/* * pm.c - Common OMAP2+ power management-related code * * Copyright (C) 2010 Texas Instruments, Inc. * Copyright (C) 2010 Nokia Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include "powerdomain.h" #include "clockdomain.h" #include "pm.h" #include "cm2xxx_3xxx.h" #include "cm-regbits-34xx.h" #include "prm.h" static struct omap_device_pm_latency *pm_lats; static struct device *mpu_dev; static struct device *iva_dev; static struct device *l3_dev; static struct device *dsp_dev; static struct clk *dpll1_clk, *dpll2_clk, *dpll3_clk; struct device *omap2_get_mpuss_device(void) { WARN_ON_ONCE(!mpu_dev); return mpu_dev; } struct device *omap2_get_iva_device(void) { WARN_ON_ONCE(!iva_dev); return iva_dev; } struct device *omap2_get_l3_device(void) { WARN_ON_ONCE(!l3_dev); return l3_dev; } struct device *omap4_get_dsp_device(void) { WARN_ON_ONCE(!dsp_dev); return dsp_dev; } EXPORT_SYMBOL(omap4_get_dsp_device); /* static int _init_omap_device(struct omap_hwmod *oh, void *user) */ static int _init_omap_device(char *name, struct device **new_dev) { struct omap_hwmod *oh; struct omap_device *od; oh = omap_hwmod_lookup(name); if (WARN(!oh, "%s: could not find omap_hwmod for %s\n", __func__, name)) return -ENODEV; od = omap_device_build(oh->name, 0, oh, NULL, 0, pm_lats, 0, false); if (WARN(IS_ERR(od), "%s: could not build omap_device for %s\n", __func__, name)) return -ENODEV; *new_dev = &od->pdev.dev; return 0; } static unsigned long omap3_mpu_get_rate(struct device *dev) { return dpll1_clk->rate; } static int omap3_mpu_set_rate(struct device *dev, unsigned long rate) { int ret; ret = clk_set_rate(dpll1_clk, rate); if (ret) { dev_warn(dev, "%s: Unable to set rate to %ld\n", __func__, rate); return ret; } return 0; } static int omap3_iva_set_rate(struct device *dev, unsigned long rate) { return clk_set_rate(dpll2_clk, rate); } static unsigned long omap3_iva_get_rate(struct device *dev) { return dpll2_clk->rate; } static int omap3_l3_set_rate(struct device *dev, unsigned long rate) { int l3_div; l3_div = omap2_cm_read_mod_reg(CORE_MOD, CM_CLKSEL) & OMAP3430_CLKSEL_L3_MASK; return clk_set_rate(dpll3_clk, rate * l3_div); } static unsigned long omap3_l3_get_rate(struct device *dev) { int l3_div; l3_div = omap2_cm_read_mod_reg(CORE_MOD, CM_CLKSEL) & OMAP3430_CLKSEL_L3_MASK; return dpll3_clk->rate / l3_div; } static int omap4_mpu_set_rate(struct device *dev, unsigned long rate) { int ret; ret = clk_set_rate(dpll1_clk, rate); if (ret) { dev_warn(dev, "%s: Unable to set rate to %ld\n", __func__, rate); return ret; } return 0; } static unsigned long omap4_mpu_get_rate(struct device *dev) { return dpll1_clk->rate; } /* * Build omap_devices for processors and bus. */ static void omap2_init_processor_devices(void) { _init_omap_device("mpu", &mpu_dev); if (omap3_has_iva()) _init_omap_device("iva", &iva_dev); if (cpu_is_omap44xx()) { _init_omap_device("l3_main_1", &l3_dev); _init_omap_device("dsp", &dsp_dev); } else { _init_omap_device("l3_main", &l3_dev); } if (cpu_is_omap34xx()) { dpll1_clk = clk_get(NULL, "dpll1_ck"); dpll2_clk = clk_get(NULL, "dpll2_ck"); dpll3_clk = clk_get(NULL, "dpll3_m2_ck"); if (mpu_dev) omap_device_register_dvfs_callbacks(mpu_dev, omap3_mpu_set_rate, omap3_mpu_get_rate); if (iva_dev) omap_device_register_dvfs_callbacks(iva_dev, omap3_iva_set_rate, omap3_iva_get_rate); if (l3_dev) omap_device_register_dvfs_callbacks(l3_dev, omap3_l3_set_rate, omap3_l3_get_rate); } else if (cpu_is_omap44xx()) { dpll1_clk = clk_get(NULL, "dpll_mpu_ck"); if (mpu_dev) omap_device_register_dvfs_callbacks(mpu_dev, omap4_mpu_set_rate, omap4_mpu_get_rate); } } /* Types of sleep_switch used in omap_set_pwrdm_state */ #define FORCEWAKEUP_SWITCH 0 #define LOWPOWERSTATE_SWITCH 1 /* * This sets pwrdm state (other than mpu & core. Currently only ON & * RET are supported. */ int omap_set_pwrdm_state(struct powerdomain *pwrdm, u32 state) { u32 cur_state; int sleep_switch = 0; int ret = 0; if (pwrdm == NULL || IS_ERR(pwrdm)) return -EINVAL; while (!