS) { mlog(ML_ERROR, "Superblock slots found greater than file system " "maximum: found %u, max %u\n", le16_to_cpu(di->id2.i_super.s_max_slots), OCFS2_MAX_SLOTS); } else { /* found it! */ status = 0; } } mlog_exit(status); return status; } static int ocfs2_check_volume(struct ocfs2_super *osb) { int status = 0; int dirty; struct ocfs2_dinode *local_alloc = NULL; /* only used if we * recover * ourselves. */ mlog_entry_void(); /* Init our journal object. */ status = ocfs2_journal_init(osb->journal, &dirty); if (status < 0) { mlog(ML_ERROR, "Could not initialize journal!\n"); goto finally; } /* If the journal was unmounted cleanly then we don't want to * recover anything. Otherwise, journal_load will do that * dirty work for us :) */ if (!dirty) { status = ocfs2_journal_wipe(osb->journal, 0); if (status < 0) { mlog_errno(status); goto finally; } } else { mlog(ML_NOTICE, "File system was not unmounted cleanly, " "recovering volume.\n"); } /* will play back anything left in the journal. */ ocfs2_journal_load(osb->journal); if (dirty) { /* recover my local alloc if we didn't unmount cleanly. */ status = ocfs2_begin_local_alloc_recovery(osb, osb->slot_num, &local_alloc); if (status < 0) { mlog_errno(status); goto finally; } /* we complete the recovery process after we've marked * ourselves as mounted. */ } mlog(0, "Journal loaded.\n"); status = ocfs2_load_local_alloc(osb); if (status < 0) { mlog_errno(status); goto finally; } if (dirty) { /* Recovery will be completed after we've mounted the * rest of the volume. */ osb->dirty = 1; osb->local_alloc_copy = local_alloc; local_alloc = NULL; } /* go through each journal, trylock it and if you get the * lock, and it's marked as dirty, set the bit in the recover * map and launch a recovery thread for it. */ status = ocfs2_mark_dead_nodes(osb); if (status < 0) mlog_errno(status); finally: if (local_alloc) kfree(local_alloc); mlog_exit(status); return status; } /* * The routine gets called from dismount or close whenever a dismount on * volume is requested and the osb open count becomes 1. * It will remove the osb from the global list and also free up all the * initialized resources and fileobject. */ static void ocfs2_delete_osb(struct ocfs2_super *osb) { mlog_entry_void(); /* This function assumes that the caller has the main osb resource */ if (osb->slot_info) ocfs2_free_slot_info(osb->slot_info); kfree(osb->osb_orphan_wipes); /* FIXME * This belongs in journal shutdown, but because we have to * allocate osb->journal at the start of ocfs2_initalize_osb(), * we free it here. */ kfree(osb->journal); if (osb->local_alloc_copy) kfree(osb->local_alloc_copy); kfree(osb->uuid_str); ocfs2_put_dlm_debug(osb->osb_dlm_debug); memset(osb, 0, sizeof(struct ocfs2_super)); mlog_exit_void(); } /* Put OCFS2 into a readonly state, or (if the user specifies it), * panic(). We do not support continue-on-error operation. */ static void ocfs2_handle_error(struct super_block *sb) { struct ocfs2_super *osb = OCFS2_SB(sb); if (osb->s_mount_opt & OCFS2_MOUNT_ERRORS_PANIC) panic("OCFS2: (device %s): panic forced after error\n", sb->s_id); ocfs2_set_osb_flag(osb, OCFS2_OSB_ERROR_FS); if (sb->s_flags & MS_RDONLY && (ocfs2_is_soft_readonly(osb) || ocfs2_is_hard_readonly(osb))) return; printk(KERN_CRIT "File system is now read-only due to the potential " "of on-disk corruption. Please run fsck.ocfs2 once the file " "system is unmounted.\n"); sb->s_flags |= MS_RDONLY; ocfs2_set_ro_flag(osb, 0); } static char error_buf[1024]; void __ocfs2_error(struct super_block *sb, const char *function, const char *fmt, ...) { va_list args; va_start(args, fmt); vsprintf(error_buf, fmt, args); va_end(args); /* Not using mlog here because we want to show the actual * function the error came from. */ printk(KERN_CRIT "OCFS2: ERROR (device %s): %s: %s\n", sb->s_id, function, error_buf); ocfs2_handle_error(sb); } /* Handle critical errors. This is intentionally more drastic than * ocfs2_handle_error, so we only use for things like journal errors, * etc. */ void __ocfs2_abort(struct super_block* sb, const char *function, const char *fmt, ...) { va_list args; va_start(args, fmt); vsprintf(error_buf, fmt, args); va_end(args); printk(KERN_CRIT "OCFS2: abort (device %s): %s: %s\n", sb->s_id, function, error_buf); /* We don't have the cluster support yet to go straight to * hard readonly in here. Until then, we want to keep * ocfs2_abort() so that we can at least mark critical * errors. * * TODO: This should abort the journal and alert other nodes * that our slot needs recovery. */ /* Force a panic(). This stinks, but it's better than letting * things continue without having a proper hard readonly * here. */ OCFS2_SB(sb)->s_mount_opt |= OCFS2_MOUNT_ERRORS_PANIC; ocfs2_handle_error(sb); } module_init(ocfs2_init); module_exit(ocfs2_exit);