(pwrdm->pwrsts & (1 << state))) { if (state == PWRDM_POWER_OFF) return ret; state--; } cur_state = pwrdm_read_next_pwrst(pwrdm); if (cur_state == state) return ret; if (pwrdm_read_pwrst(pwrdm) < PWRDM_POWER_ON) { if ((pwrdm_read_pwrst(pwrdm) > state) && (pwrdm->flags & PWRDM_HAS_LOWPOWERSTATECHANGE)) { sleep_switch = LOWPOWERSTATE_SWITCH; } else { clkdm_wakeup(pwrdm->pwrdm_clkdms[0]); pwrdm_wait_transition(pwrdm); sleep_switch = FORCEWAKEUP_SWITCH; } } ret = pwrdm_set_next_pwrst(pwrdm, state); if (ret) { printk(KERN_ERR "Unable to set state of powerdomain: %s\n", pwrdm->name); goto err; } switch (sleep_switch) { case FORCEWAKEUP_SWITCH: if (pwrdm->pwrdm_clkdms[0]->flags & CLKDM_CAN_ENABLE_AUTO) clkdm_allow_idle(pwrdm->pwrdm_clkdms[0]); else clkdm_sleep(pwrdm->pwrdm_clkdms[0]); break; case LOWPOWERSTATE_SWITCH: pwrdm_set_lowpwrstchange(pwrdm); break; default: return ret; } pwrdm_wait_transition(pwrdm); pwrdm_state_switch(pwrdm); err: return ret; } /* * This API is to be called during init to put the various voltage * domains to the voltage as per the opp table. Typically we boot up * at the nominal voltage. So this function finds out the rate of * the clock associated with the voltage domain, finds out the correct * opp entry and puts the voltage domain to the voltage specifies * in the opp entry */ static int __init omap2_set_init_voltage(char *vdd_name, char *clk_name, struct device *dev) { struct voltagedomain *voltdm; struct clk *clk; struct opp *opp; unsigned long freq, bootup_volt; if (!vdd_name || !clk_name || !dev) { printk(KERN_ERR "%s: Invalid parameters!\n", __func__); goto exit; } voltdm = omap_voltage_domain_lookup(vdd_name); if (IS_ERR(voltdm)) { printk(KERN_ERR "%s: Unable to get vdd pointer for vdd_%s\n", __func__, vdd_name); goto exit; } clk = clk_get(NULL, clk_name); if (IS_ERR(clk)) { printk(KERN_ERR "%s: unable to get clk %s\n", __func__, clk_name); goto exit; } freq = clk->rate; clk_put(clk); opp = opp_find_freq_ceil(dev, &freq); if (IS_ERR(opp)) { printk(KERN_ERR "%s: unable to find boot up OPP for vdd_%s\n", __func__, vdd_name); goto exit; } bootup_volt = opp_get_voltage(opp); if (!bootup_volt) { printk(KERN_ERR "%s: unable to find voltage corresponding" "to the bootup OPP for vdd_%s\n", __func__, vdd_name); goto exit; } omap_voltage_scale_vdd(voltdm, bootup_volt); return 0; exit: printk(KERN_ERR "%s: Unable to put vdd_%s to its init voltage\n\n", __func__, vdd_name); return -EINVAL; } static void __init omap3_init_voltages(void) { if (!cpu_is_omap34xx()) return; omap2_set_init_voltage("mpu", "dpll1_ck", mpu_dev); omap2_set_init_voltage("core", "l3_ick", l3_dev); } static void __init omap4_init_voltages(void) { if (!cpu_is_omap44xx()) return; omap2_set_init_voltage("mpu", "dpll_mpu_ck", mpu_dev); omap2_set_init_voltage("core", "l3_div_ck", l3_dev); omap2_set_init_voltage("iva", "dpll_iva_m5x2_ck", iva_dev); } static int __init omap2_common_pm_init(void) { omap2_init_processor_devices(); omap_pm_if_init(); return 0; } postcore_initcall(omap2_common_pm_init); static int __init omap2_common_pm_late_init(void) { /* Init the OMAP TWL parameters */ omap3_twl_init(); omap4_twl_init(); /* Init the voltage layer */ omap_voltage_late_init(); /* Initialize the voltages */ omap3_init_voltages(); omap4_init_voltages(); /* Smartreflex device init */ omap_devinit_smartreflex(); return 0; } late_initcall(omap2_common_pm_late_init);